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Abstract 
To quantify uncertainty in urban drainage models, it is important to prioritise the model input 
parameters based on their contribution towards the variation in the model outputs. Global 
sensitivity analysis proves to be a stepping stone for uncertainty analyses by serving this purpose. 
This paper uses Morris screening method to identify important input parameters influencing 
combined sewer overflow (CSO) volume in an urban catchment in the Flanders region of Belgium. 
The sewer system is modelled in InfoWorks CS and a composite design storm is used in order to 
reflect the local modelling practice. Despite a low precision threshold applied on variability, stable 
convergence was achieved with Morris screening with as few as 900 model simulations. Runoff 
coefficient, weir crest, and Colebrook-White roughness came across as the most influential input 
parameters. Except the runoff coefficient and roughness, all the other input parameters displayed a 
linear relationship with the CSO volume. 
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INTRODUCTION 
Efficient decision making in the management of sewer network infrastructure is strongly influenced 
by compliance with regulatory/policy guidelines while satisfying budget constraints. Regulatory 
authorities set certain environmental permits and combined sewer overflows (CSO) spills managed 
by the utility companies need to comply with these regulations. In many countries utility companies 
face the risk of paying penalties or reputational damage if they fail to comply. This risk of penalty 
can be managed by taking appropriate decisions on investing in additional infrastructure to reduce 
the risk of CSO spills. Decisions on such investments are mainly based on performance criteria 
which are defined to compare suitable decision alternatives. These performance criteria can be 
estimated using hydrodynamic urban drainage network models; hence any uncertainty in these 
urban drainage models can have a significant effect on the outcome of the decision making process. 
In recent years many studies have been done to focus on the sources of uncertainty in these models 
and their implications on the determination of system failure required in any design process. For 
example, Deletic et al. (2012) laid out a general framework for assessing the uncertainty in urban 
drainage models. Butts et al. (2004) classified the uncertainty in modelling into model input data, 
parameters, calibration data and model structure uncertainties whereas, Refsgaard et al. (2007) 
combined the input and calibration data together making the classification into three categories: 
data, parameter and model structure uncertainty. 
Sensitivity analyses give us insights on model behaviour, its structure and its response to the 
variations in the model input (Borgonovo & Plischke, 2016). They can also be used to identify 
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which model inputs and parameters influence the model output the most (Iooss & Lemaître, 2014). 
There are several methods proposed in the literature for performing sensitivity analysis. These 
analyses can be classified as Global Sensitivity Analysis (GSA) and Local Sensitivity Analysis 
(Saltelli et al., 2000). A local sensitivity analysis is used to study the effect of small input 
perturbations on the model output and it is performed around a point in the parameter space 
whereas a GSA is performed over the whole parameter space of input and model parameters 
considered for the study (Gamerith et al., 2013; Iooss & Lemaître, 2014; Borgonovo & Plischke, 
2016). For complex models having a large number of model parameters, a small subset of model 
inputs and parameters can be selected by ranking all the parameters based on GSA. This can reduce 
the computational cost by only keeping the important parameters which explain the model output 
variance for uncertainty analysis or parameter estimation (Wainwright et al., 2014). Global 
sensitivity analysis can be performed using different approaches such as Standard regression 
coefficients (SRC) (Saltelli et al., 2008), Extended-FAST method (Saltelli et al., 1999), Morris 
screening method (Morris, 1991), Sobol’ indices (Sobol, 2001) etc. Although Vanrolleghem et al. 
(2015) prefer Extended-FAST over SRC and Morris screening method for water quality simulation 
using a conceptual model, they further conclude that for water quantity all the three methods 
Extended-FAST, SRC and Morris screening produce similar results. Gamerith et al. (2013) applied 
SRC and Morris screening method on a conceptual sewer rainfall-runoff model and concluded that 
both methods result in similar ranking of parameters for water quantity.  
In this study, we identify the model input parameters which could potentially contribute most to the 
uncertainty of the modelled values of sewer overflow volume in an urban catchment in Flanders 
region of Belgium. In this study wherever mentioned, the terms ‘model input parameters’ or ‘input 
parameters’ refer to the model inputs selected for the GSA whose values remain fixed during a 
single model simulation. Morris screening is applied on the simulation results of the sewer system 
modelled in InfoWorks CS. The Global Sensitivity Analysis is performed using selected model 
input parameters and the sensitivities of these input parameters are evaluated using a single model 
output. As far as authors are aware the Global Sensitivity Analysis methods such as Morris 
screening method have not been applied on simulation results obtained from a detailed sewer 
network modelled in InfoWorks CS.  
 
