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Executive Summary  
Weather radars have significantly improved our ability to measure and understand rainfall 
processes, thanks to the ability to perform spatial measurements on vast areas at high spatial and 
temporal resolutions. However, the application of radar rainfall data in hydrological and in water 
quality models is limited by the lower accuracy that radar data can reach, compared to point rain 
gauge rainfall measurements. On the other hand, although rain gauges are more accurate in 
measuring rainfall intensity at point locations, they lack the ability to reproduce the spatial distribution 
of rainfall and are also affected by measuring errors. Techniques to merge radar and rain gauge 
rainfall data can be used to obtain the best estimation of precipitation with the benefits from both 
types of instruments. Radar-gauge rainfall merging is usually beneficial in terms of improved 
accuracy and uncertainty reduction, but the merged rainfall product is not error-free and such 
uncertainty needs to be considered in modelling applications.  

This deliverable looks at algorithms to quantify the uncertainty in radar rainfall estimates and in 
merged radar – rain gauge rainfall estimates. It also investigates how radar rainfall uncertainty can 
be propagated in models.  

The following algorithms are here presented: 

a) A logarithmic model is presented to quantify the uncertainty of radar rainfall estimates using 
rain gauge measurements as a reference, assuming the latter have negligible error.  

b) A technique to model and propagate radar uncertainty based on time-variant geo-statistical 
modelling of ensembles is presented.  

c) The formulation of Ordinary Kriging (OK) and Kriging with External Drift (KED) are presented. 
These techniques are used to interpolate rain gauge measurements and to merge radar and 
rain gauge rainfall estimates. Kriging-based techniques have the advantage of offering the 
kriging variance as a measure of the uncertainty. 

d) Two techniques to estimate variograms for KED from radar rainfall estimate are presented.  
e) Kriging for Uncertain Data (KUD) is presented and discussed as a technique to include 

spatially and temporally variant rain gauge errors in radar-gauge rainfall merging.  
f) To consider radar uncertainty in radar-gauge rainfall merging, instead, a technique named 

Kriging with External Drift and Non-Stationary Variance (KED-NSV) is presented and 
discussed.  

g) An algorithm to produce rainfall ensembles from kriging products is finally presented to 
propagate rainfall uncertainty in models. 
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1 Introduction  

1.1 Partners Involved in Deliverable 

University of Bristol (UB): Francesca Cecinati (FC), Miguel Rico-Ramirez (MRR). 

1.2 Deliverable Objectives 

The objective of this deliverable is to provide enhanced algorithms able to quantify uncertainty in 
radar rainfall measurements. However, since radar rainfall estimates are often merged with rain 
gauge measurements to improve the accuracy, both the uncertainty in radar rainfall and in merged 
radar-rain gauge rainfall will be addressed. Six algorithms are here described, to address the 
following: 

1. Modelling of radar rainfall uncertainty, 
2. Propagation of rainfall uncertainty in different types of models, 
3. Modelling of merged radar-rain gauge rainfall uncertainty, 
4. Integration of rain gauge uncertainty in merged radar-gauge rainfall estimations, 
5. Integration of radar uncertainty in merged radar-gauge rainfall estimations, 
6. Propagation of merged radar-gauge rainfall uncertainty in models. 

1.3 Related publications 

The material in this deliverable is derived from journal articles, conference proceedings and the PhD 
work of the first author, produced (or in phase of development) during the QUICS project framework. 
Technical details, mathematical formulations, and case studies are not reported in this work, but can 
be found in the related QUICS publications. In particular, the publications relevant to this deliverable 
are: 

• F. Cecinati (2018), Uncertainty estimation and propagation in radar-rain gauge rainfall 
merging using kriging-based techniques, PhD thesis, University of Bristol, Faculty of 
Engineering, submitted.  

• M. A. Rico-Ramirez, G. B. M. Heuvelink, and D. Han (2017), “Representing radar rainfall 
uncertainty with ensembles based on a time-variant geostatistical error modelling approach,” 
J. Hydrol., vol. 548, pp. 391–405, DOI: 10.1016/j.jhydrol.2017.02.053. 

• F. Cecinati, A. M. Moreno Ródenas, and M. A. Rico-Ramirez (2017), “Integration of rain 
gauge errors in radar-rain gauge merging techniques,” in 10th World Congress on Water 
Resources and Environment, pp. 279 – 285. 

• F. Cecinati, A. M. Moreno-Ródenas, M. A. Rico-Ramirez, M. ten Veldhuis, J. Langeveld 
(2017), “Considering rain gauge measurement uncertainty using Kriging for Uncertain Data”, 
Water Resources Management (in preparation). 

• F. Cecinati, A. Wadoux, M. A. Rico-Ramirez, and G. B. M. Heuvelink (2017), “Rainfall 
estimation using a non-stationary geostatistical model and uncertain measurements,” in 2017 
International Symposium Weather Radar and Hydrology, p.163. 

• A. M. J-C Wadoux, D. J. Brus, M. A. Rico-Ramirez, G. B. M. Heuvelink, (2017) “Sampling 
design optimisation for rainfall prediction using a non-stationary geostatistical model”, 
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Advances in Water Resources, vol. 107, pp. 126-138, DOI: 
10.1016/j.advwatres.2017.06.005. 

• F. Cecinati, A. C. de Niet, K. Sawicka, and M. A. Rico-Ramirez (2017), “Optimal temporal 
resolution of merged radar – gauge rainfall for urban applications,” Water, vol. 9(10), 0762, 
DOI: 10.3390/w9100762. 

1.4 Background 

The work in this deliverable has been developed as part of the EU funded project “Quantifying 
Uncertainty in Integrated Catchment Studies” (QUICS), with the aim of advancing the understanding 
of rainfall uncertainty, especially as input to hydrological, water quality and integrated models. The 
objectives of QUICS are to improve the understanding of the different uncertainty sources in 
catchment studies, develop methods to quantify them, communicate the implications of uncertainty 
in hydrologic and water quality predictions for decision making, and disseminate knowledge and 
best practices (Sriwastava and Moreno Ródenas, 2017), in particular to facilitate the application of 
the EU Water Framework Directive (WFD) (European Community, 2000). The application of the 
WFD requires many decisions to be taken based on model, such as hydrologic, water quality , urban 
drainage, and ecological models (Giupponi, 2007; Hering et al., 2010; Quevauviller et al., 2005).  

Precipitation estimates are one of the main inputs in many of these models and often represent a 
significant source of uncertainty. Two main instruments are used to measure rainfall: weather 
radars, which have a wide aerial coverage and high spatial and temporal resolutions, but do not 
reach a high accuracy; and rain gauges, which are usually more accurate, but representative of a 
point in space and lack areal representativeness. Modelling of hydrologic and water quality 
processes, especially at urban scale, requires high temporal and spatial rainfall resolutions and 
weather radars are extremely useful tools to meet such model requirements. At the same time, their 
application in hydrology has been limited by the lower accuracy compared to rain gauges (Berne 
and Krajewski, 2013). Thus, merging the two sources of rainfall information is a viable way to reach 
the resolution and accuracy requirements for modelling applications (Berndt et al., 2014; Gabriele 
et al., 2017; Jewell and Gaussiat, 2015; Nanding et al., 2015). However, a residual uncertainty 
remains, and very little work has been done on the estimation of radar-gauge merging uncertainty 
(Erdin et al., 2012). One of the reasons why uncertainty in radar-gauge rainfall merging is hardly 
studied, is that it is difficult to quantify, since it is cased by many different sources.  

On the one hand, radar Quantitative Precipitation Estimation (QPE) is affected by a multitude of 
errors. Radar QPE is subject to uncertainty due to radar signal anomalous propagation, 
measurements from non-meteorological echoes, signal attenuation, beam blockage, radar 
calibration; the relationship between the measured quantity (reflectivity) and the target variable 
(rainfall intensity) is uncertain as it varies with the rainfall drop size distribution, different atmospheric 
conditions or different phases of the precipitation. Additionally, there are uncertainties due to the 
variation of the vertical reflectivity profile or to the beam broadening with distance, etc. (McKee and 
Binns, 2015; Villarini and Krajewski, 2010a). Several corrections are operationally applied by 
meteorological offices, especially based on two technological advancements, namely dual-
polarization and doppler capabilities of radars, but a residual uncertainty often remains (Harrison et 
al., 2012, 2000; Overeem et al., 2009; Villarini and Krajewski, 2009). 
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On the other hand, although several studies on radar uncertainty assume rain gauge uncertainty to 
be negligible (Ciach et al., 2007; Dai et al., 2014a; Rico-ramirez et al., 2014; Villarini and Krajewski, 
2009), this assumption is often not justifiable (Ciach, 2003; Habib et al., 2008; Kitchen and Blackall, 
1992; Molini et al., 2005; Villarini et al., 2008). Rain gauges are subject to a variety of systematic 
and random errors, due to mechanical limitations, wind effects, evaporation, areal 
representativeness, or data and network management (Bringi et al., 2011; Ciach, 2003; Habib et al., 
2004, 2001; Hasan et al., 2014; Lebel et al., 1987; Molini et al., 2005; Nešpor and Sevruk, 1999; 
Upton and Rahimi, 2003). 

