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Abstract
This paper introduces an uncertainty analysis framework in urban drainage modelling and focuses
on the application of the EmiStat model which simulates the volume and substance flows in urban
drainage systems (UDS). EmiStat aids the planning and design of UDS without the requirement of
extensive simulation tools. An implementation of EmiStat as an R-version, the EmiStat-R model,
was realised. EmiStat-R can make use of R functionalities, such as time series analysis, modelling
and visualisation. Uncertainty is often ignored in urban drainage modelling. Commercial software
used in engineering practice typically ignores uncertainties and uncertainty propagation, among
others  because of lack of user-friendly implementations. This can have large impacts, such as the
wrong dimensioning of UDS and the inaccurate estimation of pollution in the environment.  The
paper presents the EmiStat-R model and illustrates its use with a case study from the Haute-Sûre
catchment in Luxembourg for 10 rainfall events. An accuracy assessment of the model predictions
with  independent  observations  was  performed.  The  case  study  results  indicate  that  model
predictions and independent observations of volume in the combined sewer overflow tank (CSOT)
for rain events without and with combined sewer overflow (CSO) agree overall on the temporal
pattern.  However,  the  inflow  to  the  CSOT and  accordingly  the  activated  storage  volume  is
overestimated by the model in events without CSO. The results of the simulations of rain events
with CSO showed that the volume in the CSOT curve is not well simulated, having more volume
than  the  observed  curve.   The causes  are  model  input,  model  parameter  and  model  structure
uncertainty, while uncertainties in observations and the conversion  of validation data explain part
of the deviation between simulated and observed time series. An important aspect is, to compare
simulations and observations at the same temporal support. In order to analyse the contributions of
the  various  sources  of  uncertainty,  we  propose  a  formalised  uncertainty  framework  for  UDS
modelling.
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INTRODUCTION
Most urban drainage models do not pay attention to uncertainty propagation (Mitchell et al. 2007)
(Bach et  al.  2014). In particular, commercial  software packages as used in engineering practice
typically ignore uncertainties due to lack of user-friendly software implementations (Schellart et al.
2010). However, uncertainties can be substantial and ignoring these may affect decision making. In
particular, end users should be aware of uncertainties so that they can take more robust decisions. In
addition, the current state of knowledge regarding uncertainties in urban drainage modelling is poor
(Deletic et al. 2012). Thus, research into uncertainty propagation in urban drainage modelling and
development of operational systems that can trace the propagation of uncertainties is needed (Bach
et  al.  2014).  In  this  paper  we  make  a  contribution  to  this  effort  by  proposing  an  uncertainty
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propagation  framework  for  urban  drainage  modelling  using  the  EmiStat-R  model.  Before
addressing  the  uncertainty  propagation  framework,  first  the  EmiStat-R model  is  presented  and
applied to a case study from the Haute-Sûre (Obersauer, in German) catchment in Luxembourg. In a
first step of an uncertainty analysis, we focus on the assessment of the overall  accuracy of the
EmiStat-R predictions using independent  observations  and perform the comparison at  the same
temporal support (Leopold et al., 2006)

