
Calculate 
semivariogram in     

[t-12h, t]

Try to fit exponential 
function

Can it fit AND are 
there at least 20 

observations AND 
the RMSE/sill <0.4?

yes
Range, sill, mean and 

std calculated in       
[t-12, t]

No
Range, sill, mean and 
std calculated on all 

available data

Modelling radar rainfall residual errors for hydrological applications
Authors: F. Cecinati*, M. A. Rico-Ramirez, D. Han. Department of Civil Engineering, University of Bristol.  *francesca.cecinati@bristol.ac.uk

1 - Introduction 2 - Error Model

3 - Method

4 - Time Dependent Error Characteristics

5 - Variance and mean correction

6 - Results

7 - Hydrological Applications 8 - Conclusions and Future Work 9 - Acknowledgments

References

Semivariogram

FFT Moving Average

Weather radars are a key source of precipitation data in many hydrological applications, thanks to their wide coverage and high spatio-
temporal resolution. Nevertheless, the complex nature of the radar systems make them prone to different sources of errors. Although many
can be partially corrected, a residual uncertainty is unavoidable in the radar-derived quantitative precipitation estimates. When it comes to
hydrological applications, the estimation of uncertainty and assessing its propagation in models is essential. Radar rainfall ensembles are a
good methods to model uncertainty in radar rainfall for model applications. This approach consists in estimating the errors and their
characteristics by comparing radar rainfall with point ground measurements used as an approximation of true rainfall. Knowing the statistical
characteristics of residual errors, a large number of possible, alternative realizations of the rainfall fields are simulated, constituting an
ensemble. The error propagation estimation can be accomplished observing the result spread feeding a model with the different ensemble
members. Methods to estimate errors and generate ensembles are various in literature, but many are based on the computation of the error
covariance matrix (see Germann et al. 2009). The error covariance matrix approach works well with a medium number of point
measurements, but is not very robust nor efficient when the number of rain gauges is too large. In addition, it generates error components
for the ensemble only in ground measurements points, needing subsequent interpolation, and it consider temporal stationarity.

This work proposes a different approach that trades temporal with spatial stationarity assumption, does not require interpolation and
improves robustness and efficiency of the algorithm. The error model is assumed multiplicative. The spatial correlation characteristics of the
errors are modelled through a semivariogram, fitted with an exponential function. The error components are generated using a FFT Moving
Average generator. In addition, the problem of mean and variance inflation resulting from working in the logarithmic domain is addressed and
a simple solution is proposed. Finally, the generated ensembles are used in a case study involving two catchments in England, using PDM
models. Comparing the observed flow and the output of the models fed with the ensemble is a good way to assess the quality of the
generated ensembles and to observe uncertainty propagation.

10 𝑙𝑜𝑔 𝑃 = 10 𝑙𝑜𝑔 𝑅 + 𝛿

True rainfall Radar rainfall Error  𝛿 ~ 𝑁(𝜇, 𝜎)

Observations: 𝐺 – rain gauges 
Simulations: Φ – ensembles 

Observations: 𝑅 – radar rainfall estimates

Observations: 𝜖 = 10 log
𝐺

𝑅

Simulations: 𝑦 – error components

In this work, the spatial correlation characteristics of
the residual errors is modelled through
semivariograms. Semivariograms describe the increase
of variance that occurs considering elements at
increasing distance.

Empirically, it is calculated grouping all the possible
element couples in distance bins (here 1km wide).
Subsequently, it is fitted with an exponential function:

This approach has two advantages:
1. It does not require temporal stationarity as the

covariance matrix approach, although it requires a
spatial stationarity assumption;

2. It is very light: at each time step the spatial
characteristics of the errors can be described by
only two parameters: the sill s and the range r.

𝛾 𝜖, 𝑑 =
1

2
𝐸 𝜖 − 𝜖 + 𝑑

2

𝛾 𝑑 = (𝑠) 1 − exp −
3𝑑

𝑟

The FFT Moving Average (FFT-MA) random field generator
was introduced by Le Ravalec et al. in 2000.
It generate a random field with a given semivariogram, under
the assumption of stationarity in the simulating domain.