 
METHODS 
 
Model and Data 
The catchment model used in this study is a subsystem of a model for Herent which itself is a 
subsystem of a larger model for the city Leuven in Belgium which was developed by the water 
company Aquafin. The general characteristics of the Herent catchment are described in the study by 
Fischer et al. (2009). The subsystem catchment model used in this study is not identical to the one 
used by Fischer et al. (2009) and it consists of 179 nodes and 175 pipes with the total sewer length 
measuring at 12.5 km. This sewer subsystem serves around 2100 inhabitants with a total 
contributing area of about 87 hectares. The catchment model along with the location of the CSO 
structure is shown in Figure 1. The CSO volume is selected as the model output variable. Table 1 
displays the model input parameters selected for this study and their ranges. 
The Colebrook-White roughness values for concrete pipes have been taken from (Lind, 2015) 
which says the Colebrook-White roughness value for new concrete pipes could be 0.5 mm and 
could reach up to 3-6 mm for small defects. In this study we have used a maximum value of 6 mm 
but in reality the roughness values can reach even higher values due to sediment deposition in the 
pipes or major pipe defects. References for initial loss values for an urban catchment can be found 
in Thorndahl et al. (2006) and Vanrolleghem et al. (2015). We have found the range from 



8 th International Conference on Sewer Processes and Networks 
August 31 –September 2, 2016, Rotterdam, The Netherlands 

 
 

3 

Vanrolleghem et al. (2015) reasonable and suitable for an urban catchment such as the one used in 
this study.  
 

 
Figure 1. The sewer subsystem network within Herent, Belgium modelled in InfoWorks CS. 

 
Table 1. Model parameters and ranges used in the Global Sensitivtiy Analysis. 
No. Parameters Description Unit Minimum Maximum 

1 conduit_bottom_rough
ness_CW 

Colebrook-White 
roughness  

mm 0.5 6.0 

2 initial_loss_value Initial loss value  mm 0.22 1.5 

3 runoff_coeff Fixed runoff coefficient - 
Impervious 

- 0.6 1.0 

4 headloss_coeff Headloss coefficient - 1 6.6 

5 weir_discharge_coeffic
ient 

Primary Discharge 
Coefficient - Weir 

- 0.2 3.0 

6 weir_secondary_discha
rge_coefficient 

Secondary Discharge 
Coefficient - Weir 

- 0.5 1.5 

7 weir_crest Weir crest level  m 35.25 35.45 

8 weir_width Weir width  m 9.9 10.1 

 
The reference model has runoff coefficient set at 0.8 for impervious surfaces so we have considered 
a symmetrical range ± 25% of this value considering the upper physical limit being 1. The range for 
headloss coefficient has been taken from suggested values in InfoWorks help manual. The value of 
headloss coefficient from the reference model is 1 and its value can increase up to 6.6 for an angle 
of approach at 90 degrees as per the InfoWorks CS help manual. The primary discharge coefficient 
of the weir at the CSO structure is varied based on the range suggested in the help manual of 
InfoWorks CS modelling package. For secondary discharge coefficient of the weir, InfoWorks CS 
applies orifice equations. The secondary discharge coefficient of the weir is varied by ± 50% of its 
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value from the reference model. We have considered this symmetrical range which includes the 
discharge coefficient values given in the British Standard (BS EN ISO 5167-2, 2003). The ranges 
for weir crest level and width are obtained by varying their values in the reference model by ±10 
centimetres in order to reflect the potential measurement error in the manual methods used in 
estimating their values. For an even and uniform representation of the parameter space, parameter 
values are sampled from a uniform distribution within their respective ranges. The simulations have 
been performed using a composite design storm event ‘f7’which has an average frequency of 
occurring 7 times in one year. The composite storm was developed by Vaes et al. (1996) at the 
Hydraulics Laboratory, University of Leuven in Belgium. A historical rainfall series from 1967 to 
1993 with a time step of 10 minutes measured at the rain gauge at Uccle in Belgium was used to 
develop the composite storms for Flanders. For a frequency of 7, all Intensity/Duration relationships 
are included in the single f7 design storm which is why it is called composite storm. This particular 
design storm is selected following the design guidelines of Flanders Environment Agency (VMM) 
which is the regulatory authority in the Flanders region of Belgium (Coördinatiecommissie 
Integraal Waterbeleid, 2012). The VMM regulations for CSO structures are such that the CSO 
should not spill for the specific design storm f7.   
 
Morris screening method 
The Morris screening method (Morris, 1991) is used in this study for global sensitivity analysis 
which uses multiple one-at-a-time (OAT) perturbations of model input parameters selected for the 
study. Morris sampling design is employed in this study in which the parameter space is partitioned 
into p discrete levels and a random sampling is performed to generate r Elementary Effects (EE). 
The total number of required model simulations is r*(n+1) where n is the number of parameters 
considered in the study. Modifications to the sensitivity measures given by Morris (1991) is 
proposed by Campolongo et al. (2007) which is used in this study. To determine the sensitivity of a 
parameter, sensitivity measure absolute mean (µ*) is also generated along with the Morris 
sensitivity measures mean (µ) and standard deviation (σ) of the EEs. A high value of µ* for a 
particular parameter suggests that a change in this parameter has high effect on the model output 
whereas a high value of σ indicates non linearity and/or interactions with other parameters which 
affects the variability of model output. For this study, the model input parameters reported in Table 
1 are used. The parameter space is discretized into p=20 levels with number of repetitions, r=100. 
This results into the required model simulations of 100*(8+1)=900.  
 
