

Parameter estimation using binary observations

O. Wani, F. Blumensaat, A. Scheidegger, T. Doppler, J. Rieckermann

Presentation by:

Omar Wani

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 607000.

Sensors that provide binary signals corresponding to a threshold

Sensors that provide binary signals corresponding to a threshold

Sensors that provide binary signals corresponding to a threshold

4

Rassmussen et al, 2008

Binary Sensor

Siemers et al, 2007

TMS

Wani et al. (in prep.)

Binary Sensor

Advantages of using binary sensors

Advantages of using binary sensors

Robust

Advantages of using binary sensors

- Robust
- Cheap

Advantages of using binary sensors

- Robust
- Cheap
- Low maintainenece

Limited number of ______ flowmeters

Limited number of flowmeters

More binary sensors feasible

13th International Conference on Urban Drainage, Sarawak, Malaysia, 7–12 September 2014

Using Temperature Sensors to Detect Occurrence and Duration of Combined Sewer Overflows

Thomas HOFER^{1*}, Günter GRUBER¹, Valentin GAMERITH², Albert MONTSERRAT³, Lluís COROMINAS³, Dirk MUSCHALLA¹

Low Cost Overflow Monitoring Techniques and Hydraulic Modeling of A Complex Sewer Network

Laura Siemers, P.E., GHD Inc., and Joseph Dodd, GHD Inc. Deborah Day, City of Utica Engineering Department; David Kerr, P.E., GHD Inc.; John LaGorga, P.E., GHD Inc.; Paul Romano, P.E., Shumaker Consulting Engineering & Land Surveying

> GHD Inc. 16701 Melford Boulevard, Suite 330 Bowie, MD 20715

How to use binary data in model calibration?

(in a statistically sound way)

Realistic error model:

* Model structure deficits

- Input errors
- * Incomplete knowledge on model
 - parameters 16

11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008

A low cost calibration method for urban drainage models

M. R. Rasmussen^{*}, S. Thorndahl and K. Schaarup-Jensen

Stoch Environ Res Risk Assess (2015) 29:119–129 DOI 10.1007/s00477-014-0908-1

ORIGINAL PAPER

A partial ensemble Kalman filtering approach to enable use of range limited observations

Morten Borup · Morten Grum · Henrik Madsen · Peter Steen Mikkelsen

Bias

Mismatch between reality and model predictions

Solution: Realistic error model

Use a statistical description of bias in addition to the model

Formulate a formal likelihood function for binary observations

$Y_{obs} = y_M + B$

$$Y_{obs} = y_M + B$$

Ornstein–Uhlenbeck process with μ =0

$$Y_{obs} = y_M + B$$

Ornstein–Uhlenbeck process with μ =0

$$\frac{(2\pi)^{-\frac{n}{2}}}{\sqrt{\det\left(\boldsymbol{\Sigma}(\boldsymbol{\psi}, \mathbf{x})\right)}} \exp\left(-\frac{1}{2} \left[\mathbf{y}_o - \mathbf{y}_M(\boldsymbol{\theta}, \mathbf{x})\right]^{\mathsf{T}} \boldsymbol{\Sigma}(\boldsymbol{\psi}, \mathbf{x})^{-1} \left[\mathbf{y}_o - \mathbf{y}_M(\boldsymbol{\theta}, \mathbf{x})\right]\right)$$

$$Y_{obs} = y_M + B$$

$$Z_t = \begin{cases} 1 & Y_t > y_{threshold} \\ 0 & Y_t \le y_{threshold} \end{cases}$$

$$Z_{t} = \begin{cases} 1 & Y_{t} > y_{threshold} \\ 0 & Y_{t} \le y_{threshold} \end{cases}$$

$$Z_t = \begin{cases} 1 & Y_t > y_{threshold} \\ 0 & Y_t \le y_{threshold} \end{cases}$$

$$Z_t = \begin{cases} 1 & Y_t > y_{threshold} \\ 0 & Y_t \le y_{threshold} \end{cases}$$

Case study: Adliswil

Adliswil

- South of Zürich
- Area: 7.8 km²
- Population: 18000

Ē

Results

OUICS

Prior -NSE = 0.51

ETH Zürich

Results

Continuous - NSE = 0.8

Results

Binary - NSE = 0.77

Parameter Posteriors

Continuous data

Binary data

Real Data

Real Data

Conclusions

Binary data from sensors can be used for model calibration

Conclusions

Binary data from sensors can be used for model calibration

A formal likelihood function allows for:

The incorporation of structural deficits and input errors

The evaluation of posterior of parameters

Thank You!