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Executive Summary 

The aim of this report is to provide an evidence base and a guide to further reading for 

QUICS report D4.4, titled 'Good Practice Guidance: Incorporating Uncertainty in the 

Integrated Catchment Studies'.  

In this report, a short description of each journal paper used to demonstrate examples of 

quantifying uncertainties in modelling is made. Additionally, the list of the journals and the 

impact of them in the scientific community, in which these papers are published is 

provided. 
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1  Introduction 

In this report, an evidence base is given for the examples used in order to demonstrate 

how a modeller can quantify uncertainty in the context of Integrated Catchment Modelling 

(ICM). The scientific peer review journals used for this work are of great importance in the 

scientific field in which they are affiliated and their impact in the scientific community is 

high. Specifically, the journals used are the following:    

1) Water Quality Research Journal of Canada, published by IWA (International Water 

 Association), with an Impact Factor (IF) equal to 0.444 

2) Water Science and Technology published by IWA, with an Impact Factor (IF) equal 

 to 1.197 

3) Hydrological Processes, published by Wiley, with an IF equal to 3.014 

4) Journal of Hydrology, published by Elsevier, with an IF equal to 3.483 

5) Water Resources Research, published by Wiley and American Geophysical Union 

 (AGU), with an IF equal to 4.397 

6) Hydrology and Earth System Science, published by European Geophysical Union 

 (EGU), with an IF equal to 4.437 

7) Journal of Environmental Engineering, published by American Society of Civil 

 Engineers (ASCE), with an IF equal to 1.541 

The list of the papers used is the following. In the next chapters, a short description for 

each paper will be provided. 

1) Benedetti, L., Batstone, J.D., De Baets, B., Nopens, I., Vanrolleghem, A.P., 2012. 
Uncertainty Analysis of WWTP control strategies made feasible. Water Quality 
Research Journal of Canada, 47(1), 14-29. 

2) Benedetti, L., Belia, E., Cierkens, K., Flameling, T., De Baets, B., Nopens, I., Weijers, 
S., 2013. The incorporation of variability and uncertainty evaluations in WWTP 
design by means of stochastic dynamic modeling: the case of the Eindhoven WWTP 
upgrade. Water Science and Technology, 67(8), 1841-1850. 

3) Brandimarte, L. and Woldeyes, M.K., 2013. Uncertainty in the estimation of backwater 
effects at bridge crossings. Hydrological Processes, 27, 1292-1300. 

4) Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., 
Koutsoyiannis, D., Efstratiadis, A., 2016. Comparative evaluation of 1D and quasi-2D 
hydraulic models based on benchmark and real-world applications for uncertainty 
assessment in flood mapping. Journal of Hydrology, 534, 478-492. 

5) Dotto C.B.S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy D.T., 
Freni, G., Rauch, W., Deletic, A., 2012. Comparison of different uncertainty 
techniques in urban stormwater quantity and quality modelling. Water Resources 
Research, 46, 2545-2558.  

6) Fu, C., James, L.A., Yao, H., 2015. Investigations of uncertainty in SWAT hydrological 
simulations: a case study of a Canadian Shield catchment. Hydrological Processes, 
29, 4000-4017. 
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7) Muthusamy, M., Schellart, A., Tait, S., Heuvelink, B.M.G., 2017. Geostatistical upscaling 
of rain gauge data to support uncertainty analysis of lumped urban hydrological 
models. Hydrology and Earth System Science, 1077-1091. 

8) Shen, Z.Y., Chen, L., Chen, T., 2012. Analysis of parameter uncertainty in hydrological 
and sediment modelling using GLUE method: a case study of SWAT model applied 
to Three Gorges Reservoir Region, China. Hydrology and Earth System Science, 16, 
121-132. 

9) Sriwastava, A., Tait, S., Schellart, A.,  Kroll, S., Van Dorpe, M., Van Assel, J., 
Shucksmith, J., 2017. Quantifying uncertainty in the simulation of sewer overflow 
volume. Journal of Environmental Engineering, accepted for publication. 

Table 1 summarises which model outputs are examined under which type of uncertainty 
sources (model structure, parametric, input data). 

Readers will find this report useful as an accompaniment to Report 4.4 and as a guide to 
further reading and exploration on this topic.  