Convergence Analysis. To analyse the cost of computation and its efficiency in determining stable 
sensitivity measures, a convergence analysis is performed by varying the number of repetitions r up 
to 100. A percentage change in the variability of sensitivity index value is used to analyse 
convergence. The method for convergence analysis and definition of variability is taken from 
Vanrolleghem et al. (2015).  
 
Cutoff Threshold. Ranking of input parameters is done based on their respective absolute mean (µ*) 
values. However in order to select important model input parameters, a cutoff threshold on µ* needs 
be defined. We have taken the cutoff threshold CT=0.1 as used by Vanrolleghem et al. (2015).    
 
 
RESULTS AND DISCUSSION 
 
Convergence analysis 
Figure 2 and 3 display the results from convergence analysis for the model output variable CSO 
volume. The change in variability (expressed in percentage) is plotted in Figure 2 as the number of 
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simulations increase. Vanrolleghem et al. (2015) apply a precision threshold of 0.5% to 3.5% to 
determine the number of simulations required for different output variables. By analysing Figure 2, 
it can be deduced that a precision threhold of 0.1 % is achieved after 400 or more number of 
simulations. Therefore, by considering 100 repetitions for 8 model input parameters, we achieve a 
stable convergence within a precision threshold of 0.1%. Figure 3 displays the convergence of the 
sensitivity measure µ* for each model input parameter. 

 
Figure 2. Convergence analysis using change in variability with increasing number of simulations. 

 

 
Figure 3. Convergence analysis for model input parameters with increasing number of simulations. 
 
Morris screening results                                     
Morris screening results with 100 repetitions (900 model simulations) are listed in Table 2. For the 
model output CSO volume, only three parameters are found to be important. These are runoff 
coefficient, conduit bottom roughness and weir crest The ranking of parameters has been done 
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based on their respective µ*. Runoff coefficient is coming out as the single most important 
parameter because of its high value of µ* compared to the rest of the parameters. It does also have a 
very high standard deviation compared to others which suggests dependence on other parameters 
and/or non linearity. Same can be said about Colebrook-White roughness which has high standard 
deviation measure where as the sensitivity measure µ* is not comparatively high (nearly equal to the 
cutoff threshold of 0.1). Also, the difference in µ* values of conduit_bottom_roughness_CW (rank 
3) and headloss_coeff (rank 4) is substantial so it is safe to conclude that Colebrook-White 
roughness can be considered as one of the most important input parameters along with runoff 
coefficient and weir crest for model output CSO volume.  
 
Table 2. Morris screening results and ranking of parameters. 
No. Parameters  Mean (µ) Absolute 

mean (µ*) 
Standard 

deviation (σ) 
Ranking 

1 conduit_bottom_roughness_
CW 

 -0.096 0.098 0.048 3 

2 initial_loss_value  0 0 0 7 

3 runoff_coeff  0.974 0.974 0.055 1 

4 headloss_coeff  -0.019 0.019 0.008 4 

5 weir_discharge_coefficient  0.001 0.001 0.002 5 

6 weir_secondary_discharge_c
oefficient 

 0 0 0 8 

7 weir_crest  -0.196 0.196 0.019 2 

8 weir_width  0 0 0 6 

 
Figure 4 displays the histogram of CSO volume obtained from 900 model simulations done for the 
global sensitivity analysis. The histogram shows the range of the model output variable CSO 
volume when it is subjected to varied input parameters. 
 

 
Figure 4. Histogram of CSO volume. 
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CONCLUSION 
Even with as few as 900 model simulations, with Morris screening a stable convergence (Figure 2) 
is achieved which reflects its low computational cost design and its usefulness in performing 
sensitivity analysis of complex models. Apart from runoff coefficient and Colebrook-White 
roughness, all the other input parameters considered in this study can be said to have linear 
relationship with CSO volume owing to small values of σ. Also using the modifications suggested 
by Campolongo et al. (2007) in the form of absolute mean µ*  did not result in a significant 
difference in the selection of important parameters. 
The global senstivity analysis performed in this study helps in identifying important model input 
parameters affecting the uncertainty of the CSO volume calculations using InfoWorks CS 
modelling package. We were able to quantify the resulting variation in modelled CSO volume 
however in order to better understand the uncertainty in CSO volume, an uncertainty analysis 
should be performed using these shortlisted input parameters. It is expected that using more realistic 
probability distributions for input parameters, instead of uniform distributions, could result in a 
different shape of the CSO volume histogram. Defining such probability distributions and carrying 
out an uncertainty analysis will form part of the ongoing further work on this case study. 
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