This document proposes approaches to quantify the uncertainty associated with radar and rain 
gauge rainfall measurements, integrate radar and rain gauge uncertainties in the merging process, 
and evaluate the rainfall estimation uncertainty. The rainfall uncertainty can then be used to analyse 
how it propagates through natural and urban hydrological models. 
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2 Radar uncertainty modelling 

2.1 Introduction 

The use of radar systems for weather surveillance emerged as a consequence of wartime radar 
technology intensive development. During World War II, the first radars were used to detect enemy 
targets, emitting radio waves and measuring the bounced signals. Thanks to the invention of the 
magnetron technology, radars could soon switch to shorter-length microwaves, thus improving their 
detection resolution and reducing their size (Fabry, 2015). It was thanks to this application that the 
capability of radars to detect meteorological targets were first observed and studied. In a first 
moment, the weather applications of radars were just applied to military strategy, but after the end 
of the second world war, civil applications were developed and operationally used (Whiton et al., 
1998a).  

The principle underlying weather radar Quantitative Precipitation Estimation (QPE) is that of an 
active remote sensing instrument: a signal is emitted towards a target, and the echo from the target 
is measured. In case the radar signal encounters rainfall, a small amount of the emitted signal is 
scattered back by the hydrometeors (general term that include particles of solid, liquid and mixed 
precipitation), and can be measured by the radar. The signal received by the radar is proportional 
to the number and the size of the hydrometeors, therefore to the rainfall intensity. The principal 
difference between weather radar hydrometeorology and other radar applications is the nature of 
the target. In radar hydrometeorology, the target is diffused: the radar measures the echo from a 
multitude of small water targets, impossible to detect individually, but producing an overall 
measurable echo signal. Therefore, the measured echo depends on the average characteristics of 
all the particles contained in a volume corresponding to the radar resolution. The state of 
hydrometeors, solid or liquid, influences the electromagnetic properties of the targets, and the 
presence of hail and snow needs to be defined to correctly estimate the rainfall intensity. In liquid 
precipitation, the size of the droplets is proportional to both the reflectivity (𝑍) and the rainfall intensity 
(𝑅), and this property can be used to estimate the rainfall intensity measuring the reflectivity. Since 
the droplet size in any scanned volume can greatly vary, radar hydrometeorology considers the drop 
size distribution (DSD). However, the reflectivity of the target 𝑍 is proportional to the 6th  moment of 
the DSD, while the rainfall intensity 𝑅 is proportional to the 3.67th  moment of the DSD, making the 
Z-R relationship variable (Sauvageot, 1992). 

Weather radars work at microwave frequencies. The most commonly used frequency bands are the 
S-band (2 to 4 GHz), C-band (4 to 8 GHz) and X-band (8 to 12.5 GHz). The higher the frequency, 
the higher is the spatial resolution that can be achieved, but also the shortest is the range that can 
be measured, due to a higher level of attenuation (Fabry, 2015; Sauvageot, 1992). For this reason, 
X-band radars are often used primarily for urban applications, while S-band radars are used mostly 
when longer distances need to be covered, for example they are operationally used in the USA, 
while in Europe (including the UK) C-band radars are mainly used operationally. Radar antennas 
can measure the precipitation along a focused narrow signal beam often around 1-degree 
resolution. In order to understand where the target is located along the beam range, the time that 
the signal takes to travel to the target and travel back to the antenna is measured. By pointing the 
antenna and focusing the radar beam along different directions, radars can measure precipitation 
on vast areas. In order to measure precipitation as close to the ground surface as possible avoiding 
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blockage from obstacles, radars operate at different low-elevation angles. Figure 2.1 summarises 
how a weather radar operationally works. 

  
Figure 2.1 – Schematic of a weather radar functioning principle and operation. 

 

Similarly, to the invention of weather radars, it was thanks to the wartime military research and 
development that a game-changing radar technology was developed: the Doppler radar capabilities. 
The Doppler effect, i.e. the change of signal frequency due to the movement of the radar target, is 
exploited to measure the radial velocity of a sensed objects. The use of the Doppler effect was first 
imagined to detect military target velocity, and only in a second moment it was used for wind speed 
rainfall measurements. Thanks to the development of the pulse-Doppler technology the range of the 
target could also be measured and in the 1960’s the operational use of pulse-Doppler radars for 
weather applications was introduced (Whiton et al., 1998b). The use of the doppler capabilities 
during normal almost-horizontal operations provides information about the drop horizontal (i.e. 
radial) velocity, that can be critical in reconstructing wind speed, especially in case of severe weather 
conditions. However, the radar Doppler capabilities can be used also at vertical incidence, i.e. 
pointing the radar vertically. This type of measurements provides extremely valuable information 
about the falling velocity of particles, variation of the vertical reflectivity profile, and therefore their 
DSD and thermodynamic phase can be inferred (Fabry, 2015). 

Another critical technology to improve radar QPE is the use of dual-polarisation. Dual-polarisation 
technology was developed between the 1960’s and the 1980’s, allowing to drastically reduce many 
sources of uncertainty in radar precipitation estimates. The emission and measurement of 
horizontally and vertically polarised microwave signals allows us to retrieve a much larger number 
of measured parameters, combining the measurements in each polarisation direction. The study of 
the polarimetric parameters can be used to reconstruct several properties of the target, like, for 
example, the shape/size of droplets, identification of snow/hail/ground clutter, and overall 
improvements in signal attenuation and rainfall estimation (Cluckie and Rico-Ramirez, 2004; Doviak, 
1983; Hall et al., 2015; Islam et al., 2012a; Rico-Ramirez and Cluckie, 2008; Rico-Ramirez et al., 
2005).  

It is only in the last decade that most of the national weather radar networks are being updated to 
full Doppler polarimetric capabilities. Today, radars are one of the most important instruments to 
measure precipitation. Although they still do not reach the accuracy of most point measurement 
instruments like rain gauges, the advancements in hardware and software allow radars to estimate 
spatially distributed precipitation on vast areas, with much higher spatial and temporal resolution 
compared to satellites. However, there are still several factors that could introduce errors. First of 
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all, radar quantitative QPE relies on a conversion between the measured reflectivity Z in [mm6/m3] 
and the physical quantity, the rainfall rate R in [mm/h]. The relationship is dependent on the rainfall 
nature, in particular on drop size distribution (DSD) (Doviak, 1983; Marshall et al., 1947). The 
adopted Z-R relationships are often calibrated against spatial and temporal average conditions of 
liquid precipitation, but cannot be tailored to each specific situation and usually fail to correctly 
estimate extremes or the presence of hail or snow (Austin, 1987; Hasan et al., 2014; Seed et al., 
2007). Polarimetric radars can improve the retrieval of the physical quantity R using some of 
polarimetric parameters (Bringi et al., 2011), but a residual uncertainty remains. Other sources of 
uncertainty are due to the radar beam propagation that can be partially or totally blocked by 
obstacles (Friedrich et al., 2007; Joss and Lee, 1995; Westrick et al., 1999), can be deviated by 
anomalous atmospheric conditions (Moszkowicz et al., 1994; Rico-Ramirez and Cluckie, 2008; 
Steiner and Smith, 2002), can be attenuated due to heavy precipitation (Atlas and Banks, 1951; 
Delrieu et al., 2000; Meneghini, 1978; Uijlenhoet and Berne, 2008), and may be subject to beam 
broadening with range, beam overshooting precipitation, and earth curvature effects, that increase 
the radar beam height and reduce the resolution at longer ranges (Ge et al., 2010; Kitchen and 
Jackson, 1993). Ground clutter is another source of error, producing disturbing echoes (Hubbert et 
al., 2009a, 2009b; Islam et al., 2012c). Similarly, other objects, like wind farms, birds, insects, 
airplains, or ships can generate dusturbing non-meteorological echoes and other elecromagnetic 
sources can produce interference. The rainfall rate estimates are often subject to variability of the 
vertical reflectivity profile (VRP) and to phenomena like the bright band effects, due to the higher 
reflectivity of the layer in which snow melts into rain that can cause rainfall overestimation up to a 
factor of 5 if no correction is performed (Austin and Bernis, 1950; Fabry and Zawadzki, 1995; 
Kirstetter et al., 2013; Qi et al., 2013; Rico-Ramirez and Cluckie, 2007; Smith, 1986; Zhang and Qi, 
2010). Errors are also introduced by hardware errors, calibration, spatial and temporal sampling, 
projection from polar to Cartesian coordinates, and in the averaging operations necessary to obtain 
the final corrected products (Anagnostou and Krajewski, 1999; Fabry et al., 1994). The list of error 
sources is long and for an extensive review, the reader is redirected to (Villarini and Krajewski, 2010) 
and  (McKee and Binns, 2015).  