1. The covariance function can be derived from the
semivariogram:

𝐶(𝑡, 𝑑) = 𝜎2 − 𝛾(𝑡, 𝑑)
2. The covariance function can be written as a convolution

of a function g and its transpose  𝑔:

𝐶 = 𝑔 ∗ 𝑔 where    𝑔(𝑥) = 𝑔(−𝑥)
3. The convolution function is used to generate a Gaussian

random field 𝑦 with mean 𝜇 and covariance 𝐶 as follow:

𝑦 = 𝜇 + 𝑧 ∗ 𝑔
Where z are normal deviates.

4. (Le Ravalec et al. 2000) demonstrate that, in case of
stationarity, which we assume in the analyzed time
window, the Fourier transform of 𝑔 is obtained as:

𝐺(𝑓) = 𝑑𝑥 𝑆 𝑓
Where 𝑑𝑥 is the spatial sampling.

5. Hence, the product 𝑍 ∙ 𝐺 can be calculated and
transformed in the space domain in 𝑧 ∗ 𝑔, and the error
components 𝑦 are generated with the equation at 3.

The modelled error components are Gaussian. They are recombined with the radar
rainfall estimates to obtain the ensemble members following the model:

10 log Φ = 10 log 𝑅 + 𝑦
This operation, done in the logarithmic domain, brings to a distortion when the
ensemble members are re-transformed. The obtained ensemble members have on
average higher mean and standard deviation, compared to the observations. We
opted for a linear correction that preserve the ensemble spatial characteristics:

Φ𝑛𝑒𝑤,𝑖 =
𝜎𝐺

𝜎Φ𝑜𝑙𝑑

(Φ𝑜𝑙𝑑,𝑖 − 𝑚Φ𝑜𝑙𝑑
) + 𝑚𝐺
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Figure 1 – The scheme above represents the model adopted in this work. Rain gauge data 𝐺 are assumed as an approximation of true rainfall 𝑃 and the error
component 𝛿 can be observed deriving 𝜖 from the observations of radar 𝑅 and rain gauge 𝐺 data. Repproducing the characteristics of 𝜖, alternative error fields
𝑦 can be generated and used, following the model equation, to produce ensemble members Φ.

The direct comparison of the ensemble rainfall rate or
rainfall accumulation with the rain gauge or radar
rainfall data does not provide a good estimate of the
quality of the generated ensemble, because they have
been used to condition the ensemble itself. To validate
the ensemble, a hydrological case study is used. An area
of 180 km x 180 km in England has been selected to
generate an ensemble of 100 members for a one-year
interval between October 2007 and September 2008.
The radar data used is the 1 km NIMROD radar
composite from the MetOffice, accumulated at hourly
time steps. 203 rain gauges from the Environmental
Agency were available. In the area, two catchments
were selected, namely the upper part of the Lune and
the upper part of the Ribble. For these catchments, flow
data are available from the CEH and the necessary
meteorological data for a model application were taken
from the MIDAS dataset. For the three catchments, the
Probability Distributed Model (PDM) was set up and
calibrated with only rain gauges data for a two-year
interval, between October 2008 and September 2010.

Thanks to the use of semivariograms to model the spatial correlation of the residual errors, the assumption of temporal stationarity is no more necessary and the
residual error characteristics (mean, standard deviation and semivariogram parameters) can be calculated at each time step using the observations in the 12 hours
precedent the analysed time step. 12 hours is selected as a compromise between the temporal and the statistical representativeness of the calculated parameters.
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Figure 2 – Using a logarithmic multiplicative model (c), the observed errors have a probability distribution function very close to Gaussian and therefore can be
treated as Gaussian and characterized by their mean and variance. This would not happen using simple additive (a) or multiplicative (b) models.

a) b) c)

Figure 3 – An example of two observed semivariograms, with different shapes, and the corresponding error
components generated with the FFT-MA method. The semivariogram on the left has a smaller range, therefore
variations occur in a shorter space, the one on the right has a larger range, which generates a smoother field.

