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Abstract 

Computer models are crucial tools in engineering and environmental sciences for simulating the 

behaviour of complex systems. While many models are deterministic, the uncertainty in their 

predictions needs to be estimated before they are used for decision support. Advances in 

uncertainty analysis have been paralleled by a growing number of software tools, but none has 

gained recognition for universal applicability, including case studies with spatial models and 

spatial model inputs. We develop an R package that facilitates uncertainty propagation analysis in 

spatial environmental modelling. The ‘spup’ package includes functions for uncertainty model 

specification, propagation of uncertainty using Monte Carlo (MC) techniques, and uncertainty 

visualization functions. Uncertain variables are represented as objects which uncertainty is 

described by probability distributions. Spatial auto-correlation within a variable and cross-

correlation between variables is also accommodated for. The package has implemented the MC 

approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube 

sampling. The MC realizations may be used as an input to the environmental models called from R, 

or externally. Selected static and interactive visualization methods that are understandable by non-

statisticians can be used to visualize uncertainty about the measured input, model parameters and 

output of the uncertainty propagation.  
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I INTRODUCTION 

Computer models have become a crucial tool in engineering and environmental sciences for 

simulating the behaviour of complex static and dynamic systems. However, while many 

models are deterministic, the uncertainty in their predictions needs to be estimated before 

they are used for decision support. Currently, advances in uncertainty propagation and 

assessment have been paralleled by a growing number of software tools for uncertainty 

analysis, but none has gained recognition for a universal applicability, including case studies 

with spatial models and spatial model inputs. Due to the growing popularity and applicability 

of the open source R programming language we undertook a project to develop an R package 

that facilitates uncertainty propagation analysis in spatial environmental modelling. The tool 

is intended for researchers and practitioners who understand the problems of uncertainty in 

data and models, and are looking for a simple, accessible implementation of the universal 
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methodology for uncertainty assessment. At the same time, it is designed to enable more 

experienced users to easily understand, customise, and possibly further develop the code. 

A number of computational tools are readily available to tackle the uncertainty quantification 

problem to different degrees. These include both free software, like OpenTURNS (Andrianov 

et al., 2007), DACOTA (Adams et al., 2009) and DUE (Brown and Heuvelink, 2007), 

commercial, like COSSAN (Schuëller and Pradlwarter, 2006), or free, but written for a 

licenced software, e.g. SAFE (Pianosi et al., 2015) or UQLab (Marelli and Sudret, 2014) 

toolboxes for MATLAB. A broad review of existing software packages is available in Bastin 

et al. (2013). To the best of our knowledge, however, none of the existent software is 

specifically designed to be extended by the environmental science community. The use of 

powerful but complex languages like C++ (e.g. Dakota), Python (e.g. OpenTURNS) or Java 

(e.g. DUE) often discourages relevant portions of the non-highly-IT trained scientific 

community from the adoption of otherwise powerful tools. 

The R programming language is an important tool for development in numerical and statistical 

analysis. R  has advantages  through  its  advanced  statistical  capabilities  and  high-quality  

graphical output (Ripley, 2001), and is gaining widespread use in science and education. 

Furthermore, through the use of R packages, the software can be used for a variety of 

geoscience analyses and visualisations. It has grown tremendously over the last 20 years, with 

over 8000 packages at the time of preparation of this paper. There is a number of R packages 

invoking uncertainty analysis through sensitivity analysis or use of a Bayesian framework for 

model calibration. We have found only one package named ‘propagate’ that deals with 

uncertainty propagation explicitly, using similar approaches as described in this paper. The 

package ‘propagate’, however, does not provide functionality for spatial models and variables.      

 

II EMPLOYED (SPATIAL) UNCERTAINTY PROPAGATION ANALYSIS 

APPROACH 

Uncertainty propagation aims to analyse how uncertainties in data (e.g. from measurement 

error, sampling, interpolation), combined with model uncertainties (e.g. in the model 

parameters and structure) propagate through the model (Heuvelink et al., 2007). Many 

environmental phenomena of interest are spatial, temporal or spatio-temporal in nature and 

often have strong correlations imposed by the physics and dynamics of the natural systems, 

making uncertainty evaluation difficult. The most frequently used approach represents 

uncertainty with probability distribution functions (pdfs). The pdf describes the relative 

likelihood for the random variable to take on a given value and typically it is viewed as a shape 

of the distribution, for example normal, uniform, lognormal or exponential.  It is common for 

the pdf to be parametrized, i.e.  to be characterized by distribution parameters. For example, the 

normal distribution is parametrized in terms of the mean and the variance, or uniform 

distribution is parametrized by minimum and maximum values.  For situations in which pdfs 

can be estimated reliably, they have a number of advantages over non-probabilistic techniques. 