Many techniques exist to partially correct different types of errors and are operationally applied by 
meteorological agencies. As concerns static clutter and blockage from ground, buildings, hills or 
windfarms, measurements taken in rain free days can be used as a reference (Harrison et al., 2012). 
Several physics-based techniques can be used to identify anomalous atmospheric conditions, 
vertical reflectivity profiles, or the freezing level, using atmospheric measurements or numerical 
weather predictions (NWP), or to identify ground clutter, using digital elevation maps (Gonzalez-
Ramirez et al., 2011; Hall et al., 2015; Kirstetter et al., 2013; Kitchen et al., 1994; Krajewski et al., 
2006). Errors due to attenuation, solid precipitation, non-meteorological echoes or non-optimal Z-R 
relationship can be identified considering different doppler and polarimetric parameters, especially 
using multiple controls with tree diagrams, neural networks and fuzzy logic (Bringi et al., 2001; Dai 
et al., 2014b; Grecu and Krajewski, 2000; Islam et al., 2012a, 2012b, 2012c; Qi et al., 2013; Rico-
Ramirez, 2012). Image analysis can be used to identify speckle and anomalous pixels due to 
different errors (Harrison et al., 2012; Wesson and Pegram, 2004). Despite meteorological offices 
invest a great effort in optimally combining these techniques for operational radar QPE correction, 
a residual uncertainty inevitably affects radar QPE. In processed radar products, the residual 
uncertainty is due to a mixed combination of the residual uncorrected errors and the processing 
errors and approximations.  
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2.2 The logarithmic model 

Radar residual errors can be modelled in different ways. Usually, it is recognised that radar residual 
errors have a bias component and a random component (Ciach et al., 2007). The random 
component is often modelled as multiplicative (Ciach et al., 2007; Dai et al., 2014a; Villarini and 
Krajewski, 2009), but sometimes also an additive form is used (Kirstetter et al., 2010).  

The model adopted here is additive in the log-transformed domain, thus it is multiplicative in the 
original domain: 

 10 log 𝑃 = 10 log 𝑅 + 𝛿 (1) 

where 𝑃 is the true rainfall, 𝑅 is the radar QPE, 𝛿 is the residual error that is subsequently modelled 
to contain a bias correction as well, and the log operation refers to a logarithm with base 10. The 
model is consistent with previous research, in particular with the model adopted in the REAL (radar 
ensemble generator using LU decomposition) method by Germann et al., (2009). The advantage of 
such a form is that the residual errors have an almost Gaussian probability distribution, which is 
characterised only by the mean	𝜇(𝛿), the standard deviation	𝜎 𝛿 , and the spatial correlation. Figure 
2.2 is an example of the probability distribution of radar residual errors calculated with an additive, 
a multiplicative and a logarithmic form, using data from the UK Environment Agency rain gauges 
and the UK Met Office radar estimates for one year in 2008. In the phase of error estimation, the 
true rainfall 𝑃	is approximated with rain gauge measurements	𝐺, and the residual errors 𝛿	are 
defined as follows: 

 𝛿 = 10	log 𝐺 − 10	log	(𝑅) (2) 

 𝜇(𝛿) = 𝐸{𝛿} (3) 

 𝜎 𝛿 = 𝐸 𝛿 − 𝜇(𝛿) 6  (4) 

where 𝐸{	} is mathematical expectation, approximated with the mean. Figure 2.2 also reports the 
values of Skewness, Kurtosis (Joanes and Gill, 1998), and approximation of negentropy (Hyvärinen 
and Oja, 2000), as indicators of Gaussianity. All of the indicators should tend to zero for a Gaussian 
distribution. 
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Figure 2.2 - Probability distribution associated to radar errors modelled in an additive form, in a multiplicative form, and 
in a logarithmic form. 

2.3 Modelling the spatial correlation 

The residual errors must also be defined in terms of correlation characteristics. Literature shows 
that temporal autocorrelation of residual errors at hourly time steps is usually limited (Kirstetter et 
al., 2010; Rico-Ramirez et al., 2015; Wheater et al., 2000), therefore the attention in this work is 
focused on the spatial correlation structure. Often, the spatial correlation characteristics are depicted 
with a variance-covariance matrix 𝐶, describing the covariance between each pair of errors 
𝛿(𝑥9)	and 𝛿(𝑥:) (Germann et al., 2009): 

 𝐶 𝛿(𝑥9)	, 𝛿(𝑥:) 	= 𝐸 𝛿(𝑥9) − 𝜇9 𝛿(𝑥:) − 𝜇: 			𝑖, 𝑗 = 1,… ,𝑁 (5) 

where the expected value is in practice calculated on time series. Parameters 𝜇9	and 𝜇:, short 
notation for 𝜇 𝛿 𝑥9  and 𝜇 𝛿 𝑥: , are the mean of the residual error values	𝛿(𝑥9)	and	𝛿(𝑥:), also 
calculated from the time series. The variance-covariance matrix may become unstable when the 
number of measuring points (𝑁) is large. In fact, it must be positive-definite, which an empirical 
variance-covariance matrix might not be. Moreover, its inversion is computationally demanding for 
large N and may lead to numerical instabilities when the matrix is near-singular. It is also not suitable 
for time-variant calculation of error characteristics, because it calculates the expected values on 
time series, assuming stationarity of the characteristics in time (Le Ravalec et al., 2000). In reality, 
radar errors are neither stationary in time nor space, because they are dependent on the rainfall rate 
and on temporary conditions like attenuation or bright band phenomena, variability of the parameters 
a and b of the Z-R relationship (where Z=aRb) due, for example, to convective storms, drizzle, snow, 
or hail, and so on.  

The spatial correlation characteristics of the residual errors can be represented through variograms. 
Variograms describe the variance as a function of the separation distance 𝑑 (Cressie, 1993):  

 𝛾 𝑑 =
1
2
𝐸 𝛿(𝑥) − 𝛿(𝑥 + 𝑑) 6  (6) 

An empirical variogram is calculated from the observations, binning the observation point distances 
in regular intervals. It requires an assumption of spatial intrinsic stationarity of the field (Cressie, 
1993). Empirical variograms are then fitted with theoretical variogram functions. Variograms 
describe the spatial characteristics of the residual errors through three parameters, the range 
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parameter	ℎ, the sill	𝑐, and the nugget	𝑐E. The most common functions to fit empirical variograms 
are: 

 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:							𝛾 𝑑 = 𝑐E + 𝑐 1 − exp −
3𝑑
ℎ

							𝑑 > 0

0																																																				𝑑 = 0
 (7) 

 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛:							𝛾 𝑑 = 𝑐E + 𝑐 1 − exp −
3𝑑6

ℎ6
							𝑑 > 0

0																																																							𝑑 = 0
 (8) 

 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙:							𝛾 𝑑 =
𝑐E + 𝑐 1.5

𝑑
ℎ
− 0.5

𝑑
ℎ

X

							0 < 𝑑 ≤ ℎ

𝑐 + 𝑐E																																																										𝑑 > ℎ
0																																																																			𝑑 = 0

	 (9) 

The fitting is usually performed with a weighted least square method that uses a weight in the 
form	𝑁[/𝑑6, where 𝑁[ is the number of available observations per distance bin and 𝑑 is the distance 
(Cressie, 1985; Zhang and Eijkeren, 1995). Variograms have the advantage of being fast to 
calculate and easy to use.  
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3 Propagating radar uncertainty 

3.1 Introduction 

When radar QPE is used for hydrological applications, the estimation of its uncertainty and the 
assessment of uncertainty propagation in hydrological models is essential (Berne and Krajewski, 
2013; Pappenberger and Beven, 2006; Schröter et al., 2011). An effective method to model 
uncertainty in radar QPE for hydrological model applications is the use of radar ensembles, which 
can easily be applied to hydrological models to assess residual error propagation in the model output 
(AghaKouchak et al., 2010; Germann et al., 2009; Villarini et al., 2009). This approach is based on 
estimating the residual errors in radar QPE as a comparison with reference ground measurements, 
like those provided by rain gauges, used as an approximation of true rainfall. The observed radar 
QPE residual errors are then used to build an error model describing the statistical characteristics 
of the errors; knowing the statistical characterisation of the radar QPE residual errors, a large 
number of alternative possible realisations of the observed rainfall fields, constituting an ensemble, 
can be computed. The uncertainty propagation through models can be estimated by observing the 
resulting spread after feeding a model with multiple ensemble members. 

