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This study addresses the effect of spatial and temporal resolution of rainfall fields on the 
performance of a simplified integrated catchment model for predicting dissolved oxygen 
concentrations in a river. For that purpose we propose a procedure to generate rainfall 
products with increasing spatial information at different time step accumulations (10’, 30’ and 
60’) at the spatial support of lumped urban catchment systems. Using a rain gauge network 
and single-polarization C-Band Radar data we generate 4 rainfall products; 1) Homogeneous 
rainfall from a single rain gauge, 2) Block kriging interpolation from a network of 13 rain 
gauges, 3) Averaged Radar estimation and 4) Universal block kriging from a rain gauge 
network and using Radar as an external covariate. Comparison of the model predictions with 
monitoring data in the river showed a low sensitivity to the temporal scales proposed and a 
relative improvement with increasing spatial information linked to the climatological 
characteristics of the storm period. 

 
 
1 INTRODUCTION 
 
The approval of the Water Framework Directive (WFD, 2000/60/EC 200) in the European Union 
enforces member states to reach a “good ecological and chemical status in inland and coastal water 
bodies”. Several highly urbanised river systems across Europe still do not match the targeted water 
quality status, and complying with the environmental standards will require the adoption of 
intensive investment plans and regulatory measures. Integrated catchment models (ICM) are used as 
tools for decision support in this process, aiming to simulate the interaction between urban sewer 
networks, water treatment facilities and receiving waters (FWR, 2012).  Fast and robust models are 
required in order to perform long-term scenario analysis and system optimization (Benedetti et al., 
2012; Langeveld et al., 2013). Those modelling strategies are being increasingly proposed in 
operational and research cases. However, there is little knowledge on the requirements of rainfall 
data and its influence on the model performance.  
 
 In the modelled system, rainfall runoff fills the sewer system of urban areas located along 
the river. When flow exceeds the sewer infrastructure capacity, CSO structures (and storm settling 
tanks) discharge into the receiving water body. Depending on the magnitude of the emission and the 
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buffer capacity of the river, this results in a degradation of the water quality status. Convective 
storms in the summer season couple various critical conditions; high rainfall intensities along with 
high temperatures and a low river base flow. In many urbanised river catchments, distances 
between municipal areas are beyond the de-correlation length of convective storm processes (Bruni 
et al., 2015), meaning that spatial and temporal scales provided by the rainfall input are possibly 
affecting the system’s behaviour. Most reliable rainfall data measurements (well calibrated and 
maintained rain gauges) are often not sufficiently dense to adequately represent the spatial variation 
of rainfall. The use of additional rainfall data, like weather radar and municipal rain gauge networks 
can provide additional spatial information, at a cost of a higher uncertainty of the measured input.  
 
 This study investigates the effect of accounting for increasingly detailed spatiotemporal 
rainfall data in the performance of a simplified integrated catchment model for predicting dissolved 
oxygen concentration in the river medium.  
 
2 METHODS & MATERIALS 
 
The study area is contributing to the Dommel, a relatively small river flowing through the city of 
Eindhoven (The Netherlands). This river section receives the discharge of a 750,000 p.e. waste 
water treatment plant (WWTP) and from over 200 combined sewer overflow structures. This 
system configuration produces common oxygen depletion events in which the river ecosystem is 
put under stress. A pseudo-distributed simplified water quality model was developed in WEST 
(mikedhi.com), more information can be found in Langeveld et al. (2013). This accounts for: the 
sewer processes at the draining municipalities, WWTP dynamics and the river tributaries, 
constituting a fully integrated system. Figure 1 provides a scheme of the system’s structure and 
measurement locations.   
 