Figure 4 – The mean and STD of the ensembles before correction are on average higher than
the observations. After correction the average of the ensembles coincides with the observations
(In some intervals the ensembles could not be generated because of missing radar data).

Figure 5 – The scheme represents the method followed to calculate error characteristics in real time, when possible. Usually when it is not possible it is because there is too little rain,
therefore using the average statistics does not have a big impact.
Figure 6 – The residual error characteristics, namely sill, range, mean, and standard deviation, are reported for the month of March 2008 as an example. This example clearly shows how
this values vary in time, often with an observable autocorrelation. The average observed values are evident as plateaus when the specific values were not measurable.

Figure 9 – The two selected catchments are represented with the radar grid
and the rain gauges (as red dots), together with the river network.

The method presented here proved to be a good way of producing radar ensembles. Compared with commonly used covariance
matrix approaches, it is more robust and faster when applied to big datasets, and solves some issues like the error component
interpolation and the variance and mean inflation. The quality of the results has been tested in two test catchments, both
comparing the rainfall rates with the ones derived by rain gauge interpolation, and using a hydrologic model to compare the
output flow. While the use of a hydrologic model provides an independent comparison, it also involves other forms of
uncertainty (other datasets, model approximations, flow measurement uncertainty, scales and averaging, etc…) that can produce
an underestimation of the ensemble quality. One of the next improvements to implement, is to compare the produced ensemble
with independent rain gauges, or, in absence of additional data, implementing a cross-validation.
The modelling of temporal variability of residual errors is definitely a positive improvement, but there are some aspects that can
be enhanced:
• The semivariogram fitting can be improved, including a selection of the best semivariogram model and of a nugget effect.
• A relaxation of the spatial stationarity assumption can be implemented accounting for anisotropy.
• The rules to accept or reject a semivariogram can be improved to better maintain all meaningful semivariograms.
• A Bayesian inference method can be implemented to derive the best semivariogram when sufficient data is not available.
Another ground for improvement can be the consideration of error temporal correlation structures, which has been neglected in
this study because the autocorrelation of residual errors is on average negligible at hourly steps. Nevertheless, exactly as the
spatial correlation structure, it can vary in time and be significant in certain situations.
Although there is still room for improvement, the developed method to generate radar rainfall ensembles is already a valuable
instrument and could be used in a real-time scenario or in a big data one.
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Figure 7 – Example of ensemble members compared with the original radar (in the red square)
before (a) and after (b) correction. The event refer to the 1st January 2008 at 05:00.

Figure 8 – Rainfall rate for the same rainfall event in the two study catchments: Lune (a) and
Ribble (b). The corrected ensemble quantiles are compared with the rain gauge rainfall rate in
red.

a)

b)

Sample of non corrected ensembles 01/01/2008 05:00

Sample of corrected ensembles 01/01/2008 05:00

In order to test the method, an ensemble
of 100 members was produced in a one
year interval and analysed. The number
was selected as a compromise between
the statistical representativeness and the
feasibility of producing it in a real-time
scenario.
Figure 7 shows the benefits of the mean
and variance correction. The produced
ensembles maintain a similar spatial
structure compared to the radar
acquisition, although they show more
granularity. This is due to both the fact
that the radar usually presents a
smoother behaviour compared to rain
gauge observations, due to averaging
operations, and to the spatial stationary
and isotropy used in the error model,
that may not be accurate in certain
situations.
Nevertheless, the overall result appears
good and captures the uncertainty in
radar rainfall estimates. As an example,
the rainfall rates on the three study
catchments are reported in Figure 8 and
compared to the rainfall rates calculated
interpolating rain gauge data. It is clear
that, although both datasets contain
uncertainty, the ensembles are able to
account for it.

Figure 10 – The output of the PDM model for the Lune (a,b) and Ribble (c,d) basin, using the ensemble are
compared with flow observations for a winter event (6 January 2008 – 27 January 2008) (a,c) and for a
summer event ( 24 July 2008 – 14 August 2008) (b,d).
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