Several methods for radar ensemble generation are proposed in the literature, of which many are 
based on the computation of the error covariance matrix (AghaKouchak et al., 2010; Dai et al., 2014; 
Germann et al., 2009; Kirstetter et al., 2015; Villarini et al., 2014, 2009). The covariance matrix 
approach is a powerful and well-tested method that uses the covariance matrix decomposition to 
condition uncorrelated random normal deviates, in order to simulate alternative error components 
for the ensemble. A well-formulated example is the REAL generator proposed by Germann et al., 
(2009). However, it has some limitations when the number of rain gauges is large, because the 
covariance matrix calculation becomes computationally demanding and the decomposition 
unstable. In addition, ensemble error components are generated only at ground measurement 
points, needing subsequent interpolation that alters the spatial structure and introduces significant 
smoothing problems. Finally, in the calculation of the covariance matrix the spatial non-stationarity 
of the errors is captured assuming temporal stationarity. In other words, although the covariance 
approach reproduces the covariances between the errors at each rain gauge location, it assumes 
temporal stationarity of errors. Radar errors are non-stationary both in space and in time, but with a 
limited number of observations it is necessary to consider one of the two dimensions stationary in 
order to have enough observation points to calculate statistics. In this work, the possibility to model 
radar errors that are non-stationary in time and stationary in space is explored. The variability in 
space observed at ground measurement points is partially reproduced using conditional simulations 
for the error component generation.  

3.2 Spatial vs temporal variability of radar error characteristics 

This document proposes an ensemble generation approach aiming at reducing the computational 
load, improving stability, eliminating the need for error component interpolation, and producing time-
variant residual error characterisation. This approach allows us to better capture time-dependent 
characteristics of residual errors, due for example to temporary conditions like the presence of bright 
band, hail or attenuation. The spatial characterisation of the residual errors is based on the use of 
variograms fitted with parametric models, which have the advantage of using only a limited number 
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of variogram parameters (i.e. range, sill, and nugget), for full description and of being calculable with 
short time series. In comparison with the covariance matrix approach, the variogram approach 
constitutes a compromise, by exchanging temporal stationarity of the residual errors with spatial 
stationarity. In fact, although this method is able to reproduce the variability in error statistics over 
time, it considers errors stationary in space in the study area. However, the data from the UK 
Environment Agency rain gauges and the UK Met Office radar estimates for one year in 2008 are 
here used to understand which dimension has the most variability. The coefficient of variation is 
calculated for both mean and standard deviation. As reported in Table 3.1, the absolute value of the 
coefficient of variation calculated over time is slightly higher for the mean, and clearly higher for the 
standard deviation. This means that assuming stationarity over space introduces a lower error than 
assuming stationarity over time. 

Table 3.1 - Coefficient of variation (unitless) for the mean and the variance, calculated over space and over time: 

 CV over space CV over time 

𝝁(𝜹) 8.272 -8.689 

𝝈(𝜹) 0.090 0.336 

 

Furthermore, the error components are generated in a conditional way, so that the observed errors 
are reproduced and that all other simulated error points are conditioned on the observed ones. 
Although the mean and variance adjustment partially alters the reproduction of the observed errors, 
the geo-statistical approach still contributes to reproduce the spatial variability of errors.  

3.3 Error components for radar ensemble members 

Error measurements are obtained using quality checked rain gauge data as an approximation of 
true rainfall. In order to generate error components with the desired mean, variance and variogram 
characteristics, conditional simulations are used. The method presented by Delhomme (1979) is 
selected, due to its calculation speed and numerical stability, which makes it suitable for 
unsupervised applications to long time series. The method is based on the following steps: 

a) For each time step	𝑡, an arbitrary number 𝐾 of non-conditional simulations 𝛿ab,9(𝑡, 𝑥) are 

generated, where	𝑖 = 1,… , 𝐾. The method used here is the sequential simulation 

implemented in the gstat R package (Pebesma, 2004). 

b) The observed errors at time 𝑡	are interpolated with kriging, obtaining the interpolated 

fields	𝛿c(𝑡, 𝑥). 

c) The values of the non-conditional simulations 𝛿ab,9(𝑡, 𝑥) at observation locations are kriged 

to obtain the fields	𝛿cab,9(𝑡, 𝑥). 

d) The conditional simulations 𝛿9 𝑡, 𝑥 	are obtained as follows: 

 𝛿9(𝑡, 𝑥) = 𝛿c(𝑡, 𝑥) −	𝛿ab,9(𝑡, 𝑥) + 𝛿cab,9(𝑡, 𝑥) (10) 



17 

 

Due to the logarithmic formulation, errors cannot be calculated when the rain gauges do not record 
rainfall. If no rain gauge records rainfall, unconditional simulations are used.  

Important features of the generated fields are that they are Gaussian (in the logarithmic domain), 
are characterised using the observed variogram, and are conditioned on the observed errors. In 
addition, compared with the fields generated through the REAL method, the generated fields are 
already gridded fields and do not require any interpolation that tends to smooth the spatial features 
of the error components. In fact, an interpolation uses the kriging mean, i.e. the most probable value 
for each pixel. Instead, in the methodology applied here, at each pixel is assigned a different possible 
realisation for each ensemble member, in agreement with the conditional distribution.  

3.4 Radar ensemble generation 

Following the error model, the 𝑖de	simulated error field	𝛿9(𝑡, 𝑥) can be used to produce the 𝑖de 
simulated QPE 𝑃9(𝑡, 𝑥)	for each time step	𝑡: 

 10 log 𝑃9(𝑡, 𝑥) = 10 log 𝑅(𝑡, 𝑥) + 𝛿9(𝑡, 𝑥) (11) 

Since the logarithm of the radar field 𝑅 𝑡, 𝑥  cannot be calculated when a pixel is zero, pixels that 
do not record rainfall are not used and the zero values are re-introduced in the ensemble members 
in a second moment, after a mean and variance adjustment passage. In fact, the structure of the 
model is such that the new error members are Gaussian in the logarithmic domain, but the back-
transformation to the final field 𝑃 gives a different weight to positive and negative deviations, shifting 
the overall mean toward higher values and increasing the variance.  

3.5 Mean and variance re-adjustment 

The bias introduced by a logarithmic back-transformation (Erdin et al., 2012) is not discussed by 
Germann et al., (2009), when the same error model is applied to the REAL ensemble generator. In 
addition, the new simulated error components are added to the radar field, which already contains 
errors, inflating the overall variance (Pegram et al., 2011). In order to have rainfall fields consistent 
with the observed approximation of true rainfall from the rain gauges, the mean and the variance 
need to be re-adjusted. In this work a linear adjustment is used at each time step 𝑡 to re-adjust mean 
and variance of the generated ensemble members, without modifying the spatial characteristics so 
carefully reproduced: 

 𝑃fgh,9 =
𝜎i

𝜎jklmn
	 𝑃[o9p,9 − 𝑚jklmn + 𝑚i (12) 

where 𝑃fgh,9 is the new 𝑖de ensemble member after correction, 𝑃[o9p,9 is the original 𝑖de ensemble 
member, 𝜎jklmn is the standard deviation of all original ensemble members across all the rain gauge 
measuring locations, 𝑚jklmn is the average of all the original ensemble members at the rain gauge 
measuring locations, 𝜎i is the standard deviation of the rain gauge measurements, 𝑚i	is the mean 
of the rain gauge measurements.  