 
Figure 1 Location and structure of the catchment, rain gauges, monitoring station and radar position. 
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 Local rainfall data were obtained from different sources across an area of 570km2; automatic 
KNMI rain gauges produce the most reliable source of information (with 1 inside the catchment 
boundary, and 6 in the surrounding areas), a secondary network of 6 rain gauges managed by the 
Waterboard de Dommel and the municipality of Eindhoven provide extra spatial information within 
the urban catchment scales. Radar rainfall estimates from the KNMI composite can be obtained 
with a resolution of 1km2 and 5 minutes. Rainfall inputs were generated by a dedicated 
geostatistical approach, rendering 4 rainfall input types with increasing spatial detail: 1) 1 
homogeneous KNMI rain gauge, 2) Block kriging from the interpolation of 13 rain gauges (KNMI 
+ Waterboard de Dommel), 3) Spatial average of the KNMI calibrated Radar and 4) Universal 
block kriging of 13 rain gauges using KNMI Radar as a covariate. Those products were 
accumulated at different timescales ranging from 10’ to 1h. Three periods from the summer of 
2011, 2012 and 2013 were simulated, which duration can be checked in the Table 1. 
 
2.2 Rainfall characterisation  
 
Convective storm processes present short spatial and temporal scales. Thus a denser measurement 
network would be required to fully capture its characteristics. Stratiform rainfall structures in the 
other hand show a more homogeneous intensity distribution. In order to identify the spatial structure 
of the rainfall processes studied we used the empirical semivariogram, which provides information 
on the relative de-correlation of the variable with increasing distance: 
 

 γ̂ (h) = 1
2 N(h)

Ri − Rj
(i, j )∈N (h)
∑ 2

 , (1.1) 

 
being N(h) the number of sampled pairs located at a distance h, and R the variable measured at 
locations i and j. We assume stationarity of the rainfall field at any snapshot considered (in the 
selected accumulation time step). Additionally, due to the very limited density of punctual 
measurements, the rain field was considered isotropic and the semivariogram was computed as 
time-lumped, obtaining an averaged structure for each period considered. An exponential 
experimental semivariogram structure was fitted to the 1 km binned empirical one: 
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where c is the partial sill, c0 is the nugget effect and ϕ effective range or decorrelation distance 
(distance at which the semivariogram value reaches the 95% of the total sill). In this application no 
nugget effect was used, as van de Beek et al. (2012) didn’t found a relevant nugget in rainfall 
processes in Netherlands even for short temporal scales. The information contained in the rain 
gauge measurement data was therefore assumed perfect, although this is not true in reality and the 
effect of the uncertainty of the individual rain gauge measurements should to be further studied.  
 
 Table 1 presents the parameter values fitted to the empirical semivariogram from the 13 rain 
gauge stations. The effective range gives information on the characteristic spatial scales of the 
period study at a given accumulation time step in minutes.  
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Table 1 Fitted parameters for an exponential semivariogram model. 

 Period 1 
10/08/2011 – 31/08/2011 

Period 2 
05/07/2012 – 04/08/2012 

Period 3 
25/07/2013 – 19/08/2013 

Time step 
(min) Sill Range [km] Sill Range [km] Sill Range [km] 

10’ 5.10 37.12 2.09 8.61 1.90 59.81 
30’ 2.11 35.39 1.00 15.00 0.82 55.78 
60’ 1.05 38.47 0.61 17.18 0.51 92.88 

 
2.3 Rainfall products 
 
The ICM considered in this application presents a simplified hydrological model structure for the 
rainfall-runoff and sewer routing dynamics of each municipality. This lumps spatially the processes 
at the municipality scale yet preserving the relative location of each individual system. To this 
effect the areas connected to municipality sewer systems were mapped and georeferenciated. 
Rainfall products were then generated in the spatial support of the subcatchment areas. This 
generated a total of 29 rainfall inputs for each product, time accumulation and period considered. It 
is worth to mention that the prediction of the averaged rainfall value in the catchment-area spatial 
support has a considerably lower predictive uncertainty than punctual estimations.  
 
2.3.1 Single rain gauge (BK1) 
 
The most reliable rain gauge in the area is KNMI_370. As shown in Figure 1 it is located in the 
western part of the catchment, inside the Eindhoven airport. KNMI automatic rain gauges use a 
floating device and an electronic register, providing a high measuring frequency and resolution (1 
min - 0.02 mm/h). The stations are calibrated and maintained regularly. 
 
