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Motivation: 

• Urban drainage models may be used to take decisions to manage 
sewer network infrastructure 

• Any potential uncertainty in these models can affect the outcome 
of the decision making process 

• We are trying to quantify the uncertainty in CSO volume to support 
decision making on the storage volume required for managing CSO 
spills under local regulations in Flanders, Belgium 

Objectives: 

• Identify the model input parameters which could potentially 
contribute most to the uncertainty in the combined sewer overflow 
volume 

• Quantify uncertainty in the chosen input parameters 

• Propagate the input parameter uncertainty through model 
simulations 

 

 

 

 

Motivation & Objectives 



Model & Data 

• A drainage network of a small section of Herent catchment in Flanders, 
Belgium modelled in InfoWorks CS version 15.5 

• Subsystem model has 179 nodes and 175 pipes 

• The sewer system serves around 2100 inhabitants with a contributing area  
of about 87 hectares 

• A single design composite storm event ‘f7’ to replicate the design 
guidelines by Flanders Environment Agency (VMM)  

 

 

 

 

Input parameters Unit Minimum Maximum 

Colebrook-White roughness  mm 0.5 6.0 

Initial loss value  mm 0.22 1.5 

Fixed runoff coefficient - Impervious - 0.6 1.0 

Headloss coefficient - 1 6.6 

Primary Discharge Coefficient - Weir - 0.2 3.0 

Secondary Discharge Coefficient - 

Weir 

- 0.5 1.5 

Weir crest   m 35.25 35.45 

Weir width  m 9.9 10.1 



Sensitivity Analysis 

• Morris Screening method was selected for Global Sensitivity Analysis 
(GSA)  

 

• It is found to be computationally less expensive and gives comparable 
result to other popular GSA methods Extended-FAST and Standard 
Regression Coefficient (SRC) for  a water quantity output 1  

 

• Morris sampling design divides the parameter space into 𝑝 levels  

 

• Random sampling is done from these levels to generate 𝑟 elementary 
effects (EEs) 

 

• If 𝑁𝐹 is the number of input parameters, the number of required 
simulations would be 𝑟 ∗ (𝑁𝐹 + 1) 
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Vanrolleghem, P. A., Mannina, G., Cosenza, A., & Neumann, M. B. (2015). Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison 

of different methods. Journal of Hydrology, 522(September), 339–352. 



Sensitivity Analysis 

Morris Screening Results 

Convergence Analysis: 

• A quantitative convergence analysis by analysing the variability in 𝑆𝑆𝐶  as 
we increase the number of simulations 

      𝑆𝑆𝐶  can be given as 𝑆𝑆𝐶 = 
 𝑆𝐶𝑖
𝑁𝐹
𝑖=1

𝑁𝐹
   

       where 𝑆𝐶𝑖 is sensitivity index of input parameter 𝑖 & 𝑁𝐹 is the number of  
input parameters 

      Variability 𝑦 can be expressed as1, 

 

𝑦 =
 𝑆𝐶𝑖
𝑁𝐹
𝑖=1 𝑛𝑘−1

−  𝑆𝐶𝑖
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Sensitivity Analysis 

Morris Screening Results: 

Convergence Analysis results 

• With as few as 900 model simulations, a stable convergence was achieved  

• The variability converged within a precision threshold as low as 0.1% 

 

       

 

 

 

 

 

 

 

 

 

 

 

 



Sensitivity Analysis 
 
Morris screening results: 

• Sensitivity measures: absolute mean1 (μ*) & standard deviation (σ) 

• A cutoff threshold of 0.1 has been applied on μ* to select important 
model inputs 

• High value of μ*  → Model input has high effect on the model output 

• High value of σ → suggests non linearity or interaction of the selected 
input with other model inputs 

 

 

 

 

Parameters Absolute mean (μ*) Standard deviation (σ) Rank 

Fixed Runoff Coefficient – Impervious surfaces 0.974 0.055 1 

Weir Crest 0.196 0.019 2 

Colebrook-White roughness 0.098 0.048 3 

Headloss coefficient 0.019 0.008 4 

Primary weir discharge coefficient 0.001 0.002 5 

Weir Width 0 0 6 

Initial loss value 0 0 7 

Secondary weir discharge coefficient 0 0 8 

1Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software, 
22(10), 1509–1518. 