It must be noted that the adjustment is not forcing each ensemble member to reproduce the mean 
of the rain gauge values. Instead, the adjustment forces the overall ensemble mean to tend to the 
true value, represented by the rain gauge measurements. This is justified by the definition of 
ensemble as a representation of the rainfall uncertainty due to the radar, therefore it should convey 
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how much from the true value the radar data can deviate, where the true value is represented by 
the ensemble mean and the deviations by the single ensemble members. Similarly, the adjustment 
does not force the ensemble standard deviation at each point, but it corrects the spatial standard 
deviation of each ensemble member, in order to re-adjust the exponential stretch and avoid 
unrealistically high intensity values. The adopted solution is an approximation, but it is effective in 
obtaining possible realistic alternative rainfall fields. 
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4 Merging radar and rain gauge rainfall 

4.1 Introduction 

Hydrology, especially at urban scale, requires accurate rainfall data with high temporal and spatial 
resolutions (Schilling, 1991). Ideally the availability of very dense high-accuracy rain gauge networks 
could provide the necessary rainfall information, but rarely national and regional networks meet the 
required gauge density, and it is necessary to integrate the measurements with additional data 
(Berne et al., 2004). Weather radars provide a full aerial coverage and commonly reach a 5-minute 
temporal resolution and 1-km spatial resolution, sufficient for urban applications in medium-large 
urban areas, but hardly offer the required accuracy (Einfalt et al., 2004). It is recognised that merging 
radar rainfall data with rain gauge measurements allows to maintain spatial coverage and the 
resolution of radar data and improve the accuracy of the estimates, (Berndt et al., 2014; Creutin et 
al., 1988; Gabriele et al., 2017; Goudenhoofdt and Delobbe, 2009; Jewell and Gaussiat, 2015; 
Krajewski, 1987).  The idea of using accurate ground measurements to correct radar QPE is not 
new. Simple bias adjustments are operationally applied to adjust major radar QPE deviations 
(Harrison et al., 2000; Overeem et al., 2013) and in the last 30 years several geostatistical 
approaches have been presented. Krajewski, (1987), and Creutin et al., (1988), proposed a co-
kriging (CK) approach to interpolate rainfall measurements at unmeasured locations, using both rain 
gauge and radar measurements at rain gauge locations, using different weights. However, the co-
kriging approach does not take into account the different strengths and the different weaknesses of 
the two rainfall measuring systems. Co-kriging uses radars only at rain gauge locations, limiting the 
advantage of having a measuring system that can observe the spatial structure of rainfall. Kriging 
with External Drift (KED), although widely known in the geostatistical field for a long time (Chiles 
and Delfiner, 1999; Cressie, 1993; De Marsily, 1986) has become a widely recognised radar-gauge 
merging method for rainfall measurements more recently (Delrieu et al., 2014; Grimes et al., 1999; 
Haberlandt, 2007; Velasco-Forero et al., 2004, 2009). The principle of KED is to interpolate rain 
gauge measurements, using a linear function of the radar QPE to model the process mean. In this 
way, the rainfall absolute values are driven primarily by the rain gauge measurements, while the 
spatial distribution of rainfall is drifted by the radar QPE. In a similar way, Sinclair & Pegram, (2005), 
use conditional merging (CM) to exploit the spatial distribution of rainfall observed by radar QPE to 
modify the rain gauge interpolation. In particular, CM uses the deviation from the interpolation of 
radar measurements at rain gauge locations to spatially correct the rain gauge interpolation. A more 
advanced technique proposed by Todini, (2001), merges a Bayesian approach with a data 
assimilation one, using a Kalman filter to integrate radar and rain gauge measurements. Overall, 
several studies have been carried out to compare different radar-gauge rainfall merging techniques 
(Goudenhoofdt and Delobbe, 2009; Jewell and Gaussiat, 2015; Li and Heap, 2011; McKee and 
Binns, 2015; Nanding et al., 2015). KED emerges as a robust and simple technique to improve radar 
rainfall estimation accuracy, and for this reason is particularly interesting for operational applications 
(Sideris et al., 2014). Other methods that perform comparably well, usually require considerably 
more computational effort, making use of large covariance matrices or Monte Carlo methods 
(Scheidegger and Rieckermann, 2014; Todini, 2001) and this high computational cost is an obstacle 
for their operational usage, especially for large areas, or for long time series. For these reasons, in 
this document KED is used and analysed. It must be noted that the mentioned techniques perform 
the radar-gauge merging in space, but consider each time step independently. Geostatistical 
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methods do exist to perform merging with spatio-temporal kriging (Sideris et al., 2014; Snepvangers 
et al., 2003; Spadavecchia and Williams, 2009), but the methodologies are more complex and are 
not discussed in this dissertation. However, the techniques presented in this work are modular and 
can be applied or adapted to different kriging-based techniques, thus can be adapted to spatio-
temporal kriging as well. 

4.2 Ordinary Kriging (OK)  

Although Ordinary Kriging (OK) is not a merging technique, it is here illustrated as the basis of most 
kriging-based merging techniques and kriging-based algorithms used in this deliverable. The term 
“kriging” originates from the name of the South African Statistician Danie G. Krige, that first 
introduced the concept of distance-weighted averaging for spatial interpolation of mining samples 
(Krige, 1952). The use of the term “kriging” has been introduced by Matheron (1963), who first 
formalised the technique (Cressie, 1990). In ordinary kriging, the prediction in each point is 
calculated as the weighted average of the available measurements: 

 𝑃 𝑥E = 	 𝑤s ∙ 𝐺(𝑥s)
f

suv

 (13) 

where 𝑃(𝑥E) is the estimated rainfall in a generic point	𝑥E, 𝐺(𝑥s) are the measured values at rain 
gauge locations	𝑥s, 𝑛 is the number of observations, and 𝑤s are the kriging weights, estimated 
following two principles: 

1) The prediction has to be unbiased, 

2) The variance of the prediction error has to be minimised. 

 The two principles result in the kriging system: 

 

𝑤s(𝑥E)
f

suv

= 1																																																																																

𝑤s 𝑥E ∙ 𝐶 𝑥s − 𝑥w + 𝜇 = 𝐶 𝑥w − 𝑥E 					𝛽 = 1,… , 𝑛
f

suv

 (14) 

where 𝑥s and 𝑥w are generic rain gauge locations, and 𝜇	is the Lagrange parameter (Cressie, 1993). 
𝐶(𝑑) is a covariance function, defining the covariance of the process between two measurements 
at distance 𝑑. The kriging system in Equation 14 can be written in matrix form: 

 𝑾 = 𝑪{v ∙ 𝑫 =

𝑤v
𝑤6
⋮
𝑤f
𝜇

= 	

𝐶vv 𝐶v6 …	 𝐶vf 1
𝐶6v 𝐶66 …	 𝐶6f 1
⋮ ⋮ ⋱ ⋮ ⋮
𝐶fv 𝐶f6 …	 𝐶ff 1
1 1 … 1 0

{v

∙

𝐶vE
𝐶6E
⋮
𝐶fE
1

 (15) 
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where 𝑾 is the vector of the kriging weights and the Lagrange parameter, 𝑪	is the covariance matrix, 
𝐶9: is the short notation for	𝐶(𝑥9 − 𝑥:) representing the covariance function applied to the distance 
between two generic rain gauges, 𝑫 is the vector of the covariance function applied to the distances 
between each rain gauge and the prediction point 𝑥E, where 𝐶9E is the short notation for 𝐶(𝑥9 − 𝑥E).  

The kriging variance 𝜎6 𝑥E  after optimisation is calculated as follows: 

 𝜎6 𝑥E = 𝑐 −	 𝑤s 𝑥E

f

suv

𝐶 𝑥s − 𝑥E − 𝜇 = 𝑐 −𝑾 ∙ 𝑫 (16) 

4.3 Kriging with External Drift (KED) 

While the process in ordinary kriging assumes a stationary mean, in KED the rainfall process mean 
is assumed non-stationary in space: 

 𝑃 𝑥 = 𝑚 𝑥 + 𝜎 ∙ 𝜖(𝑥) (17) 

where 𝑚 𝑥 	is the mean (or spatial trend), 𝜎	is the residual standard deviation, and 𝜖(𝑥) is a zero-
mean, unit variance, normally distributed, spatially correlated, second-order stationary random 
process (Webster and Oliver, 2001). In KED, the mean of the process is often expressed as a linear 
function of explanatory covariates (for this reason the method is also referred to as regression 
kriging): 

 𝑚 𝑥 =	 𝛼c ∙ 	𝑓c(𝑥)
�

cuE

		 (18) 

 

where  	𝛼c	are regression coefficients, 𝑓c 𝑥  are a certain number 𝐾	of covariates in any estimation 
location 𝑥. Assuming 𝑓E 𝑥 = 1, the coefficient 𝛼E is an intercept. Generally, the mean is assumed 
as a function of only one covariate, which in this case is the radar QPE: 

 𝑚 𝑥 =	𝛼E + 𝛼v𝑅(𝑥)		 (19) 

where 𝑅(𝑥) is the radar rainfall estimate in	𝑥, whereas 𝛼E and 𝛼v	are a linear coefficients to be 
determined (Cressie, 1993).  This changes the kriging system to define the kriging weights: 
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𝑤s(𝑥E)
f

suv

= 1																																																																																																								

𝑤s 𝑥E ∙ 𝐶 𝑥w − 𝑥s + 𝜇v + 𝜇6 ∙ 𝑟(𝑥w) = 𝐶 𝑥w − 𝑥E 					𝛽 = 1,… , 𝑛
f

suv

𝑤s 𝑥E ∙ 𝑅 𝑥s = 𝑅 𝑥E

f

suv

																																																																																	

