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Introduction 

Pluvial flooding at City centre of Coimbra on May 2006 
Photo Source: http://www.raingain.eu/en/actualite/flood-solutions-
north-south-europe 

One of the busiest city in Dhaka, due to 46mm of rainfall in 
one and a half hour; on afternoon of September 1, 2015. 
Photo Credit: The Daily Star on September 2, 2015. 

Chertsey, UK on February 11, 2014 
Photo source: The Guardian on 11 February, 2014 
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Introduction 

• Flooding is one the of biggest threats for a busy urban city 

 

• The urban drainage system is responsible for safe routing of flood 
water; hence an efficient drainage is mandatory 

 

• Drainage system efficiency is dependent on the individual efficiency 
of each element 

 

• Manhole is one of the most common feature of an urban drainage 
system 

 

• Analysis of flow characteristics inside a manhole can give a better 
understanding of the flow efficiency  
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Objective 

• To validate CFD model with experimental 
measurement at the laboratory 

• To analyse the different flow behaviour inside 
a manhole 
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The physical model facility is installed at the Department of Civil Engineering, 
University of Coimbra. The Physical model is consists of: 

Surface Drain 

• Two manholes 
• Connected by a Ø300 sewer pipe 
• 10 m long and 0.6 m wide and 1% 

slopped surface channel  

• Two gullies (only one is in the picture) 
• It has the ability to simulate 

simultaneously the surface and the 
transparent sewer system 

Gully 

Methodology 
Physical Model set up 
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Methodology 
Numerical Model set up 
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• SnappyHexMesh 
• Mesh size 2.5cm at manhole and 2.5-10cm at the pipe 

• 1.75 cm at the walls 
• 210,000 computational meshes 
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Methodology 

• OpenFOAM v. 2.3.0 

• interFOAM solver: considering isothermal, incompressible and 
immiscible two-phase flow (air and water for this case) 

• Mass and Momentum conservation 

  
𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝒖 = 0 

  
𝜕𝜌𝒖

𝜕𝑡
+ 𝛻. 𝜌𝒖𝒖 = −𝛻𝑝∗ + 𝛻. 𝜏 + 𝒈. 𝒙𝛻𝜌 + 𝒇𝝈 

• Uses Volume of Fluid (VOF) method (Hirt and Nichols 1981) to track 
the free surface or interface location  

• RAS k-ε turbulent model was used 

• PISO algorithm was used 

OpenFOAM simulation 
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Methodology 

• Combinations of different inflows and surcharge level in the 
manhole 

• 18 different scenarios: 
– both high and low flow  (using upstream valves) 

– high pressure and low pressure conditions (using downstream valves) 

– Both free surface and pressure flow in the pipe 

 

Tests performed 
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Results 
Comparison with experimental tests performed 

• Comparison with measured discharge (electromagnetic discharge 
meter) and pressure (pressure sensor) 
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• Similar surcharge with different inflow 

• Vortex formation is different 

• Vortex centre moves higher and further from the inlet 

Results 
Flow comparison for different inflow 
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• Two types of the streamlines have different pathways 

• A particle from the bottom of manhole is likely to travel more inside  

• For particle initially at manhole base:  
– Higher inflow>more traveling to the top>More residence time inside manhole 

• For particle coming through inlet: 
– Higher flow>more mixing inside the manhole 

 

Results 
Flow comparison for different inflow 
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• Similar inflow with different surcharge 

• Vortex forms only over a certain surcharge depth 

• At lower surcharge, flow is mostly parallel to the dominant direction 

Results 
Flow comparison for different surcharge 
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Sim 1_3 

Sim 2_4 
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• In Sim 3_3, most streamline from the bottom circulates inside 
manhole 

• For particle initially at manhole base: 
– Lower surcharge > more particles stay inside 

• For particles coming through the pipe 
– Lower surcharge > less mixing inside manhole 

Results 
Flow comparison for different inflow 

Seeding from the bottom  Seeding from the inlet pipe 
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• All have higher pressure near outlet 
• Same surcharge: 

– Similar pressure gradient map 
– Diff. between max and min pressure rises with inflow 

• Same inflow 
– Different pressure gradient map 
– Diff. between max and min pressure oppositely to the surcharge 

 
 
 

Pressure level at the manhole bottom 

Results 

  
 

  

Same surcharge 
Higher inflow 

Same inflow 
Lower Surcharge 

30 Pa 60 Pa 500 Pa 70 Pa 90 Pa 



Conclusion 

• The work presented shows the first step numerical 
assessment of flow behaviour inside a manhole 
 

• OpenFOAM® v. 2.3.0 with solver interFOAM was used 
with RANS k-ɛ turbulence model 
 

• Numerical model shows good agreement with 
experimental pressure data (less than 7% error) 

 

• Flow streamline and manhole bottom pressure show 
different characteristics with change in inflow and/or 
surcharge level in the manhole. 
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Future Work 

• The model will be validated with flow 
measurement inside the manhole 

 

• The work will be further developed to better 
understand the particulate transport 
phenomena inside the manhole-pipe drainage 
system 
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