Quantifying uncertainty in chosen input 
parameters 

Fixed Runoff Coefficient – Impervious surfaces 

• Assumed to follow a symmetrical normal distribution 
truncated at the upper limit of 1. 

• Mean is set at 0.8 with a standard deviation of 0.1 

 



Quantifying uncertainty in chosen input 
parameters 

Weir Crest 

• Random physical measurement 

• Assumed to follow a symmetrical normal distribution 

• Mean is set at 35.35m 

• A range of 10cm is chosen such that 

    3 x Standard deviation = 10 cm 

 



Colebrook-White Roughness 𝑘𝑠 
• The Colebrook-White equation is used 

1

𝑓
=  −2 log10

𝑘𝑠
14.83𝑅

+ 
2.52

𝑅𝑒 𝑓
 

 

          where, 𝑓 = Darcy resistance constant; 𝑘𝑠 = Colebrook-White roughness 
(m); 𝑅 = Hydraulic radius (m); 𝑅𝑒 =  Reynolds number 

  

                                               𝑓 =  
8𝑆𝑅𝑔

𝑉2
    & 𝑅𝑒 = 

4𝑉𝑅

𝝂
 

 
where 𝑆 = slope of the pipe (used here as hydraulic gradient),   

𝝂 = Kinematic viscosity of water (m2/s) at 15°C,  

𝑔 = acceleration due to gravity (m/s2) 

 

Quantifying uncertainty in chosen input 
parameters 



Colebrook-White Roughness 𝑘𝑠 

• Flow survey data consists of flow measurements at 10 
locations in Herent, Belgium 

• Water depth and flow velocity were used in calculating 
roughness 

• Since Colebrook-White equation is applicable only for uniform 
flow conditions, only 3 Out of these 10 locations were found 
suitable 

• For these 3 locations, Dry Weather periods are filtered based 
on average daily flow. 

 

Quantifying uncertainty in chosen input 
parameters 



Colebrook-White Roughness 𝑘𝑠 

Distribution fitting 

• Multiple probability distribution families have been tried to 
find the best fit to calculated roughness values 

• Bayesian information criterion (BIC) is used to find the best fit 
because it penalises distributions with greater number of 
parameters  

• Two parameter Log logistic distribution comes out as the best 
fit closely followed by Lognormal distribution 

• Maximum Likelihood Estimation is used as the fitting method 

Quantifying uncertainty in chosen input 
parameters 



Colebrook-White Roughness 𝑘𝑠 

Distribution fitting 
• Probability density function of two parameter Log logistic distribution 

𝑓 𝑥; 𝛼, 𝛽 =  

𝛽
𝛼

𝑥
𝛼

𝛽−1

1 +
𝑥
𝛼

𝛽 2 

 

Where 𝛼 > 0 is scale parameter and 𝛽 > 0 is shape parameter 

• Log logistic distribution parameters for the 3 locations: 

 

 

Location 𝛂 (mm) 𝛃  

M3 0.218 1.002 

M5 1.276 1.928 

M109 0.464 0.999 

Quantifying uncertainty in chosen input 
parameters 



• Distribution of roughness values at one of the locations 

 

 

 

 

 

 

 

 

• To obtain a single probability distribution of Colebrook-White 
roughness, average values of the distribution parameters have 
been used 

 

Quantifying uncertainty in chosen input 
parameters 



Method: 

• Direct Monte Carlo simulations were run for 5000 parameter 
samples 

• Latin hypercube sampling (LHS) was used instead of random 
sampling to draw samples from the parameter space (R 
package: ‘lhs’) 

• The three input parameters were assumed to be not 
correlated to each other 

Quantifying uncertainty in CSO volume  



Result: 

 

 

 

 

 

 

 

 

 

 

 

Quantifying uncertainty in CSO Volume 



• The catchment model used in this study is a flat, gravity driven 
urban catchment representative of a typical urban system.  

• Runoff coefficient has a very high dominating effect on the CSO 
volume and the uncertainty in its estimation. Extra care should 
be given while quantifying the uncertainty in such parameters. 

• Runoff Coefficient and Colebrook-White roughness were found 
to be not independent or have a non-linear relationship with 
CSO volume 

• Is requiring no spills for a set design storm a sensible way to 
regulate CSOs? 

• How can we use the information about the uncertainty in CSO 
volume to select optimal storage volume? 

 

Comments 