	 (20) 

where 𝜇v	and 𝜇6	are two Lagrange parameters, and 𝑅(𝑥9) represent the radar estimate in 𝑥9. The 
system in matricial form becomes: 

 𝑾 = 𝑪{v ∙ 𝑫 =

𝑤v
𝑤6
⋮
𝑤f
𝜇v
𝜇6

= 	

𝐶vv 𝐶v6 …	 𝐶vf 1 𝑅v
𝐶6v 𝐶66 …	 𝐶6f 1 𝑅6
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝐶fv 𝐶f6 …	 𝐶ff 1 𝑅f
1 1 … 1 0 0
𝑅v 𝑅6 …	 𝑅f 0 0

{v

∙

𝐶vE
𝐶6E
⋮
𝐶fE
1
𝑅E

 (21) 

where 𝑅9 is short for 𝑅 𝑥9 	and it is the radar measurement at rain gauge location	𝑥9, while 𝑅E is 
𝑅 𝑥E ,	the radar measurement in the prediction location	𝑥E.  The kriging variance 𝜎6 𝑥E  after 
optimisation is calculated as follows: 

 𝜎6 𝑥E = 𝑐 −	 𝑤s 𝑥E

f

suv

𝐶 𝑥s − 𝑥E − 𝜇v 	− 𝜇6 = 𝑐 −𝑾 ∙ 𝑫 (22) 

The kriging variance represents the uncertainty associated to the kriging rainfall estimation. 

4.4 Variogram calculation 

In order to use kriging interpolation methods, it is necessary to define a covariance function. The 
covariance function 𝐶 𝑑  is related to the variogram function 𝛾 𝑑 	as follows:  

 𝐶 𝑑 = 𝑐 + 𝑐E − 𝛾(𝑑) (23) 

where 𝑐 is the sill parameter and 𝑐E is the nugget, both estimated together with the variogram 
function. Empirically, the variogram is usually calculated observing the variance between all the 
available measurement points as a function of their distance, as presented in Section 2. However, 
in KED there are two issues to consider: 

1. The number of available rain gauges may be limited, and their resolution highly variable, 

therefore a reliable time-variant variogram calculation based on ground measurements can 

be difficult to calculate. 

2. In KED, the variogram needs to be calculated on rainfall residuals, rather than on the rainfall 

field itself (Cressie, 1993). 
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While the first problem is based on a purely practical problem that may or may not be present, 
according to the specific case study, the second problem is more intrinsic in the KED formulation. 
In fact, the rainfall residuals, calculated as the difference between the rainfall process and the drift, 
are necessary to calculate the variogram, but are unknown, as both the rainfall estimation and the 
drift need to be determined. One possible approach is to make a first KED estimation, then iteratively 
repeat the KED estimation updating both the rainfall field and the drift until the estimations converge. 
However, this approach is time consuming and computationally intense, therefore is usually 
avoided. In this work two approaches are presented to address both the issues illustrated before, 
basing the variogram calculation on the radar QPE. Although the radar QPE is considered less 
accurate than rain gauge measurements, in this work they are considered accurate enough to 
estimate a reliable variogram, and have the advantage of representing the rainfall spatial variability 
much better than sparse point measurements. 

4.4.1 Estimating a variogram with a radar subset 

The first approach is to use a subset of the radar QPE to have a first estimation of the rainfall 
variogram. The number of radar QPE pixels is in general much higher than the number of available 
rain gauges, even when only sparse rain occurs. Once a rainfall variogram is estimated, it can be 
used to interpolate the rain gauges, and estimate the residual as the difference between the rain 
gauge interpolation and the radar QPE. The methodology is based on four-passages: 

1. The rainfall empirical variogram is estimated using a subset of the wet radar pixels, 

following Equation 6. In particular, all wet radar pixels can be used, if not much rainfall 

is recorded, otherwise variogram estimation can be based on a random subset of the 

available wet pixels, to limit the computational load.  

2. Ordinary kriging is performed on the available rain gauges, obtaining the interpolated 

field 𝑃�� 𝑥 .  

3. The residuals 𝑦 𝑥 	are estimated as the difference between the 𝑃�� 𝑥  field and a 

linear function of the radar estimate: 

 𝑦 𝑥 = 	𝑃�� 𝑥 − (𝛼E +	𝛼v𝑅 𝑥 ) (24) 

where 𝛼E	and 𝛼v	are estimated fitting a linear regression between the 𝑃�� 𝑥  field and 
the radar QPE 𝑅(𝑥).  

4. An empirical variogram is calculated as in point 1, using the residual field 𝑦 𝑥 	instead 

of the radar field.  

4.4.2 Fast Fourier Transform (FFT) 

The method proposed above has the limitation of being dependent on the radar QPE subsample 
selected, and being relatively computationally intense. An alternative is to derive the variogram from 
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the entire radar QPE field, using a Fast Fourier Transform (FFT) approach. The derivation is 
illustrated in the work from Marcotte, (1996), and results in the following formulation to calculate the 
FFT-derived variogram 𝛾��� 𝑑 : 

 𝛾��� 𝑑 = 𝑅𝑒
𝐹𝐹𝑇{v 𝑽𝟐∗ ∙ 𝑰 + 𝑰∗ ∙ 𝑽𝟐 − 2𝑽 ∙ 𝑽∗

2𝐹𝐹𝑇{v 𝑰 ∙ 𝑰∗
		 (25) 

where all the arithmetic operations are computed element by element, 𝑽 is the FFT of the radar QPE 
matrix, 𝑽𝟐 is the FFT of the square of the radar QPE matrix (squared element by element), 𝑰	is the 
FFT of an identity matrix with the same size of the QPE matrix, the * operator indicates the conjugate, 
and the 𝑅𝑒(−) operation indicates the real part. The QPE matrix needs to be padded with zeros to 
reach a square with the side size, in pixels, equal to a power of two. Similarly, all the missing data 
in the QPE matrix need to be substituted with zeros. 

Besides the computational speed, another great advantage of the variogram calculated this way is 
that it is bi-dimensional and allows to consider anisotropy. However, on the counter side, the FFT 
approach is very sensitive to missing data, and cannot be used if part of the rectangular domain is 
missing, for example if the rainfall field is cropped on a watershed or on administrative borders. 
Figure 4.1 illustrate an example of bi-dimensional variogram calculated with the FFT approach over 
northern England, for two example time steps in 2016, one representing a stratiform event in March, 
and one representing a convective event in June.  
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Figure 4.1 - Example of bi-dimensional variograms calculated for two time-steps in 2016, a stratiform event in March 
and a convective one in June, over the north of England.  
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5 Integration of rain gauge errors in radar-gauge merged products 

One of the advantages of kriging-based merging methods is that the estimation of the kriging 
variance provides a starting point to estimate rainfall uncertainty. However, the standard kriging 
formulation allows to consider only a spatially uniform measurement uncertainty. In fact, the use of 
a nugget effect in the geostatistical model can represent measurement errors, but does not allow to 
consider a different uncertainty for each measurement point (Clark, 2010; Cressie, 1993). In some 
applications, rain gauge uncertainty is assumed to be small enough to be neglected (A. 
AghaKouchak et al., 2010; Ciach et al., 2007; Dai et al., 2014a; Germann et al., 2009; Rico-Ramirez 
et al., 2015; Villarini and Krajewski, 2009). This can be done when the accumulation time is not too 
small (Ciach et al., 2007) and when rain gauges are accurate and their data is correctly managed 
and calibrated (Habib et al., 2004, 2008; Molini et al., 2005; Nešpor and Sevruk, 1999; Sevruk, 
1996). Unfortunately, in many operational networks the importance of accurate rainfall data and of 
data quality control can be underestimated; budget and best practice knowledge can be limiting 
factors in a correct rain gauge network management. In these cases, the accuracy of rain gauges 
can drastically drop and the uncertainty associated with the measurements cannot be neglected 
anymore (Steiner et al., 1999). Additionally, frequently rain gauge networks are not dense enough 
to capture the spatial characteristics of rainfall in urban applications (Peleg et al., 2013; Villarini et 
al., 2008) and integrating different rain gauge networks, with different accuracy characteristics is 
often necessary.  