MATERIALS AND METHODS

The EmiStat model
The EmiStat model is an XLS based model which provides a fast estimation of combined waste
water  emissions.  It  supports  the  planning  and  design  of  urban  drainage  systems,  without  the
requirement  of  extensive  simulation  tools  (Klepiszewski  & Seiffert  2013).  The  EmiStat  model
includes six main components to simulate combined sewage discharges of a catchment.  1)  Dry
Weather  Flow  (DWF):  EmiStat  assumes  a  constant  DWF  resulting  from  specific  water
consumption  per  population  equivalents  (PE)  and  specific  discharge  of  infiltration  inflow  per
hectare of contributing impervious area to combined sewage flow; 2) Pollution of DWF: specific
load contribution per PE and day of substances of interest. No pollutant contribution of infiltration
inflow is taken into account; 3) Rain runoff volume and Rain Weather Flow (RWF): complete
runoff of rainfall on impervious catchment area contributing to combined sewage flow. The RWF is
discharged instantaneously  to  the  sewer  outlet  or  Combined  Sewer  Overflow (CSO) structures
downstream of the catchment, i.e. the flow time in the sewer system is not taken into account; 4)
Pollution of RWF: constant surface runoff concentrations of substances under observation. EmiStat
assumes complete mixing of pollutants in simultaneously flowing volume components and tank
structures; 5)  Combined sewage flow (CSF) and pollution: contributions of DWF and RWF to
combined  sewage  flow  and  consequent  pollution  load;  6)  CSO  volume  and  pollution:  flow
diverted towards the receiving water body that takes place when the overflow weir level in the CSO
tank (CSOT) is exceeded. The pollution is measured as concentrations given a certain load.

The sewer system under investigation includes a tank structure to store first flush pollutant peaks.
After  filling  of  the  storage  volume  a  combined  sewage  overflow  structure  discharges,  to  the
receiving water, volume and pollutant load inflows exceeding the structure flow to the Waste Water
Treatment Plant (WWTP). In EmiStat a simple volume balance taking into account inflow volume,
present storage capacity and outflow to WWTP is implemented to simulate the tank structure. In
case of an overflow the pollutant concentrations in the CSO are equivalent to the combined sewage
inflow concentrations of the structure.

The  pollutants  typically  taken  into  account  are  total  Chemical  Oxygen  Demand  (COD)  and
Ammonium (NH4). The variable COD is the standard used in the framework of the dimensioning of
CSO structures. NH4 represents a diluted substance which can have a significant impact on surface
water quality due to possible transformation to Ammonia (NH3).

At the CSOT structure a simple volume balancing takes place: 1) substance and volume flows are
stored and discharged to the WWTP if the storage volume is not completely  filled up; 2) if the
storage volume is completely filled up the proportion of the volume inflow which is not discharged
to the WWTP goes to the CSO. The CSO pollutant concentration is equivalent to the combined
sewage inflow concentration.
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Figure 1 depicts the underlying processes simulated by EmiStat and the locations where monitoring
is typically done. Details regarding the conceptual and mathematical model of the EmiStat model
are given in Torres-Matallana and Klepiszewski (2015).

Figure  1.  Main  components  of  the  EmiStat  model:  1)  Dry  Weather  Flow  (DWF)  including
Infiltration Flow (IF); 2) Pollution of DWF; 3) Rain Weather Flow (RWF); 4) Pollution of RWF; 5)
Combined  Sewage  Flow  (CSF)  and  pollution;  and  6)  Combined  Sewer  Overflow  (CSO)  and
pollution. (Background adapted from: Sanitary-District, 2015).

Emistat-R: Implementation of EmiStat in R
The EmiStat-R model takes the EmiStat model a step further, by implementing EmiStat as modular
R  functions.  This  enables  to  add  new  functionalities  through  the  R  framework.  Furthermore,
EmiStat-R  was  implemented  with  an  interactive  user  interface  with  sliders  and  input  data
exploration.

The R Language for statistical computing and graphics (Ihaka & Gentleman, 1996; R Development
Core Team, 2013) is a versatile and open source programming language influenced by S (Becker et
al.  1988)  and Scheme (Steel  & Sussman 1975).  R is  very  similar  in  appearance to  S,  but  the
underlying implementation and semantics are derived from Scheme (Ihaka & Gentleman 1996). R
supports various types of statistical analysis, from basic types of analysis to highly specialized, due
to the large number of specialized add-on packages that have been developed over the years and
that can be installed together with R. Being open source and cross-platform software, R is ideally
suited for performance of standardized tests, comparison of models, and analysis of reproducibility
of methods and results (Andrews et al., 2011). R provides generic functionality for urban drainage
modelling. This includes basic data manipulation, handling and analysing time series data, spatial
data and spatio-temporal data, implementation of flow equations, basic plotting and high quality
visualisation (Torres-Matallana & Pebesma 2013).

