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Abstract 
To better calibrate urban drainage models, it would be good to use not only dedicated flowmeters, 
but also cheap and robust sensors, such as binary level or overflow detectors. In this study, we 
suggest a formal likelihood function to efficiently extract the information content of these binary 
signals. We apply this methodology on data from a small urban drainage system, where we 
calibrate a hydrodynamic rainfall-runoff model on both continuous observations and the 
corresponding binary data in a Bayesian framework. For our case study, we find that the inference 
leads to a comparable model performance for both types of data - with Nash-Sutcliffe efficiencies 
of 0.80 using continuous and 0.78 using binary observations. As expected, model predictions 
based on binary data are much more informative than predictions with prior parameters, i.e. an 
uncalibrated model. However, in our case, the binary information describes the duration of an 
exceedance of a threshold and thus cannot capture peak flows very well. Therefore, an optimal 
experimental design will probably not rely exclusively on cheap and robust sensors, but use many 
of them together with a few accurate flow meters. The results could possibly be improved by 
extending the likelihood function with a reliable description of monitoring errors of binary sensors. 
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INTRODUCTION 
Traditionally, computer models of urban drainage systems are calibrated on continuous 
observations of physical variables, such as discharge or water levels. Unfortunately, the installation 
and management of monitoring devices in an urban drainage network is laborious and costly, so 
that typically only a few locations are equipped with such sensors (Siemers et al., 2011). However, 
often other sensors are available, which simply detect the occurrence of overflow events 
(Rasmussen et al., 2008) or exceedance of critical water levels, and thus provide only binary 
information. Recently, it has even been suggested to specifically develop such binary monitoring 
devices based on robust and low-cost sensors such as temperature probes (Hofer et al., 2014; 
Montserrat et al., 2013), motion detectors (Siemers et al., 2011) and electrical switches (Rasmussen 
et al., 2008) (Figure. 1). In the future, such sensors should help to better calibrate urban drainage 
models (Rasmussen et al., 2008; Siemers et al., 2011). The idea that many inaccurate sensors 
provide more information about a complex (urban drainage) system than few very accurate ones is 
very compelling. However, so far only ad-hoc approaches to model calibration and parameter 
estimation have been suggested and it is currently not clear what the information content of such 
binary observations is and how we can use them most efficiently to learn about model parameters. 
 
In this paper, we therefore suggest a novel approach to use binary observations for the calibration of 
urban drainage models based on rigorous statistical principles. The main innovation is a sound 
likelihood function which allows for parameter inference using binary signals. Coupled with an 
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error model, it also makes possible the explicit accounting of uncertainties in input variables and 
uncertainties arising from model structure deficits. 
 

 
 
Figure 1: Different types of low-cost sensors for sewer system monitoring. From top left 
clockwise: i) Electrical switch at overflow crest (Rasmussen et al., 2008), ii) Motion detector at 
leaping weir (Siemers et al., 2011), iii) Motion detector iv) Flood float (www.123mc.com) 
 
 
METHODS AND MATERIAL 
 
A likelihood function for binary observations 
To efficiently calibrate an urban drainage model, we must first construct a likelihood function. In 
our case, this function describes the likelihood, given a parameter set for our drainage model and 
the error model, of observing a set of binary signals. To be able to consider model structure deficits 
and input errors, we follow the suggestions of Dietzel and Reichert (2012) and describe the true 
system response 𝑌𝑌𝑡𝑡 at time t with a deterministic model M, and stochastic process B, the so-called 
“bias” term: 
 

𝑌𝑌𝑡𝑡 =  𝑀𝑀(𝜃𝜃,𝑋𝑋𝑡𝑡) + 𝐵𝐵(𝜃𝜃,𝑋𝑋𝑡𝑡) (1) 
 