They include methods for describing cross- and auto- correlation between uncertainties, 

methods for propagating uncertainties through simple algebras or more complex environmental 
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models, and methods for tracing the sources of uncertainty in environmental data and models 

(Heuvelink 1998). 

A frequently used method for the analysis of uncertainty propagation is the Monte  Carlo (MC)  

method (Hammersley and Handscomb, 1979, Lewis and Orav, 1989). It is very flexible and can 

reach an arbitrary level of accuracy, and therefore it is generally preferred over analytical 

methods such as the Taylor series method (Heuvelink, 1998). The idea of the MC method is to 

compute the output of the model repeatedly, with input values that are randomly sampled from 

their marginal or joint pdf. The set of model outputs forms a random sample from the output 

pdf, so that the parameters of the distribution, such as the mean, variance and quantiles, can be 

estimated from the sample. The method thus consists of the following steps: 

1. Characterise uncertain model inputs with pdfs. 

2. Repeatedly sample from (spatial) pdfs of uncertain inputs. 

3. Run model with sampled inputs and store model outputs. 

4. Compute summary statistics of model outputs. 

Note that the above ignores uncertainty in model parameters and model structure, but these can 

easily be included if available as pdfs. A random sample from the model inputs can be obtained 

using an appropriate pseudo-random number generator (Lewis and Orav, 1989). Note that a 

conditioning step will have to be included when the model inputs are correlated. Application of 

the MC method to uncertainty propagation with operations that involve spatial interactions 

requires the simultaneous generation of realisations from the spatially distributed inputs 

implying that spatial correlation will have to be accounted for (Heuvelink et al., 1989). For 

uncertain spatially distributed continuous variables, such as elevation, rainfall and soil organic 

carbon content, we assume the following geostatistical model: 

 𝑍(𝑥) =  𝜇(𝑥) +  𝜎(𝑥) ∙ 휀(𝑥) (1) 

 

where 𝜇 is the (deterministic)  mean of Z, σ is a spatially variable standard deviation of the 

prediction of 𝜇 (spatial variability of σ reflects that in some parts of study area the uncertainty is 

greater than in other parts), and ε is a standardized, zero-mean, spatially auto-correlated residual 

modelled with a semivariogram or a correlogram (Diggle and Ribeiro, 2007, Webster and 

Oliver, 2007, Plant, 2012). The random sample is drawn from the pdf of ε to further calculate 

the realizations of Z.  

The drawback of the MC method is that the accuracy of the uncertainty assessment is inversely 

related to the square root of the number of runs N. This means that to double the accuracy, four 

times as many runs are needed. In complex, multi-variable systems high accuracies are 

obtained only when the number of runs is very large (i.e. N≥1,000), which may cause the 

method to become extremely time consuming. The improvement on MC efficiency can be 

made by employing efficient sampling techniques (e.g. Latin hypercube sampling) and parallel 

computing. 
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III ‘spup’ (SPATIAL UNCERTAINTY PROPAGATION) PACKAGE DESIGN 

The adopted approach for uncertainty propagation analysis dictates the general package design. 

The ‘spup’ package provides functions for examining the uncertainty propagation starting from 

input data and model parameters, via the environmental model onto model outputs (Fig. 1). The 

functions include uncertainty model specification, stochastic simulation and propagation of 

uncertainty using MC techniques, as well as several uncertainty visualization functions. 

 

Figure 1 . The ‘spup’ package design. ‘spup’ comprises of functions for defining 

uncertainty model (I), quantifying uncertainty propagation (II) and storing output in a 

format of data or images. 

 

Uncertain environmental variables are represented in the package as objects whose attribute 

values may be uncertain and described by probability distributions. Uncertainty assumption 

may also be ignored, in which case, during the model run the user works with µ (Eq. 1) as the 

model input that best represent the reality. Both numerical (e.g. air humidity) and categorical 

data (e.g. land cover) types are handled. Spatial auto-correlation within an attribute and cross-

correlation between attributes is also accommodated for. The attributes may be independent in 

space, for which a marginal probability density function (mpdf) is defined at each point in 

space, or may co-vary in space, for which a joint probability density function (jpdf) is defined. 

Different shapes of marginal pdfs are supported, whereas joint pdfs may be defined for groups 

of attributes characterized with the normal distribution only. The specification of correlations 

between errors in space and cross-correlations between objects or attributes is made under the 

assumption that the correlations depend only on the distance between locations.  

For spatially correlated variables the package relies on the unconditional Gaussian simulation 

implemented in the ‘gstat’ package (Pebesma, 2004). For drawing realizations of uncertain 

variables without assumed correlations the package has implemented the MC approach with 

efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. 

