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Acronyms and Abbreviations 
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HRU Hydrological Response Unit 

JLU Justus Liebig University Giessen 

LHS Latin Hypercube Sampling 

LULC Land Use/Land Cover 
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MCMC Markov-Chain Monte Carlo 

MPI Messaging Passing Interface 

NSE Nash–Sutcliffe Efficiency 

ROPE RObust Parameter Estimation 

SA Simulated Annealing 

SCE-EA Scuffled Complex Evolution Algorithm 

SPOTPY SPOTting Model Parameters Using a Ready-Made Python Package 

SWAT Soil and Water Assessment Tool 
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Executive Summary  

This deliverable describes a strategy for model calibration and uncertainty assessment, 

which has been developed and is currently being tested using data obtained from the 

Schwingbach Earth Observatory located in the Federal State of Hesse in Germany. This 

observatory is located in a low mountain area, with the 3.7 km2 catchment containing a 

human impact landscape containing channelized streams, piped drainage networks, 

combined sewer overflows and fish ponds. The strategy is demonstrated using a 

parameter rich model, called SWAT combined with the SPOTPY computational tool which 

is used to estimate the level of parameter uncertainty. The strategy has a 3 stages: (1) 

problem definition, (2) model calibration, (3) results analysis. A SWAT model for the 

catchment was built. This model was linked to the automated parameter estimation and 

uncertainty analysis package SPOTPY using a Python interface. This interface was used 

to calibrate the model using the principles of GLUE and the logarithm of the NSE was used 

as the objective function. The level of parameter uncertainty was estimated using the 

extremes of the parameter distributions. The calibrated SWAT model was able to simulate 

the low flows well but struggled with the higher flow conditions.  

Further work is continuing considering different parameter sampling strategies and looking 

in more depth on the uncertainty created by highly spatially variable rainfall that this 

catchment is thought to experience. Different parameter estimation and objective functions 

will also be studied to examine their impact on the estimation of the level of parameter 

uncertainty.   
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1  Background 

As part of the deliverables in the QUICS project, the project partner from Justus Liebig 

University Giessen (JLU) first developed a software package to estimate the uncertainty of 

various hydrological model components (see Deliverable 1.4). The platform free and 

independent software package SPOTPY (Houska et al., 2015) was used to parameterize 

the Soil and Water Assessment Tool (SWAT). In a first set up, we investigated the effect of 

input data uncertainty on model outputs for a rural catchment in Luxemburg (Camargos et 

al., 2018). We analyze eight different setups for SWAT, i.e. different setups regarding the 

land-use, elevation, and soil input data. We showed that despite presenting similar 

parameter uncertainty for all setups, the results followed a disparate parameter posterior 

distribution. This indicates that at least part of the model uncertainty is compensated by 

the fitted parameter values.  

In a next step, we are therefore interested in the uncertainty chain of hydrological 

modelling, which is introduced by a variety of decisions that need to be taken and the data 

that can be used when simulating water or nutrient fluxes in complex catchments using 

parameter intensive models such as SWAT. As part of this Deliverable 4.1, we present a 

strategy for model calibration and uncertainty assessment, which has been developed and 

is currently tested in the Schwingbach Earth Observatory, Federal State of Hesse, 

Germany.  

2  Study area 

The study site is part of the Schwingbach catchment, an area of a low mountainous creek 

(Vollnkirchener Bach) in the municipality of Hüttenberg, Hesse, Germany (50◦2905600 N, 

8◦330200 E). The landscape is anthropogenic-influenced having the physical structure of 

the stream system altered: channeled stream reaches, drainage systems/pipes, 

combined sewer overflows, and fishponds. The area is part of the Schwingbach Earth 

Observatory of the Justus Liebig University Giessen (Orlowski et al., 2014), see Figure 1.  

 

Figure 1: Digital elevation model and land use of the Vollnkirchener Bach catchment. The map shows 
available sampling sites and types of measurement data. Continuous high-resolution data measurements for 
discharge and nitrate instream are available at the catchment outlet and are used as validation data in this 
study. 
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Soils are agricultural Stagnosols with thick loess layers (Stagnic Luvisols) as well as 

forested Cambisols, and also Gleysols under grassland sites along the streams. The land 

use is dominated by forest and arable land, presenting areas with grassland along the 

stream and a small portion of urban settlement. Elevation ranges from 235 to 351 m a.s.l. 

The climate is classified as temperate, with a mean annual precipitation of 588 mm, and a 

mean annual temperature of 10.5 ◦C for the hydrological year 1 November 2013–31 

October 2014 (Seifert et al., 2016). 