 Therefore the KNMI_370 rain gauge was selected to generate homogeneous rainfall fields, 
simulating the case in which data is only present at a single location inside the catchment area. This, 
still being a reliable and accurate measurement for its punctual location, lacks of any spatial 
information, hence its validity will progressively deteriorate with the distance. 
 
2.3.2 Block kriging of n rain gauges (Bkall) 
 
Extra rainfall data was obtained in the area. Six tipping bucket rain gauges belonging to the 
municipality of Eindhoven and the Waterboard de Dommel are within the boundaries of the urban 
catchment. Six additional KNMI stations can be found in the surrounding area. Combined with the 
previous station, this provided a network of 13 punctual sampling points. In order to extend this 
information to unsampled locations we applied a block kriging procedure. Producing the best 
unbiased predictor on the spatial support of each urban catchment area.   
 
2.3.3 Averaged radar quantitative estimation (ARadar)  
 
The composite product of Radar from the KNMI was averaged in the areas of interest. This is a 
quantitative estimation of rainfall from the 2 C-Band Radars of Netherlands. The estimated field has 
been further bias-corrected by the KNMI in order to eliminate the systematic underestimation from 
raw Radar data (Overeem et al., 2009). 
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2.3.4 Universal block kriging rain gauge – radar 
 
Weather radar is known to provide a good estimation of the rainfall field structure, however the 
punctual values often differ considerably in absolute value with the observed at ground level. On 
the other hand rain gauges generate accurate local measurements, although the low spatial coverage 
of rain gauge measurements generates a poor representation of the rainfall field at distant 
unsampled points. It is widely accepted that merging those punctual and distributed measurements 
can provide more accurate rainfall fields (Haberlandt, 2007; Overeem et al., 2009; Velasco-Forero 
et al., 2009). In this case we used a universal block kriging procedure. This uses the punctual rain 
gauge value to generate estimates at the catchment spatial support adapting the field to match 
external covariates (Radar estimates). This is an equivalency of kriging with external drift with 
outputs at block support.   
 
3 RESULTS 
 
We contrast the ICM simulations (using the different rainfall products) against monitoring data 
from the system. A graphical example of this comparison can be found in the Figure 2, where the 
relative match between the model and the monitored is shown for hourly-accumulated rainfall. 
 

 
Figure 2 Dissolved oxygen concentration modelled using the different rainfall products at 60' accumulation and the 

monitoring station at the end of the catchment (roughly 17 km from the WWTP). 

 The results are summarized based in the following criteria; first we present the match 
between the dissolved oxygen concentration predictions and the monitoring time series using the 
Nash-Sutcliffe coefficient (Table 2) and the root mean squared error (Table 3). 
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Table 4 shows the absolute difference between the deepest drop of the period in the modelled and 
monitored time series. The objective of this kind of simplified model structures is not to match the 
dynamics to the perfection, but to be able to represent the consequences of the processes. In water 
quality studies tables of frequency-intensity-duration of variable concentrations are extracted from 
natural species survival tolerances. This criterion attends to the capability of matching the intensity 
of depletion shown in monitoring data. 
 
Table 2 Nash-Sutcliffe coefficient for modelled-monitored dissolved oxygen in the river section 0121 

 

Table 3 RMSE for modelled-monitored dissolved oxygen in the river section 0121 

 

Table 4 Absolute difference between maximun drop of dissolved oxygen in modelled-monitored time series. 