The uncertainty in rain gauge rainfall data is due to different error sources (Upton and Rahimi, 2003). 
Rain gauges are affected by predictable errors due, for example, to wind under-catch (Nešpor and 
Sevruk, 1999). For tipping bucket devices, partial filling of the bucket and delayed tipping at low 
intensities, or limits in the mechanical tipping at high intensities are additional problems  (Habib et 
al., 2001; Molini et al., 2005). These errors can be modelled and partially corrected with calibration. 
Rain gauges are also affected by random errors, which cannot be predicted or deterministically 
modelled (Ciach, 2003). Another problem in the use of rain gauges as a ground reference is that 
they are representative of points, while they are often used as aerial reference, generating point-to-
area errors (Bringi et al., 2011; Habib et al., 2004; Hasan et al., 2014; Lebel et al., 1987). In addition, 
poor data management can introduce additional errors, like missed recording of cleaning operations 
or maintenance, mismatch of temporal and spatial references, or absence of metadata on calibration 
and processing, which introduce unknown errors (Molini et al., 2005). In this deliverable, a model is 
proposed to integrate time- and space-variant measurement point errors in the rainfall uncertainty 
quantification.  

The integration of point measurement uncertainty in kriging has been studied in literature. A solution 
in case of homoscedasticity is the use of the nugget effect (Clark, 2010; Cressie, 1993), but it 
assumes that all rain gauge measurements are characterised by the same uncertainty. However, 
the magnitude of measurements errors can greatly vary in space (Stein, 1999). De Marsily (1986) 
formulated a method to handle different variances for different point measurement errors, called 
Kriging for Uncertain Data (KUD). The formulation was further developed by Mazzetti and Todini 
(2009). KUD can be applied to different kriging-based algorithms, including ordinary kriging (OKUD) 
and KED (KEDUD). The formulation in this work is an equivalent simplified version of the one 
presented by Mazzetti and Todini (2009).  
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5.1 Kriging for Uncertain Data (KUD) 

The most diffused geostatistical method to consider measurement errors in kriging interpolations is 
to use a nugget effect in the geostatistical model (Clark, 2010; Cressie, 1993).  Including 
measurement errors in the nugget implies an assumption of homoscedasticity, i.e. all the different 
measurements from all the different measuring points are affected by the same uncertainty. 
However, there are two main reasons why this model cannot be applied to rain gauge interpolation: 
1) rainfall measurement uncertainty is known to be dependent on the rainfall intensity, which is highly 
variable in space and time (Ciach, 2003; Habib et al., 2001); 2) different types of rain gauges are 
affected by different error models.  

De Marsily, (1986), proposed a method named Kriging for Uncertain Data (KUD) able to consider a 
different measurement error for each measuring point and Mazzetti and Todini (2009) perfected the 
formulation. The formulation proposed in this work is equivalent to the one of Mazzetti and Todini 
(2009). Using a covariance function, the nugget effect affects only measurements at distance equal 
to zero. In facts, combining Equations 7, 8, and 9 with Equation 23, the following covariance 
functions are obtained: 

 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:							𝛾 𝑑 = 𝑐 ∙ exp −
3𝑑
ℎ

																												𝑑 > 0

𝑐E + 𝑐																																												𝑑 = 0
 (26) 

 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛:							𝛾 𝑑 = 𝑐 ∙ exp −
3𝑑6

ℎ6
																														𝑑 > 0

𝑐E + 𝑐																																																𝑑 = 0
 (27) 

 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙:							𝛾 𝑑 =
𝑐 − 𝑐 1.5

𝑑
ℎ
− 0.5

𝑑
ℎ

X

											0 < 𝑑 ≤ ℎ

0																																																																					𝑑 > ℎ
𝑐E + 𝑐																																																												𝑑 = 0

	 (28) 

This means that the only elements affected by the nugget effects are the covariance matrix diagonal 
elements in Equations 15 and 21, for OK and KED respectively. The elements of the diagonal can 
therefore be modified one by one, adding the estimated error for each rain gauge: 

 						
𝐶99 = 𝐶 0 + 𝑐E9																	
𝐶9: = 𝐶 𝑥9 − 𝑥: 							𝑖 ≠ 𝑗

 (29) 

 where the error 𝑐E9 are calculated for each rain gauge, according to the available information on its 
accuracy and its type.  

5.2 Rain gauge error modelling 

The most common type of rain gauges is tipping bucket rain gauges (TBRs). The random errors for 
TBRs can be modelled according to the model by Ciach, (2003). The standard error is calculated 
as: 
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𝜎goo 𝑇v, 𝑃� = 	 𝑒E 𝑇v +
𝑃E 𝑇v
𝑃�

 (30) 

where 𝑃� is the rainfall intensity at accumulation 𝑇 = 𝑇v minutes, while 𝑒E 𝑇v  and 𝑃E 𝑇v  are 
coefficients dependant on the accumulation time. Figure 6 in Ciach’s work (Ciach, 2003) shows the 
errors of the rain gauge data. Using this figure, we derived an approximated analytical formulation 
where 𝑇v	is expressed in minutes: 

𝑙𝑜𝑔vE 𝑒E 𝑇v 	= 	−0.5923 ∙ 𝑙𝑜𝑔vE 𝑇v − 1.4163 (31) 

𝑙𝑜𝑔vE 𝑃E 𝑇v = 	−0.8789 ∙ 𝑙𝑜𝑔vE 𝑇v + 0.7363 (32) 

For each TBR at each time step, for each accumulation 𝑇v, the nugget can be calculated as: 

𝑐Em 𝑡, 𝑇v = 	𝜎goo 𝑇v, 𝑃� 6 = 𝑒E 𝑇v +
𝑃E 𝑇v
𝑃�

6

 (33) 

Besides TBRs, there are other types of rain gauges commonly used. For example, the Royal 
Meteorological Institute of the Netherlands (KNMI) uses a network of 33 highly accurate automatic 
rain gauges that measure the water level using the accurate measurement of a floating device 
position on the water surface. This type of rain gauges is more precise than the TBR type, especially 
at low rainfall intensity, it is subject to less measuring errors, and it is calibrated by the KNMI 
(Brandsma, 2014; Wauben, 2006). The KNMI automatic rain gauges are highly accurate devices, 
but only 33 are available to cover the whole Netherlands. To improve the spatial coverage, the KNMI 
also collects the data from a much denser network of 325 manual rain gauges. The manual rain 
gauges are neither TBR nor floating-device rain gauges, and do not recording data automatically: 
volunteers read the water level every day at 08:00 CET and communicate the reading to the KNMI 
that collects the set of daily accumulations. The German Meteorological Service (Deutscher 
Wetterdienst – DWD) instead has a network of around 1100 automatic rain gauges using a weighting 
system (Winterrath et al., 2012). Information on the accuracy and uncertainty associated to the 
measurements from different types of rain gauges can often be found in reports from the 
meteorological services (Brandsma, 2014; Wauben, 2006; Winterrath et al., 2012). 
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6 Integration of radar uncertainty in radar-gauge merged rainfall 
As discussed in Section 2, radar QPE are subject to a multitude of errors, the majority of which are 
non-stationary in space and are caused by space-variant factors. The use of fixed Z-R relationships 
does not take into account the dependency of the relationships on the Drop Size Distribution (DSD), 
(Doviak, 1983; Marshall et al., 1947) or the presence of solid precipitation (Marshall and Gunn, 1952; 
Smith, 1984), which spatially and temporally vary with atmospheric conditions, but also with radar 
beam elevation. Radar beams can interfere with the terrain surface, resulting in partial or total beam 
blockage (Joss and Lee, 1995; Krajewski et al., 2006; Lang et al., 2009) or clutter (Hubbert et al., 
2009a, 2009b; Islam et al., 2012c; Rico-Ramirez and Cluckie, 2008). Variable atmospheric 
conditions can influence the signal propagation as well, resulting in anomalous propagation (Grecu 
and Krajewski, 2000; Moszkowicz et al., 1994; Pamment and Conway, 1998; Rico-Ramirez and 
Cluckie, 2008; Steiner and Smith, 2002) or attenuation (Atlas and Banks, 1951; Delrieu et al., 2000; 
Meneghini, 1978; Uijlenhoet and Berne, 2008). The vertical variability of the atmospheric conditions 
and reflectivity affects the rainfall estimation differently along the propagation range (Andrieu et al., 
1995; Andrieu and Creutin, 1995; Kirstetter et al., 2013; Krajewski et al., 2011; Qi et al., 2013; Vignal 
et al., 1999), especially when the radar beam intersects the layer where solid precipitation melts into 
liquid precipitation, which is characterised by high-reflectivity that affects the measurements, called 
“bright band” (Austin and Bernis, 1950; Hall et al., 2015; Rico-Ramirez et al., 2005; Rico-Ramirez 
and Cluckie, 2007; Smith, 1986; Zhang and Qi, 2010). The estimation of precipitation is subject to 
additional errors increasing with the range, due for example to beam broadening, beam elevation 
increase, and earth curvature effects (Ge et al., 2010; Kitchen and Jackson, 1993; Ryzhkov, 2007). 
National meteorological services usually apply corrections for these errors (Harrison et al., 2012; 
Joss et al., 1997; Wessels, 2006), especially when technologies like doppler capabilities or dual 
polarization are available (Bringi and Chandrasekar, 2004; Doviak and Zrnic, 1993), but a residual 
uncertainty is unavoidable.   