The design includes facilitation of parallel computing to speed up MC computation. The MC 

realizations for uncertainty propagation quantification may be used as an input to the 

environmental models called from R, or externally.   
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Selected static (adjacent maps and glyphs) and interactive visualization methods that are 

understandable by non-experts with limited background in statistics can be used to 

summarize and visualize uncertainty about the measured input, model parameters and output 

of the uncertainty propagation.  

 

IV APPLICATION EXAMPLE – MAPPING SOIL MOISTURE CONTENT FOR 

THE ALLIER CATCHMENT  

As part of a research study in quantitative land evaluation, the World Food Studies 

(WOFOST) crop simulation model (van Diepen et al., 1989) was used to calculate potential 

crop yields for floodplain soils of the Allier river in the Limagne rift valley, central France. 

The moisture content at wilting point (Θwp) is an important input attribute for the WOFOST 

model. Because Θwp varies considerably over the area in a way that is not linked directly with 

soil type, it was necessary to map its variation separately to see how moisture limitations 

affect the calculated crop yield.  

Unfortunately, because Θwp must be measured on samples in the laboratory, it is expensive 

and time-consuming to determine it for a sufficiently large number of data points for creating 

the  prediction map by kriging. An alternative and cheaper way is to calculate Θwp from other 

indicators which are cheaper to measure. Because the moisture content at wilting point is 

often strongly correlated with the moisture content at field capacity (Θfc) and the soil porosity 

(Φ), both of which can be measured more easily, it was decided to investigate how errors in 

measuring and mapping these would work through to a map of calculated Θwp. Calculation of 

Θwp can be done using a pedo-transfer function, which in this case takes the form of multiple 

linear regression: 

 𝛩𝑤𝑝
′ = 𝛽0 + 𝛽1 ∙ 𝛩𝑓𝑐 + 𝛽2 ∙ 𝛷 + 𝛿 (2) 

 

where  Θ′𝑤p  denotes measured moisture content at wilting point, β0 , β1 , and β2 are the 

regression coefficients and δ denote residuals attributed to lack of model fit and measurement 

error. The regression coefficients were estimated using standard  ordinary  least  squares  

regression,  ignoring  spatial  correlation  between  the observations at the locations. The 

maps of Θfc and Φ were derived using co-kriging and accounted for spatial cross-correlation 

between Θfc and Φ. Each component on the right hand side of Eq. 2 is subject to uncertainty, 

which will propagate to uncertainty about Θwp. Following the adopted MC approach, for each 

variable and parameter the uncertainty model is defined and 1000 MC samples are drawn. 

For the spatial variables a linear model of co-regionalization (Wackernagel, 2003) is fitted 

with use of the ‘gstat’ package and possible realities are simulated. The joint pdf of the model 

parameters and structural error 𝛿 was estimated using Bayesian calibration (Van Oijen et al., 

2005) (note, this is not included in the ‘spup’ package) and a random sample was drawn from 

their joint posterior distribution. 1000 realizations of Θwp was then calculated using Eq. 2 and 

summary statistics such as mean of prediction and standard deviation were derived. 

If an uncertainty analysis with WOFOST would show that the errors in Θwp cause errors in 

the output of WOFOST that are unacceptably large, then the accuracy of the map of Θwp 
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would have to be improved. In order to decide how to proceed in such a situation, the 

contribution of each individual error source to the overall uncertainty in Θwp was determined 

as well. Figure 2 presents the results and these show that both Θfc and Φ, rather than model 

parameters and model structural error, form the main source of uncertainty. Thus, the main 

source of error in Θwp is the one associated with the kriging errors of Θfc and Φ. 

 

Figure 2 Results of uncertainty propagation for soil moisture prediction in the Allier 

catchment. 

 

 

V CONCLUSIONS AND FURTHER WORK 

We present a tool for uncertainty propagation assessment based on the uncertainty 

quantification framework described in e.g. Heuvelink et al. (2007). As the theoretical 

framework and implementation of the package progress, its application to real cases will be 

necessary, both to test the algorithms and usability of the tool, and to demonstrate the 

importance of assessing uncertainty in environmental data. The ‘spup’ package is being 

developed and used within the project “Quantifying Uncertainty in Integrated Catchment 

Studies (QUICS)”. QUICS aims to carry out research in order to take the implementation of the 

Water Framework Directive (WFD) to the next level and improve water quality management 

by assessing the uncertainty of integrated catchment model water quality predictions. Currently, 

the potential case studies for the ‘spup’ application include uncertainty propagation analysis 
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with the LandscapeDNDC model (Haas et al., 2012) and German Schwingbach catchment data, 

and Metaldehyde Prediction model developed currently for the Severn Tent Water, water 

provider in the Midlands, UK. Finally, ’spup’ will be introduced to the wider scientific 

community through CRAN (The Comprehensive R Archive Network), where many more 

challenges will be faced, including the time and resources required to implement an uncertainty 

assessment and the need to make uncertainty analyses understandable to non-statisticians. 
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