Figure 2 illustrates the Graphical User Interface (GUI) of the EmiStat-R model for capturing input
data.  The model  input data can be grouped into four main categories (Table 1):  1) wastewater
production data, i.e. water consumption in Population Equivalent (PE) and characterization of the
pollution load of wastewater in terms of COD and NH4 concentrations in PE; 2) runoff and specific
pollutant load contribution per population equivalent and day (COD and NH4 concentrations) of
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infiltration water; 3) precipitation data, i.e. time series of rainfall and rainfall runoff pollution in
terms  of  concentrations  of  COD  and  NH4;  4)  storm water  runoff  characteristics  given  as  the
maximum flow time in the sewer system to mimic attenuation effects in systems with a maximum
flow time higher that 20 minutes.

Figure 2. Graphical User Interface (GUI) of the EmiStat-R model. R interface for capturing the
input data.

Table 1. General input variables of the EmiStat-R model.
Category Variable Units Value

Wastewater Water consumption [l/(PE+ d] 150

Pollution COD* [g/(PE d)] 120

Pollution NH4
** [g/(PE d)] 5

Infiltration water Inflow [l/(s ha)] 0.05

Pollution COD [g/(PE d)] 0

Pollution NH4 [g/(PE d)] 0

Rainwater Pollution COD [mg/l] 107

Pollution NH4 [mg/l] 0

Precipitation time series [mm/min] P1

Period [year] 2011

Storm water runoff Flow time in the sewer system [min] 20
* COD = Chemical Oxygen Demand; ** NH4 = Ammonium ; +PE= population equivalents.
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The general input variables of the CSO structure distinguishes two main components (Table 2):
1) catchment  data,  i.e.  data  concerning the  name of  the municipality,  name and number of  the
catchment,  land  use  (residential,  commercial,  industrial),  the  total  area  of  the  catchment,  the
impervious area, and the population equivalents connected to the sewer system; and 2) structure
data, i.e. data regarding the throttled outflow diverted to the WWTP and the total storage volume of
the CSOT.

The main interest of simulation with EmiStat-R is the emission of overflows in individual CSO
structures. Therefore, no aggregation of catchments is done because the interest is in the behaviour
of  individual  structures.  The model  predictions  were compared to  InfoWorks® ICM (Innovyze)
predictions  for  this  study  area  obtained  previously  for  different  scenarios  (Klepiszewski  et  al.
(2014).

Study area
The study area is a sub-catchment of the Haute-Sûre catchment in the north-west of Luxembourg.
The combined sewer system of the sub-catchment drains the three villages of Goesdorf, Kaundorf
and Nocher-Route. In the local sewer system downstream the villages, three CSOTs are located to
store  pollutant  peaks  in  the  first  flush  of  combined  sewage  flows.  Table  2  shows the  general
characteristics of each CSOT and its associated sub-catchment. Figure 3 depicts their locations and
the delineation of the catchment.

The topography of the area is characterised by a hilly landscape. The elevations around Goesdorf
are between 390 m and 490 m, around Kaundorf between 370 m and 464 m, and in the area of
Nocher-Route the elevations  vary between 400 m and 485 m. The main land use types  in the
villages are  residential,  smaller  industries and  farms. Outside of  the villages forest  as well  as
agricultural arable and grassland are the dominating land uses. The receiving water bodies at CSO
structures  Goesdorf,  Kaundorf  and  Nocher-Route  are  tributaries  of  the  river  Sûre  (Sauer,  in
German) (Figure 3).

Table 2. General input variables of the CSO structures of the EmiStat-R model. The data used for 
simulation is of the year 2010.