 

 

Table 1. Outputs and uncertainty source   

Model output 

Model 

structure 

uncertainty 

Model  

parameters 

uncertainty 

Input  

Data 

uncertainty 

Discharge  xxx  

Sediment yield  x  

Snow Water Equivalent  x  

Combined Sewer Overflow volume  x x 

Total Suspended Solids concentration  x  

Effluent Quality Index  x  

Operation Cost Index  x  

Effluent  time period to exceed the limit 
of 4 mg NH4-N/L (% of the whole 
evaluation period) 

 x  

NH4 effluent  x  

Water surface elevation  xx xx 

  

 

 



2  Analysis of parameter uncertainty in hydrological and sediment 

modelling using GLUE method: a case study of SWAT model applied 

to Three Gorges Reservoir Region, China 

In this paper, the source of uncertainty which is examined is the uncertainty due to model 

parameters. The case study is selected from an actual application; the Three Gorges 

Reservoir Region in China. The method used for the uncertainty analysis is the 

Generalized Likelihood Uncertainty Estimation (GLUE) method. In order to simulate the 

runoff process, the runoff curve number method was used, whereas for the infiltration 

phenomenon, the Green-Ampt method was implemented. For the sediment yield 

estimation, the Modified Universal Soil Loss Equation (MUSLE) was used.  

The software used was the SWAT software, for 10,000 simulations. 20 parameters were 

chosen for the uncertainty analysis after a sensitivity analysis performed in the first step 

based on Morris screening method.  

The parameters which are investigated for the uncertainty to the output results are: the 

SCS runoff curve number for moisture condition II (ranges from −0.25 to 0.15), the base 

flow alpha factor (ranges from 0 to 1), the groundwater delay time (ranges from 1 to 45), 

the Manning's n value for overland flow (ranges from 0 to 0.5), the effective hydraulic 

conductivity in main channel alluvium (ranges from 0 to 150), the base flow alpha factor for 

bank storage (ranges from 0 to 1), the available water capacity factor (ranges from 0 to 1), 

the saturated hydraulic conductivity (ranges from -0.2 to 300), the soil bulk density (ranges 

from 0.1 to 0.6), the snowfall temperature (ranges from -5 to 5), the maximum amount of 

water that can be trapped in the canopy when it is fully developed (ranges from 0 to 100), 

the soil evaporation compensation factor (ranges from 0.01 to 1), the threshold water level 

in shallow aquifer for baseflow (ranges from 0 to 5000), the threshold water level in 

shallow aquifer (ranges from 0 to 500), the Universal Soil Loss Equation (USLE) support 

practice factor (ranges from 0.1 to 1), the channel cover factor (ranges from 0 to 1), the 

channel erodibility factor ranges from 0 to 1), the channel sediment routing parameter 

(ranges from 0 to 0.05), the exponent parameter for calculating sediment re-entrained in 

channel (ranges from 1 to 1.5), the average slope length (ranges from -0.1 to 0.1). The 

input data consists of a real rainfall time series for the period 2004-2007. 

For the GLUE method, the likelihood function is the Nash-Sutcliffe coefficient, whereas for 

the sampling phase of the parameters, the Latin Hypercube Sampling was used. The 

likelihood function threshold which distinguishes the behavioral and non-behavioral set of 

parameters was set 0.5. The output results consist of a quantity variable (water flow) and a 

quality variable (sediment yield). 

It seems that during the drier periods, the uncertainty band is relatively small (about 30 

m3/s), whereas in the peak periods the uncertainty band reaches more than 150 m3/s. As 

far as the sediment yield is concerned, the uncertainty range is larger: during the dry 

periods the uncertainty band is about 50 x 104 tonnes, whereas in peak periods can reach 

about 600 x 104 tonnes of sediments. 



3  Investigations of uncertainty in SWAT hydrological simulations: a 

case study of a Canadian Shield catchment 

In this paper, the sources of uncertainty which are examined is the uncertainty due to 

model parameters. The case study is selected from an actual application: the Canadian 

Shield catchment in Canada. The method used for the uncertainty analysis is the GLUE 

method. The software used was the SWAT software, whereas two model structures were 

tested: SWAT and SWAT-CS (a version for Canadian catchments). 