3  Concept used to investigate the model uncertainty chain 

We followed three main steps to estimate the model uncertainty chain, which are 

summarized in Figure 2 and explained in details in the following text. 

 

Figure 2: Calibration and uncertainty analysis three-step process. The superscripted numbers indicate the 
technical methods applied with the SPOTPY package (Houska et al. 2015).  

 

Step 1: SWAT is a semi-distributed model that requires a diversity of specific information 

as input data. The basic information are related to topography, soil properties, vegetation, 

and meteorology. A digital elevation model (DEM) is used to delineate the watershed, 

estimate the stream network and slope. After uploading the DEM map to the ArcSWAT 

interface (ArcSWAT 2012 version), the user has the option of defining how detailed the 

drainage network will be by selecting the upstream drainage area value. We set this value 

to the minimum recommended by the ArcSWAT interface. We considered all outlets 

automatically generated by the interface as valid and defined the location where the water 

quantity and quality data were collected as the main outlet of the catchment. As a test 

case for this deliverable, we used data from the Schwingbach Earth Observatory, Federal 

State of Hesse, Germany. This watershed has an overall area of 3.7 km² and is partitioned 

into several sub-basins based on the location of each outlet. The hydrologic response unit 

(HRU) is the smallest component of a SWAT watershed in SWAT. An HRU is defined as a 

land area comprised of a unique combination of land use/land cover (LULC), soil, and 

slope class information. We included a soil map containing three different soil classes, and 

Step 1: 

Step 2: 

Step 3: 
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a LULC map identifying areas covered by forest, pasture, agriculture, water and urban 

settlement. Further, we defined three slope classes, i.e. <7%, 7-15% and 15%, which are 

considered as moderate, medium and steep slopes. Further, we used land management 

information from a local farmer to define the crop rotation during the simulated period. We 

included daily weather data as forcing data. Minimum and maximum temperatures, relative 

humidity, wind speed, solar radiation, and precipitation were collected from a station 1 km 

north-west of the study area. Additionally, two other stations inside the study area were 

considered to cover the spatial variability of the precipitation information. Daily 

evapotranspiration rates were estimated by the Hargreaves method. 

Step 2: In order to connect SWAT with SPOTPY, we developed a universal Python-SWAT 

interface (Camargos et al., 2018). The interface comes along with a parameter writing 

routine, which takes the parameter names and their value and automatically writes them 

into the corresponding SWAT input files. SWAT is then started from Python and the results 

can be read with a self-developed SWAT_readout library, which returns the simulated 

discharge. The comparison of observed data and the assignment of an objective function 

value to each run is done with SPOTPY. The whole process is automatized and can be 

started in parallel by using a Message Passing Interface (MPI).  

With this set up, we calibrated SWAT with daily discharge from the main watershed outlet, 

a gauging station equipped with a continuous water level sensor and an RBC-flume to 

convert water levels into discharge. We selected a large (n=18) parameter group to be 

considered in the calibration of SWAT based on expert-knowledge and experience 

obtained in the the previous Luxemburg study. Afterward, we run the Fourier Amplitude 

Sensitivity Test (FAST) to refine the number of parameters to the 10 most sensitive ones 

for discharge simulations (Figure 2, Step 1/1). For the model calibration and parameter 

uncertainty analysis, we used the principle of the Generalized Likelihood Uncertainty 

Estimation (GLUE) methodology. We assumed a non-informative uniform prior distribution 

for the parameters (Figure 2, Step 2/2). We assessed model performance by the Nash–

Sutcliffe Efficiency (NSE) (Figure 2, Step 1/3). As the squared residuals of the NSE 

calculation overemphasize high values, we also considered the logarithmic NSE (log 

NSE), which is more sensitive to low flows. We sorted the results by descending order of 

NSE and log NSE and considered the 5% top as the remaining posterior distribution. The 

parameter space was investigated by Latin Hypercube Sampling (LHS) with 1,000 

repetitions (Figure 2, Step 2/4). All required decisions and calculation in Step 2 were 

performed using the SPOTPY tool developed in our group as part of Deliverable 1.4 

(Houska et al. 2015).  

Step 3: The parameter uncertainty is then estimated using the measured P- and R-factors 

(Figure 3, Step 3/5). The P-factor is the percentage of data bracket by the 95% prediction 

uncertainty (95PPU) which is calculated at the 2.5 and 97.5 percentiles of the simulated 

data. The R-factor is the ratio of the average distance between the upper and lower 

95PPU and the standard deviation of the measured data. Ideally, the P-factor tends to 1 

and the R-factor is close to 0.  
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As first results, we show that SWAT is capable to reproduce the flow dynamics and the 

overall water balance of the research catchment Vollnkirchener Bach. Figure 3 indicates 

that the SWAT model is simulating low flows properly. However, the low performance 

regarding the NSE values, ranging from 0.28 to 0.40, indicates that the current SWAT set 

up cannot estimate the high flow peaks. 