 
 
4 CONCLUSIONS 
 
In this study we describe the procedure of generating rainfall products using commonly available 
rainfall data at different spatial and temporal scales. We tested their effect on an integrated 
catchment model for dissolved oxygen concentrations predictions. It has been observed that 
dissolved oxygen outputs are not sensitive to the accumulated time steps considered (10, 30, 60 

 Storm period 1,  
10/08/2011 – 31/08/2011 

 Storm period 2 
05/07/2012 – 04/08/2012 

 Storm period 3 
25/07/2013 – 19/08/2013 

 BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 

10’ -0.09 0.39 0.43 0.54  -0.26 -0.03 0.00 -0.01  0.20 0.18 -0.03 0.19 

30’ -0.10 0.44 0.44 0.54  -0.28 0.03 -0.02 -0.10  0.19 0.18 -0.03 0.21 
60’ -0.08 0.46 0.44 0.54  -0.29 0.05 -0.03 -0.07  0.20 0.19 -0.03 0.20 

 Storm period 1,  
10/08/2011 – 31/08/2011 

 Storm period 2 
05/07/2012 – 04/08/2012 

 Storm period 3 
25/07/2013 – 19/08/2013 

 BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 

10’ 1.28 0.96 0.92 0.83  1.41 1.27 1.26 1.26  1.13 1.15 1.29 1.14 

30’ 1.28 0.92 0.91 0.83  1.42 1.23 1.27 1.32  1.14 1.15 1.29 1.13 
60’ 1.27 0.90 0.92 0.83  1.43 1.22 1.27 1.30  1.13 1.14 1.29 1.14 

 Storm period 1,  
10/08/2011 – 31/08/2011 

 Storm period 2 
05/07/2012 – 04/08/2012 

 Storm period 3 
25/07/2013 – 19/08/2013 

 BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 
 

BK1 BKall ARadar UBK 

10’ 1.45 1.28 1.21 1.10  2.15 1.76 0.88 1.39  1.19 1.33 1.48 1.28 

30’ 1.45 1.21 1.19 1.09  2.16 1.49 0.89 1.71  1.16 1.22 1.45 1.34 
60’ 1.45 1.16 1.18 1.10  2.15 1.38 0.88 1.48  1.13 1.13 1.40 1.28 
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minutes) for the periods evaluated and for every spatial scale. This can be explained by the large 
delay in the hydraulic and biochemical processes in the system. Several studies have assessed the 
effect of spatiotemporal representation of rainfall in the hydrodynamic behaviour of urban drainage 
systems concluding that short temporal scales are relevant for matching flow patterns (Ochoa-
Rodriguez et al., 2015). However, in the case of modelling dissolved oxygen concentrations the 
spilled and drained volumes are more relevant, which are less affected by the range of temporal 
scales considered. Furthermore when considering the effect of multiple individual drainage systems 
coupled in the same integrated system this effect further dissipates. 
 
 Regarding spatial scales, the results obtained show that increasing spatial information in the 
rainfall produces more accurate estimates. In general terms UBK slightly improves the performance 
of the model, being closely followed by the averaged Radar. The interpolation methods used in this 
application present a high sensitivity to failures in the rain gauge datasets. Thus the correct 
assessment of their quality or the inclusion of an error structure could further improve their 
performance. The use of a single rain gauge is not recommended, especially in the case of more 
convective cases as in the Storm period 2, since the shorter decorrelation lengths of rainfall can 
reach the distance between the different urban drainage systems. However it can still produce 
comparable results for more homogeneous rainfall processes as seen in the Storm period 3. 
 
  The model is not matching perfectly the measured time series as shown by the low Nash-
Shutcliffe coefficients, but it can reproduce with relative accuracy the intensity of oxygen drops and 
the behaviour of the variable in storm conditions which is a relevant process for a water quality 
assessment target. This is accomplished with a very simplified structure confronted with datasets 
outside calibration conditions. However, necessary changes in the model structure have been 
observed specially to match the recovery pattern of dissolved oxygen concentrations and to match 
storm flow dynamics in the river system. Nevertheless those processes do not likely affect the 
conclusions found in this study. 
 
 Further work will focus on defining the characteristic spatial-temporal scales from the 
integrated urban water system in order to be compared with the climatological ones. This will help 
to characterise the required spatial information in the rainfall input data for any given case study. 
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