For the uncertainty analysis, 12000 combinations of 22 parameters sampled by uniform 

distribution were implemented. The parameters are required to describe: 

1) Interception 

2) Snowmelt 

3) Evapotranspiration 

4) Overland flow 

5) River routing  

6) Infiltration 

7) Interflow 

8) Bedrock percolation 

9) Groundwater flow 

10) Reservoir 

The model first calibrated and validated against observed data. The input data consists of 

a real rainfall time series for the period 1978-1982. The output of the model is the Snow 

Water Equivalent and the Streamflow (quantity variables), in the sub-catchment HP4. For 

the GLUE method, the likelihood function is the Nash-Sutcliffe coefficient. The likelihood 

function threshold which distinguishes the behavioral and non-behavioral set of 

parameters was set at 0.45 for the Snow Water equivalent and 0.30 for the Streamflow.  

 

 

 

 

 

 



4  Quantifying uncertainty in the simulation of sewer overflow volume 

In this paper, the source of uncertainty which is examined is the input data and the model 

parameters, using the Monte Carlo technique. The case study is selected from an actual 

application: a small urban catchment located in Herent (Belgium). The model structure 

used is the InfoWorks-CS model. The input data which is examined is the weir crest level, 

whereas the parameters which are examined is the roughness height used in the 

Colebrook-White friction equation. For the Monte Carlo simulations, 1000 runs of the 

model were implemented. The weir crest level values randomly draw from a normal 

distribution, whereas the roughness height from a Log-logistic distribution and the fixed 

runoff coefficient from a truncated normal distribution correspondingly. The output variable 

is the Combined Sewer Overflow (CSO) discharge volume in one location of the 

catchment. It seems that the CSO volume ranges about 130 m3 of water for the 90% 

confidence interval. 

 

 

 



5  Comparison of different uncertainty techniques in urban stormwater 

quantity and quality modelling 

In this paper, the source of uncertainty which is examined is the model parameters, using 

four uncertainty analysis techniques: 

1) the Generalized Likelihood Uncertainty Estimation (GLUE) 

2) the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) 

3) the multialgorithm, genetically adaptive multi-objective method (AMALGAM) 

4) the classical Bayesian approach based on a Markov Chain Monte Carlo method 

 and the Metropolise Hastings sampler (MICA) 

The case study is selected from an actual application: an urban catchment located in 

Melbourne (Australia). The model structure used is the simplified model SIMPLE KAREN. 

As far as the quantity part of the study, four parameters are examined: the Effective 

Impervious Factor (EIF), the time of concentration (TC), the initial loss (li) and the 

evapotranspiration (ev). As far as the water quality part of the study, two parameters are 

examined: the water quality scale coefficient (W) and : the water quality shape coefficient 

(b). It seems that during the more dry periods, the uncertainty interval is relatively small 

(about 0.1-0.2 m3/s for all the uncertainty analysis methods), whereas in the peak periods 

the uncertainty band reaches about 0.7-1.0 m3/s. As far as the Total Suspended Solids 

(TSS) concentration range is concerned, the uncertainty band ranges from 20 to 100 mg/L 

for all the uncertainty analysis methods. 

 

 

 



6  Uncertainty Analysis of WWTP control strategies made feasible 

In this paper, the uncertainty source which is investigated is due to model parameters. The 

case study selected is the Benchmark Simulation Model 2 (BSM2), which is a protocol for 

evaluating the control strategy of a Waste Water Treatment Plant (WWTP) model. The 

sources of uncertainty examined are the model parameters, using the Monte Carlo 

technique. The model structure used is the WEST software. The output of the model is the 

three evaluation criteria as determined in the BSM2: 

1) the Effluent Quality Index (EQI) 

2) the Operation Cost Index (OCI) 

3) the period of time in which the effluent exceeds the limit of 4 mg NH4-N/L, 

 expressed as a percentage of the whole evaluation period) 

It is noted that as a preliminary step, a Global Sensitivity Analysis (GSA) is performed in 

order to rank the parameters according to the influence on the output.  

 

 

 



7  The incorporation of variability and uncertainty evaluations in WWTP 

design by means of stochastic dynamic modeling: the case of the 

Eindhoven WWTP upgrade 

The case study selected is the WWTP upgrade in Eindhoven. The sources of uncertainty 

which are examined are the model parameters, using the Monte Carlo technique. 

Specifically the parameters examined are: removal efficiency, certainty factor, peak factor. 

For the removal efficiency, the sample drawn by a uniform distribution, whereas for the 

certainty and peak factors from normal distribution. 

The model structure used is the WEST software. The output of the model is the NH4 

effluent. Before the uncertainty analysis, a sensitivity analysis is performed in order to 

select which parameters affect more the results. With this procedure, the parameters 

mentioned before, were selected for a further uncertainty analysis. 