Here 𝜃𝜃 is the parameter vector and  Xt  is the input variable vector. The bias term B captures the 
mismatch between system response and model predictions due to the uncertainty in input variables, 
deficiency in the structure of model equations. Then, a likelihood function 𝑝𝑝𝑌𝑌(𝐘𝐘⃓𝜃𝜃)for the 
continuous system response 𝐘𝐘 = {𝑌𝑌𝑡𝑡1 , … ,𝑌𝑌𝑡𝑡𝑛𝑛}, such as water level in a combined sewer overflow 
tank or discharge, can be formulated. However when only a binary signal is observed 𝑌𝑌𝑡𝑡 can be 
written as Zt such that: 
 

𝑍𝑍𝑡𝑡 = �1   Yt >  𝑦𝑦𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
0    𝑌𝑌𝑡𝑡 ≤  𝑦𝑦𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  

(2) 
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The likelihood function for 𝐙𝐙 = {𝑍𝑍𝑡𝑡1 , … ,𝑍𝑍𝑡𝑡𝑛𝑛} becomes 

𝑝𝑝𝐙𝐙(𝐙𝐙⃓𝜃𝜃) = � … .
𝑢𝑢1

𝑜𝑜1
� 𝑝𝑝𝑌𝑌�𝑌𝑌𝑡𝑡1, … ,𝑌𝑌𝑡𝑡𝑛𝑛⃓𝜃𝜃�𝑑𝑑𝑌𝑌𝑡𝑡1 …𝑑𝑑𝑌𝑌𝑡𝑡𝑛𝑛
𝑢𝑢𝑛𝑛

𝑜𝑜𝑛𝑛
 

(3) 

 
where 𝑢𝑢 and 𝑙𝑙 are the upper and lower limits of 𝐘𝐘 respectively.  
 
To have a convenient mathematical formulation, we describe B with a Gaussian process, which 
makes  𝑝𝑝𝑌𝑌(𝐘𝐘⃓𝜃𝜃)  a multivariate normal distribution. In addition, a Gaussian process is a suitable 
model for the involved errors, because it can capture the autocorrelated differences between the 
simulation results and observations which are usually found in hydrological applications.  
  
Parameter inference, implementation and performance assessment 
The parameters of the likelihood function in Eq. 3 are difficult to estimate due to the problem of 
identifiability between M and B. Inference is possible if we include our prior knowledge on 
probable parameter values in the analysis. And incorporation of prior knowledge is generally done 
in a Bayesian framework.  
 
Although the integrals in the likelihood function (Eq.3) are known to be analytically intractable for 
normal distributions, a very efficient numerical solution has been suggested (Genz, 1992). We 
implemented the inference in the programming language R (CRAN, 2015) and used the pmvnorm 
function (Genz et al., 2015) to compute these integrals. The mode of the posterior can be estimated 
with an effort comparable to the use of an informal objective function. Markov Chain Monte Carlo 
(MCMC) methods are used for sampling from the posterior. Samples converge to the distribution 
and allow for the computation of the moments and other statistics of the distribution. The best 
parameter estimate is made by getting the parameter vector corresponding to the maximum 
posterior distribution. Here, we assess the predictive performance of the model based on the Nash-
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). 
 
Catchment and data 
We demonstrate the potential of the suggested technique by calibrating a rainfall-runoff model for 
the small urban drainage system of Adliswil near Zurich. Adliswil is a small city that lies on the 
western side of Lake Zurich. The catchment area has size of about 1km × 3 km. In a dedicated 
monitoring campaign over 1.5 years we collected detailed rainfall information with a dense network 
of 6 weighting rain gauges. Also, level and flow measurements were done in several manholes. As 
our corresponding monitoring campaign is still ongoing, we transform the continuous readings into 
binary observations by “detecting” an exceedance as all values above a threshold of 100 l/s (Figure 
2, dotted horizontal line). Here, we only focus on the observations at the outlet of the catchment. 
 
Model and inferred parameters 
We model the urban drainage system of Adliswil with the semi distributed model - EPA SWMM, 
version 5.1 (EPA, 2015). For our study case, SWMM employs a conceptual hydrologic model for 
the runoff estimation in the small subcatchments and routes the discharge in the pipes using the 
dynamic wave equation. The model has 101 sub catchments, 458 junction nodes, and 461 conduit 
links. We chose ten SWMM parameters for estimation based on sensitivity analysis, which include 
i) the subcatchment imperviousness, ii) subcatchment width, iii) subcatchment slope, iv) manning 

3 



Session Calibration UDM2015 

roughness of the subcatchment and v) manning roughness of the conduit. The other parameters are 
related to the storages and weir heights. 
 