 

Figure 3: Posterior SWAT performance evaluated for different goodness-of-fit criteria: a) NSE and b) log 

NSE. 

 

A closer look at the timing and height of the simulated versus the observed hydrograph 

reflects errors depicted in Figure 4. We identified two major problems:  

1) The model needs a warm up period of about 6 months for the time between 

January to June 2013 (Figure 4). We will implement this in the ongoing 

investigation.  

2) Some of the remaining errors in the fit of the observed high flows may be 

explained by the geographical location of the rainfall stations that are outside of the 

study area. From field reconnaissance trips and reports from local people, we know 

that precipitation is highly variable in space. To overcome this limitation, the next 

step will be to implement a methodology to account for rainfall uncertainty during 

the calibration and validation procedure (Kavetski et al., 2006). 

 

As work in Step 3 is still in progress, we will consider further parameter sampling 

strategies apart from the aforementioned Latin Hypercube Sampling. For the next couple 

of months, the SWAT model set up will be used to investigate the effect of selecting 

different objective functions (likelihoods that allow the assessment of measured data 

uncertainty) (Figure 4, Step 2/3) and different parameter estimation methods, such as the 

Markov-Chain Monte Carlo (MCMC) sampler and the Scuffled Complex Evolution 

Algorithm (SCE-UA) (Figure 1, Step 2/4). 

a b 
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Figure 4: Hydrographs comparing the posterior model results for different goodness-of-fit criteria. The plots 
include the 95% prediction uncertainty, and the P- and R- factors. 

4  Outlook 

Complex formal Bayesian, informal Bayesian and non-Bayesian algorithms bring complex 

tasks to link them with a given model. SPOTPY makes this task as easy as possible. 

Some features one can use within the SPOTPY package and which will be considered in 

future work of SWAT applications in the Schwingbach Earth Observatory and elsewhere 

are: 

 Fitting models to evaluate data with different algorithms. Available algorithms are 

Monte Carlo (MC), Markov-Chain Monte-Carlo (MCMC), Maximum Likelihood 

Estimation (MLE), Latin-Hypercube Sampling (LHS), Simulated Annealing (SA), 

Shuffled Complex Evolution Algorithm (SCE-UA), DiffeRential Evolution Adaptive 

Metropolis Algorithm (Dream), RObust Parameter Estimation (ROPE), Artificial Bee 

Colony (ABC), Fitness Scaled Chaotic Artificial Bee Colony (FSCABC) and Fourier 

Amplitude Sensitivity Test (FAST). 

 Wide range of objective functions, likelihood functions and hydrological signatures 

to validate the sampled results. Available objective functions are: Bias, Nash-Sutcliff 

(NSE), log Nash-Sutcliff (logNSE), Logarithmic probability (logp), Correlation 

Coefficient (r), Coefficient of Determination (r²), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), Relative Root Mean 

Squared Error (RRMSE), Agreement Index (AI), Covariance, Decomposed MSE 

(dMSE) and Kling-Gupta Efficiency (KGE). 
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 Wide range of likelihood functions to validate the sampled results: logLikelihood, 

Gaussian Likelihood to account for Measurement Errors, Gaussian Likelihood to 

account for Heteroscedasticity, Likelihood to account for Autocorrelation, 

Generalized Likelihood Function, Laplacian Likelihood, Skewed Student Likelihood 

assuming homoscedasticity, Skewed Student Likelihood assuming 

heteroscedasticity, Skewed Student Likelihood assuming heteroscedasticity and 

Autocorrelation, Noisy ABC Gaussian Likelihood, ABC Boxcar Likelihood, Limits Of 

Acceptability, Inverse Error Variance, Shaping Factor, Nash Sutcliffe Efficiency 

Shaping Factor, Exponential Transform Shaping Factor, Sum of Absolute Error 

Residuals. 

 Wide range of hydrological signature functions to validate the sampled results: 

Slope, Flooding/Drought events, Flood/Drought frequency, Flood/Drought duration, 

Flood/Drought, variance, Mean flow, Median flow, Skewness, compare percentiles 

of discharge. 

 Prebuild parameter distribution functions: Uniform, Normal, lognormal, Chi-

square, Exponential, Gamma, Wald, Weilbull. 

 SPOTPY is platform independent and due to the MPI support it can make use of 

fast parallel computing. 
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