Variable Goesdorf Kaundorf Nocher-Route

Sub-catchment data

Land Use [-] Residential/IndustrialResidential/IndustrialResidential/Industrial

Total area [ha] 16.5 22.0 18.6

Impervious area [ha] 7.6 11.0 4.3

Population equivalents [PE] 611 358 326

Flow time structure [min] 10 10 10

Structure data

Throttled outflow [l/s] 9 9 4

Volume [m3] 190 180 157
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Figure 3. The Haute-Sûre   (Obersauer, in German) sub-catchment. CSO structures are located in
Goesdorf, Kaundorf and Nocher-Route.

Data
The input  data  used to  run the  EmiStat-R model  are  shown in Tables  1 and 2.  The simulated
precipitation  time  series  represent  11  events  from 28/04/2011  to  22/06/2011  at  1  minute  time
intervals:  one  in  DWF  conditions,  eight  in  rain  conditions  and  two  CSO  events.  The  events
correspond to time periods at which measurement campaigns of waste water quality were carried
out. The hydraulic variables measured were outflow rate (discharge towards WWTP) in [m3/h],
water  level  in  the  CSO  structure  and  in  the  CSOT  [cm].  The  temporal  resolution  of  the
measurements  is  30  seconds.  The following  Waste  Water  Quality  (WWQ) measurements  were
monitored: total COD, biochemical oxygen demand, total nitrogen, NH4, nitrate, total phosphorus,
phosphate, total suspended solids, pH, Conductivity, water temperature. The temporal resolution of
the WWQ variables was two hours of composite samples for characterising DWF and between 2 to
30 minutes to grab samples during rain events.

Accuracy assessment method
The above measurements  were used as  independent  observations  to  assess  the accuracy of  the
model  predictions.  We aggregated  the  observations  to  1  minute  resolution  to  assure  the  same
temporal  support  of  simulations  and observations  for  the comparison.  As  accuracy  assessment
measures we usedMean Error (ME), Root Mean Squared Error (RMSE) and the Nash-Sutcliffle
model efficiency coefficient (NSE).

RESULTS

Application and accuracy assessment of the EmiStat-R model to the Haute-Sûre case
Presentation and analysis of results are concentrated to the model simulations of volume in the sub-
catchment of the Goesdorf CSOT. In total 11 events at Goesdorf CSOT were analysed in 2011
(events 4 to 14). Events 1 to 3 belong to another period of analysis (2005-2006) and are not taken
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into account in this paper. Figure 4 shows the comparison of model predictions with independent
observations of volume in the CSOT for rain events without CSO: (a) event 6, rain from 19/05/2011
00:00:00  to  21/05/2011  00:00:00;  (b) event  12,  rain  from  31/05/2011  00:00:00  to  01/06/2011
12:00:00. Figure 5 shows the comparison for rain events causing a CSO: (a) event 7, rain from
18/06/2011 06:00:00 to 20/06/2011 00:00:00, the event 8 was the CSO; (b) event 13, rain from
22/06/2011 06:00:00 to  23/06/2011 06:00:00,  the  event  14  was the  CSO. Table  3  presents  the
accuracy measures for all events.

Figure 4. Accuracy assessment of the EmiStat-R model simulating volume in the CSOT for rain
events without CSO at Goesdorf station; (a) event 6, rain from 19/05/2011 00:00:00 to 21/05/2011
00:00:00; (b) event 12, rain from 31/05/2011 00:00:00 to 01/06/2011 12:00:00.

For the events presented in Figures 4 and 5, values of the ME and RMSE are [m3], whereas the NSE
is dimensionless. The NSE ranges from -Inf to 1. Essentially, the closer to 1, the more accurate the
model is. NSE equal to 1, corresponds to a perfect match of modelled to the observed data. NSE
equal to 0, indicates that the model predictions are as accurate as the mean of the observed data. -Inf
< NSE < 0, indicates that the observed mean is better predictor than the model. The graphs and
accuracy measures given in Figures 4 and 5 indicate a moderate representation by the model of the
volume in the CSOT at Goesdorf for the rain events. In general, during events without CSO the
model over-predicts the volume in the COST, while during CSO events the model tends to let the
volume  drop  much  more  quickly  over  time  than  observed  in  reality.  Table  3  summarises  the
accuracy measures obtained.