Defining prior distributions 
The prior distributions were defined based on the physical constraints of the calibration parameters. 
Normal truncated distribution was used as priors and the mean of these distributions were chosen 
based on expert opinion. This eliminates unrealistic parameter estimates and allows for the 
incorporation of accumulated knowledge about a system like a drainage model. As it is challenging 
to formulate the priors of the bias parameters, we have good experiences with defining them based 
on preliminary analysis of residuals of past observation periods. 
 
Numerical experiments and performance assessment 
We perform two different numerical experiments. First, we compared the NSE of the model that has 
been calibrated on the binary dataset to that which has been calibrated on the continuous data. 
Second, we assessed the information content of different thresholds.  
 
The second experiment is interesting, although in most real applications, binary sensors would 
detect overflow events at a certain weir with given height, or a predetermined critical levels which 
for example would lead to local flooding. In our case study, however, there is no such one critical 
exceedance threshold and we could test how far the information content in the binary data depends 
on the threshold of our binary sensor. In a real sewer, this would correspond to installing an 
electrical switch, or motion sensor, at different heights in the cross-section. In the extreme cases, 
binary sensors would never (or always) “detect” events by choosing an unrealistically high or low 
installation height. 
 
First, we generated sixteen different binary data sets from the continuous observations by increasing 
the threshold values from 0 to 300 l/s in increments of 20 l/s. Second, we estimated the best model 
parameters from each of these data sets. Initially, to save computing time, we only evaluated the 
prediction performance of the model, in terms of NSE, at the maximum of the posterior distribution. 
To find the maximum, we used a general simulated annealing algorithm (Gubian, 2015). At this 
point, we were only interested in the NSE and have not yet been assessing the coverage and 
sharpness of the predictions achieved with the different binary datasets.  
 
 
RESULTS AND DISCUSSION 
In general, we find that the data from the binary sensors are informative. Thus, it is possible to learn 
about model parameters (Figure 2. left) and the resulting posterior distributions (grey) are narrower 
than the corresponding priors (dotted lines). The spread of posterior distribution captures the 
parametric uncertainty. Numerically, we approximated the joint posterior distribution of the model 
parameters and error parameters by drawing 5000 sampling from the posterior with an MCMC 
algorithm (Chivers, C., 2012; Scheidegger, A., 2012; Vihola, M., 2012).  
 
Interestingly, in our case study, the model can be calibrated almost equally well on the binary data 
(NSE= 0.78) when compared to continuous data (NSE= 0.80) (Figure 2 right). This is the parameter 
set which corresponds to maximum posterior probability density value from the sampled set (Figure 
2 left); whereas the NSE from the optimization of posterior distribution is obtained using general 
simulated annealing (Figure 3), which manages to only delivers local optima.  
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The performance of model calibrated on binary data based on Nash efficiency seems decent, 
however looking at the discrepancies between model results and continuous observations, it can be 
seen that the binary data lose a lot of information regarding observed peak flows.  
 
Apart from capturing the system behaviour we are also able to capture the parametric uncertainty 
using the likelihood description (Figure 2. left). If the inferred parameters of the drainage model and 
the error model are used for future predictions, the uncertainty arsing due to model structure deficits 
and input will also be covered.  
 
 

 

  

  
Figure 2 (Left): Prior (dashed lines) distributions of urban drainage model parameters and error 
model parameters (last two graphs). Posteriors (light grey) estimated from binary data. The y axis is 
the probability density and the x axis shows the value of multiplicative parameters. 
(Right) Model predictions for the calibration phase based on continuous (thin black line), binary 
observations (thin red line) and prior parameter values (dashed grey line). The continuous data are 
plotted as black circles and the binary observations as a red horizontal and black line at the top of 
figure. The dashed blue line depicts the threshold of the sensor, 100 l/s.  
 