 

 



8  Comparative evaluation of 1D and quasi-2D hydraulic models based 

on benchmark and real-world applications for uncertainty 

assessment in flood mapping 

In this paper, the sources of uncertainty which are examined are the input data and the 

model parameters, using the Monte Carlo technique. The case study is selected from an 

actual application: Rafina stream, which is located north-east of Athens (Greece). The 

model structures used are the HEC-RAS software (1D model), the LISFLOOD software 

(2D-) and the FLO-2D software (2D) for 300 simulations each. 

The input data consists of a steady flow, for which the Monte Carlo simulations randomly 

draw from a uniform distribution with range 250 m3/s to 1000 m3/s. The examined 

parameter is the Manning's roughness coefficient, for which the Monte Carlo simulations 

randomly draw from a uniform distribution with range 0.01 s/m1/3 to 0.1 s/m1/3. 

The output variables are the water depths in the upstream and the downstream cross-

sections correspondingly. It is found that the distributions of the water depths approximate 

a normal distribution. It seems that the water depths range about 4 m using the HEC-RAS 

model, about 8-12 m using the LISFLOOD-FP model and about 2 m using the FLO-2D 

model, for the 95% confidence interval. 

 

 

 



9  Uncertainty in the estimation of backwater effects at bridge crossings 

In this paper, the sources of uncertainty which are examined are the input data and the 

model parameters, using the Monte Carlo technique and the GLUE method. The case 

study is selected from an actual application: Tallahala Creek, near Waldrup, Mississippi, 

USA.. The combined uncertainty due to these two sources is also quantified as well. 

The model structures used is the 1D HEC-RAS software, using the steady flow mode. The 

input data consists of a steady flow, for which the 100 Monte Carlo simulations randomly 

draw from a normal distribution with a mean value equal to the flood peak with a return 

period T=100 years, estimated applying the Extreme Value distribution type I (EVI) and a 

standard deviation equal to the standard error of estimate for the EVI distribution, 

evaluated using the Kite formula. The examined parameter is the Manning's roughness 

coefficient for the main channel and for the floodplains, using the GLUE method: 48 

behavioral models were selected, using as a criterion that the Mean Absolute Error 

compared with the corresponding observed data should be less than 0.5 m. Finally, each 

of the 48 behavioral scenarios was run using as an input the 100 runs derived previously, 

in order to quantify the combined uncertainty due to the input data and the model 

parameters. It seems that the water surface elevation ranges from about 0.5 m in the worst 

case, to 0.2 m in the best case, for the 95% confidence interval, investigating the input 

data uncertainty. Investigating the parameters data uncertainty, these intervals are ranging 

from about 1.0 m to 0.3 m, whereas investigating both input data and parameter 

uncertainty, these intervals are ranging from about 1.5 m to 1.0 m correspondingly. 

 



10  Geostatistical upscaling of rain gauge data to support uncertainty 

analysis of lumped urban hydrological models 

In this paper, the uncertainty source which is investigated is due to input data. The case 

study is selected from an actual application: a catchment located at Bradford, West 

Yorkshire, UK. Rainfall data collected from a cluster in an urban catchment are used in 

combination with spatial stochastic simulation to obtain optimal predictions of the spatially 

averaged rainfall intensity at any point in time within the urban catchment. The uncertainty 

in the prediction of catchment average rainfall intensity is obtained for multiple 

combinations of intensity ranges and temporal averaging intervals. Scarcity of 

measurement points is dealt with by pooling sample variograms of repeated rainfall 

measurements with similar characteristics. Normality of rainfall data is achieved through 

the use of normal score transformation. Geostatistical models in the form of variograms 

are derived for transformed rainfall intensity. Next, spatial stochastic simulation is applied 

to produce realisations of rainfall fields. These realisations in transformed space are first 

back-transformed and next spatially aggregated to derive a random sample of the spatially 

averaged rainfall intensity. Results show that the prediction uncertainty comes mainly from 

two sources: spatial variability of rainfall and measurement error. At smaller temporal 

averaging intervals both these effects are high, resulting in a relatively high uncertainty in 

prediction. With longer temporal averaging intervals the uncertainty becomes lower due to 

stronger spatial correlation of rainfall data and relatively smaller measurement error. 

Results also show that the measurement error increases with decreasing rainfall intensity 

resulting in a higher uncertainty at lower intensities.  