Figures 4 and 5 present the graphical measure (i.e. plot of both predicted and observed in one plot
against time). 
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Figure 5. Accuracy assessment of the EmiStat-R model simulating volume in the CSOT for rain
events with CSO at Goesdorf station: (a) event 7-8, rain from 18/06/2011 06:00:00 to 20/06/2011
00:00:00; (b) event 13-14, rain from 22/06/2011 06:00:00 to 23/06/2011 06:00:00.

Table 3. Accuracy measures for 11 events.
Event ME [m3] RMSE [m3] NSE [-]

4, rain event 3.69 10.1 -8.57

5, dry weather flow -0.37 0.81 -0.26

6, rain event 6.81 21.14 0.25

7, rain event with CSO -18.05 58.68 0.32

8, rain event (CSO) -18.05 58.68 0.32

9, rain event 13.11 34.57 -6.94

10, rain event 22.56 46.53 -10.8

11, rain event 26.56 42.02 -0.56

12, rain event 0.99 5.64 0.60

13, rain event with CSO -38.75 59.87 0.25

14, rain event (CSO) -38.75 59.87 0.25

DISCUSSION
Implementation of EmiStat in R
The  implementation  of  EmiStat  in  R  has  as  a  main  advantage  the  possibility  to  make  use  of
Graphical User Interfaces (GUIs) and plotting functionalities of R. This implementation saves time
in the set-up of the model. Implementation in R is also attractive because EmiStat-R can easily be
extended with  R routines,  such as  ensuring compatibility  of  input  and output  time series  with
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geospatial functionalities implemented in R, e.g. through R package spacetime (Pebesma 2012).
Moreover,  the  R  environment  allows  implementation  of  routines  for  parallel  computing  and
multicore tasks, e.g. packages snowfall (Knaus, 2015) and doParallel (Weston 2015).

EmiStat-R  implements  EmiStat  which  is  a  simplified,  aggregated  model  that  makes  many
simplifications. For instance, it does not take spatial distribution of inputs, specifically rainfall and
impervious  areas,  into  account.  Also,  the  simulation  of  the  volume  and  CSO  volume,  and
henceforth  the  pollutants  concentration  as  Chemical  Oxygen  Demand  (COD)  and  Ammonium
(NH4), as linear combinations of DWF and RWF is a gross simplification or reality. Finally, the
model does not take into account additional processes, such as washoff, first flush, emptiness flush
and hydrodynamics in the sewer network. All these simplifications and limitations indicate that the
model is not perfect and that model simulations depart from reality, as confirmed by comparison of
model simulations with independent observations.

Case study results
Figures 4 and 5 illustrate observations of the monitoring campaign and EmiStat-R simulation results
for the CSOT Goesdorf. The rain events taken into account include events causing a loading of the
tank and events causing a CSO. For rain events without CSO, i.e. Figure 4, the volume curve is
considerably well simulated, i.e. similar temporal patterns. Nevertheless, the peaks in volume in the
CSOT are  overestimated  in  the  model  simulations.  Therefore  an  important  component  of  the
uncertainty is related to the representation of inflow to the tank and consequently the peak volume
in the CSOT. 

The simulation results of rain events with CSO, i.e. Figure 5, show that the volume in the CSOT is
not well simulated over time, having more volume than the observed curve. This behaviour could
be attributed to the fact that during intense rain events, when CSO takes place, the contribution of
the surface runoff is not only due to the contribution of the impervious areas to the sewer system
but also to the contribution of surrounding green and pervious areas in Goesdorf and beyond the
urban catchment of Goesdorf. This indicates an additional source of uncertainty related to the model
inputs.