 
It is observed that the information content in a binary data time series first increases with increasing 
threshold and then decreases. This is an expected result as less or no variability is captured by the 
binary sensor towards low and high values of threshold. For a centrally located threshold, the binary 
signals can calibrate a model pretty well (Figure 3.). 
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Figure 3. Information content, expressed as Nash-Sutcliffe efficiency, of observations from binary 
sensors with different detection thresholds. 
 
 
It is assumed that the binary signals 𝐙𝐙 are measured without error. Nevertheless, by distinguishing 
between the observed binary signals 𝐙𝐙𝐨𝐨 and the “true” signal 𝐙𝐙, an observation model can be 
introduced 𝑝𝑝𝐙𝐙𝐨𝐨(𝐙𝐙𝐨𝐨⃓𝐙𝐙) which accounts for the uncertainty in binary observations. The likelihood 
function requires marginalization over 𝐙𝐙 (Eq. 4) 
 

𝑝𝑝𝜃𝜃(𝜃𝜃⃓𝐙𝐙𝐨𝐨) ∝ � …
1

𝑧𝑧𝑡𝑡1=0

� 𝑝𝑝𝐙𝐙𝐨𝐨(𝐙𝐙𝐨𝐨⃓𝐙𝐙)
1

𝑧𝑧𝑡𝑡𝑛𝑛=0

∙ 𝑝𝑝𝐙𝐙(𝐙𝐙⃓𝜃𝜃) 
(4) 

 
 resulting in summing 2n terms. Even for moderate n this is likely to be not feasible. Alternatively, 
samples from 𝑝𝑝𝜃𝜃(𝜃𝜃,𝐙𝐙⃓𝐙𝐙𝐨𝐨) ∝ 𝑝𝑝𝐙𝐙𝐨𝐨(𝐙𝐙𝐨𝐨⃓𝐙𝐙) ∙ 𝑝𝑝𝐙𝐙(𝐙𝐙⃓𝜃𝜃)   could be generated. The marginalization is 
then achieved trivially by ignoring the  𝐙𝐙 dimensions of the samples. However, this can be 
computationally still challenging. Thus, the incorporation of observational uncertainty in binary 
sensors has been left out for future research. Our analysis still helps in making a preliminary value 
judgement on binary data in the context of calibration. 
 
Apart from the potential for a reasonable parameter estimation, the use of binary likelihood function 
allows for the quantification of uncertainty arising from the unknown parameters, input errors and 
model structure deficits. Thus apart from the model predictions, we also get an indication of the 
reliability of these predictions. We have not included the uncertainty estimates here as the emphasis 
is on parameter estimation, but previous research shows (Del Giudice, 2013) that an autocorrelated 
error process makes it possible to cover data well and produce reliable (albeit largely varying) 
predictions using similar bias description  
 
We repeated the same analysis as done above for level data only (instead of discharge) and it does 
not produce as good a calibration as the data from a flowmeter. Nevertheless, it gives the expected 
trend, where the model calibrated on continuous data is better than that calibrated on binary data, 
which in turn is better that the model with prior estimates of the parameters. Theoretically, at least, 
this relative performance of calibration should not depend on the system response variable and 
binary data should provide information usable in parameter inference. 
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 Also, we are currently analysing real binary observations of level data from a dedicated monitoring 
campaign that was conducted on a catchment in Lucerne, and in near future this analysis will be 
repeated for binary observation collected from there.  
 
 
CONCLUSIONS 
In sewers, usually many more sensors than traditional flow and water level measurement devices 
are available. Unfortunately, they often produce only binary observations, such as overflow 
detectors and it has not been known how to efficiently use such measurements in parameter 
estimation. In this paper, we present a statistically sound likelihood function which, for the first 
time, makes it possible to efficiently extract the information content from the binary data in a 
probabilistic framework. Our results, using Bayesian inference on a didactical example demonstrate 
that, although binary observations are inferior to continuous measurements, they contain substantial 
information to calibrate urban drainage models. As our models are always prone to deficiencies, we 
suggest to use error models, such as autocorrelated stochastic processes, which make it possible to 
capture errors in the model structure and input data. 
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