Other  main  sources  of  uncertainty  regarding  the  input  variables  and  the  physical  processes
modelled,  i.e.  uncertainty  in  input  and model  structure,  are  related  to  the fact  that  1)  a  runoff
coefficient  that  accounts  for  effective  precipitation  and direct  runoff  is  not  taken into  account.
Therefore,  all  runoff  due  to  impervious  areas  is  directly  proportional  to  the  total  amount  of
precipitation,  without  discounting  losses  of  effective  precipitation  due  to  land  processes  as
interception, wetting of soil, infiltration, subsurface flow and saturated zone. As a consequence, the
overestimation of the peak volume in the CSOT takes place in all simulations of rain events without
CSO; and 2) we used just one rain gauge per structure located at the CSO structure, which may not
be an accurate representation of the “real” rainfall in the catchment. Heterogeneity in the rainfall
field is expected and as a consequence the spatial variation of precipitation should be taken into
account to reduce uncertainty. Similarly, other sources of uncertainty due to measurement errors in
the observed data that must be considered are: the observed volume of the tank is derived from in-
situ measurements of the water level in the CSOT through a volume curve that has imperfections as
well. The volume curve is uncertain due to the fact that an under estimation of the storage capacity
of the CSOT is done because backwater effects in the upstream sewer system are not taken into
account  in  the  model.  Discrepancies  between  simulated  and  observed  are  not  only  due  to
uncertainties in the simulations, but can also partly explained by uncertainties in the observations.
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Hence, a  Monte  Carlo  analysis  could  add  a  comparison  of  observation  versus simulations
accounting for observational and simulation uncertainty. This would enable us to check whether
observed and simulated values differ statistically significant (see Leopold et al. 2006).

Support issues
Most model inputs and outputs have a specific temporal  support,  which is  defined as the time
interval over which measurements and predictions are averaged. For instance, rainfall is expressed
as average rainfall over a specific time period, e.g. one minute, ten minutes, or one hour. Likewise,
the tank CSO has a temporal support, because it is calculated as an average over a given time
interval. The model input data must be supplied at the right support, which, in the case of EmiStat-
R, equals the model time step. Also, comparison of model outputs with independent observations
must  be  done  at  the  same  temporal  support.  This  may  require  a  change  of  support,  i.e.
disaggregation  or  aggregation.  When  addressing  uncertainty  and  uncertainty  propagation,  it  is
important  to  take  support  issues  and change of  support  into  account  because  uncertainties  are
support-dependent (e.g. Leopold et al., 2006).

Sources of uncertainty
The  accuracy  assessment  results  show  that  model  simulations  of  the  volume  in  the  CSOT at
Goesdorf for rain events with and without CSO are far from perfect, i.e. the model is not very
accuracy. This leads to an important question: what are the causes of the poor performance of the
model?  The  discussion  above  clarified  that  the  causes  are  input,  model  parameter  and  model
structure error/uncertainty,  while measurement and conversion errors in the validation data also
explain part of the deviation between simulated and observed time series shown in Figures 4 and 5.
In order to analyse the contributions of the various sources of uncertainty, we propose a formalised
uncertainty analysis framework.

Framework for uncertainty analysis
All the model inputs are subject in some degree to uncertainty. As suggested by Neumann (2007)
when designing CSO Detention, it  is important to distinguish between the effects induced from
model inputs, such as rainfall variability, and effects due to model parameter uncertainty. Figure 6
illustrates the proposed framework for uncertainty analysis in urban drainage modelling. At level 1
two  main  components  are  distinguished,  the  Data  and  the  Model.  Data  refers  to  two  main
components: model input data and observations, where the latter are used for accuracy assessment
of model outputs through validation (Level 2). Data are prone to uncertainty due to various reasons,
e.g. measurement, sampling and interpolation error (Level 3). The Model uncertainty can be divided
in three main components: structure, parameters, and computational uncertainty, where the latter
includes  uncertainty  due  to  numerical  procedures  (Level  3).  Quantification  of  the  Model
uncertainties may be achieved using a Bayesian statistical approach (Beven & Freer, 2001; Vrugt et
al., 2008; Chandra et al., 2015; Del Giudice, 2015) (Level 4). In total we distinguish six sources of
uncertainty  in  urban  drainage  modelling.  The  proposed  framework  uses  the  Taylor  series
approximation  and  Monte  Carlo  techniques  in  order  to  propagate  the  uncertainty  through  the
EmiStat-R model.

It is important  to separate the contributions of the various sources of uncertainty. Uncertain input
data  comprise rainfall,  the  size  of  the  impervious  area,  the  flow time to  the  structure  and the
population  equivalent  served  by  the  system.  Additional  data  inputs  which  are  less  subject  to
uncertainty are the throttled outflow derived towards the wastewater treatment plant (WWTP) and
the  storage  volume  of  the  structure.  Upon  quantification  of  uncertainties  in  model  inputs  and
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parameters  by  probability  distributions,  the  propagation  of  these  uncertainties  through  the
environmental urban drainage model EmiStat-R can be calculated. For this, the use of Monte Carlo
simulation is proposed. In principle, propagation of model parameter and model structure error can
also be analysed in  this  way, although quantification of  these uncertainty sources  by means of
probability distributions is more difficult.  Here, the advantage of an R-implementation becomes
eminent, because the R-environment provides numerous tools for (spatial) uncertainty analyses. The
software is currently tested for the Haute-Sûre case study and further developments of the EmiStat-
R model are envisioned where the concept of semi-distributed modelling is applied, so that spatial
variability of inputs, such as rainfall, can be accounted for in the modelled system.

Figure 2. Proposed framework for uncertainty analysis in urban drainage modelling.

CONCLUSIONS
The EmiStat-R model was built as an implementation of the EmiStat urban drainage model in R. It
works well, has an interactive user-interface and can present outputs in accessible plots. Another
important advantage of EmiStat-R is that it opens up possibilities to make use of the large body of
R  functionalities,  such  as  compatibility  of  input  and  output  time  series  with  geospatial
functionalities  and  the  implementation  of  Monte  Carlo  techniques  for  uncertainty  propagation.
Although,  this  has  not  been  done yet,  a  framework has  been  designed  and implementation  is
envisioned in the near future.

The case study results indicate that model predictions and independent observations of volume in
the CSOT for rain events without and with CSO agree moderately. However,  the inflow to the
CSOT and accordingly the activated storage volume in the CSOT is significantly overestimated by
the model in events without CSO. This indicates that an important component of the uncertainty is
related with the flow rate to the CSOT. The results of the simulations of rain events with CSO
showed that the recession limb of the volume in the CSOT curve is not well simulated, having more
volume than the observed curve. This behaviour could be attributed to the fact that during intense
rain events, when CSO takes place, the contribution of the surface runoff is not only due to the
contribution of the impervious areas to the sewer system but also to the contribution of surrounding
green and impervious areas in and beyond the urban catchment of Goesdorf.

The causes of uncertainty in model outputs are related with input,  model parameter and model
structure error/uncertainty, while measurement errors in the accuracy assessment data also explain
part  of the differences between simulated and observed model outputs.  Differences in temporal
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support of predictions and observations may also lead to discrepancies, and hence it is important
that  upscaling  and/or  downscaling  techniques  are  use  to  ensure  that  both  the  simulations  and
observations  have  the  same  temporal  support.  In  order  to  distinguish  the  different  sources  of
uncertainty,  an  uncertainty  analysis  framework  is  required  which  accounts  for  all  possible
uncertainty sources. It will allow to apportion the different sources of uncertainty to the overall
uncertainty. For this, a framework was designed which will be implemented in R and applied to the
EmiStat-R model.
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