Although KED merging helps improving the accuracy of the rainfall estimates, merged rainfall 
products are still subject to errors, which are spatially variable. The KED merging approach offers a 
starting point for radar rainfall uncertainty estimation through the kriging variance. However, the 
kriging variance is an estimation of the uncertainty due to interpolation, spatial variability of the 
process mean, in this case represented by a regression of the radar rainfall, or expected 
measurement uncertainty, as illustrated in the previous section. The variability of rainfall uncertainty 
due to external factors (like terrain elevation or distance from the radar) affecting radar QPEs 
uncertainty are not taken into consideration. Radar QPEs are used as a trend in KED and the spatial 
variability of radar residual errors affects merged rainfall estimates.  

A method to include radar uncertainty spatial variability in a KED merging approach is here 
presented. KED with Non-Stationary Variance (KED-NSV), based on the formulation of Lark, (2009), 
has been adapted to hydrology by Wadoux et al., (2017). The idea is to modify the standard KED 
algorithm in order to relax the assumption of stationary process variance, and to model the process 
standard deviation as a linear function of external covariates, similarly to how the mean is modelled 
in the regular KED formulation. This allows us to consider factors that affect the spatial variability of 
the radar QPE, and to modify the spatial variability of the merged rainfall uncertainty accordingly.  



30 

 

6.1 Methods 

6.1.1 Kriging with External Drift and Non-Stationary Variance (KED-NSV) 

The model, as proposed by Lark, (2009) and applied to hydrology by Wadoux et al., (2017), extends 
the formulation of KED (Equation 17) to consider the process residual variance non-stationary as 
well, following a modelling approach similar to the one used for the process mean. The studied field 
𝑃(𝑥)	is therefore modelled as: 

 𝑃 𝑥 = 𝑚(𝑥) + 𝜎 𝑥 𝜖(𝑥) (34) 

where 𝜎(𝑥) is the spatial standard deviation, and 𝜖 𝑥  is a zero-mean, unit variance, normally 
distributed and spatially correlated standardised residual field. Similarly to the mean (Equation 18), 
the spatial standard deviation is modelled as a linear function of covariates: 

 𝜎 𝑥 = 	 𝛽� ∙ 	𝑞�(𝑥)
�

�uE

		 (35) 

where 𝑞� 𝑥  are 𝐿	covariates at location 𝑥, 𝛽� are regression coefficients, and we assume 𝑞E 𝑥 = 1, 
so that 𝛽E is an intercept. Considering the observations 𝐺(𝑥9)  at locations 𝑥9,	𝑖 = 1,2, … , 𝑛, and 
organising the measurements in a vector 𝑮, Equation 34 can be written in matricial form: 

 𝑮 = 𝑭𝜶 + 	𝑯𝝐 (36) 

where 𝑭 and 𝜶 are respectively the matrix of 𝑛	× 𝐾 + 1 	covariates 𝑓c(𝑥) and the vector of linear 
regression coefficients 𝛼c	at 𝑛 locations from Equation 17, 𝝐 is the vector of 𝑛	standardised residuals 
with correlation matrix 𝝆,	and 𝑯 is an 𝑛	×	𝑛  diagonal matrix: 

 𝑯 = 𝑑𝑖𝑎𝑔{𝑸 ∙ 𝜷} (37) 

where 𝑸 is the 𝑛	×(𝐿 + 1) matrix of standard deviation covariates at 𝑛	locations, while 𝜷 is a (𝐿 + 1) 
vector of regression coefficients for the standard deviation, from Equation 35.  To define the 
correlation matrix 𝝆, we apply an isotropic exponential correlogram 𝜌(𝑑) to the distance between 
the measurements: 

 𝜌 𝑑 = 	
1																													𝑑 = 0

𝜌E exp −
𝑑
ℎ

				𝑑 > 0 (38) 

where 𝑑 is the Euclidean distance between two measurements, 𝜌E	is the micro-scale correlation 
parameter, equal to one minus the nugget-to-sill ratio, and ℎ is the range parameter. From now on, 
KED will be treated as a special case of KED-NSV, where the only considered covariate is 𝑞E 𝑥 =
1,	 thus 𝜎 𝑥 = 𝛽E.   
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6.1.2 Parameter prediction and variance estimation 

There are two sets of parameters to estimates: the regression coefficients for the mean, 𝜶, and the 
parameters of the stochastic part of Equation 36, Φ = [𝜷, 𝜌[, ℎ]. The use of Maximum Likelihood 
estimation would allow estimation of all model parameters, but would also make the estimation of 
the standard deviation parameters depend too much on the trend parameters. Therefore, here the 
estimation of 𝜶, which is more straightforward, is done with a Generalised Least Square (GLS) 
approach, while for Φ a Restricted Maximum Likelihood (REML) approach is used (Patterson and 
Thompson, 1971). The derivation is not reported here and can be found in Wadoux et al., (2017). 
To minimise the negative log-likelihood function, a shuffled complex evolution method, developed 
at the University of Arizona (SCE-UA) (Duan et al., 1994, 1992) can be used. Obtaining  𝜶,𝜷, 𝜌E and 
ℎ, both the kriging prediction and variance can be estimated. 

The kriging prediction in a new location 𝑥E	is derived from Equation 34: 

 𝑃 𝑥E = 𝒇E′𝜶 + 𝒒E𝜷𝝐(𝑥E) (39) 

where 𝒇𝟎 and 𝒒𝟎 are the trend and variance covariates respectively, as observed at estimation 
location 𝑥E. 𝝐(𝑥E) are the kriged standardised residuals. The kriging variance instead is estimated 
as follows (Cressie, 1993): 

 𝜎6 𝑥E = 𝒒𝟎𝜷	− 𝒄𝟎ª 𝑪{𝟏𝒄𝟎 + 𝒇𝟎 − 𝑭ª𝑪{𝟏𝒄𝟎 ª 𝑭ª𝑪{𝟏𝑪 {𝟏 𝒇𝟎 − 𝑭ª𝑪{𝟏𝒄𝟎  (40) 

where 𝑪	 = 	𝑯𝝆𝑯′, is the covariance matrix between measurement points, while 𝒄𝟎	is a vector of 
covariances between the measurements points and the observation location.  

6.1.3 Covariate selection 

The radar QPE is generally the only considered covariate for the mean. As concerns which 
covariates can be meaningful in explaining the spatial non-stationarity of the kriging variance and 
how many to use, in order to optimise the model, different combination of external covariates can 
be tested. Three different covariates are considered by Wadoux et al., (2017):  

a) a map of the distance to the closest radar; 

b) the SRTM digital elevation model (DEM); 

c) a radar beam blockage map derived by the DEM (Rico-Ramirez et al., 2009); 

Cecinati et al., (2017), consider the same study area, but do not use the blockage map. They 

introduce instead the following external factors: 

d) a static clutter map, obtained from the DEM as in (Rico-Ramirez et al., 2009); 

e) a mean residual map, obtained kriging the average of residuals between rain gauges and 

radar over time; 

f) the radar rainfall estimate corresponding to the studied time step. 
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While the radar rainfall estimate is time-variant, the other covariates are stationary in time. All 
covariates are scaled to have values between 0 and 1, to be comparable in terms of absolute value. 
The covariates are represented in Figure 6.1. 

 
Figure 6.1 - Study area used in Wadoux et al., (2017) and Cecinati et al., (2017), which is a large portion of Northern 

England, together with the used covariates, numbered according to the list in Section 6.1.3 
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7 Ensembles using kriging rainfall uncertainty  
Rainfall is one of the main inputs in a variety of models: hydrological, water quality, urban drainage, 
water resources, ecological, agricultural, and more. The propagation of the rainfall uncertainty in a 
model is a key element to evaluate how sensitive a model is to the input uncertainty. Analytical 
propagation methods are rarely applicable, both because many models have a complex structure, 
and because rainfall has a multivariate distribution with statistical characteristics varying in space 
and time. The most popular and effective technique to evaluate rainfall input uncertainty propagation 
is to use an ensemble approach. Similarly to other Monte Carlo techniques, the idea underlying the 
use of ensembles is that we can sample the probability distribution of rainfall in order to generate a 
large number of possible alternative model inputs, use them one by one in the analysed model, and 
observe the distribution of the model outputs. As mentioned, rainfall has a multivariate distribution 
and its sampling and ensemble generation requires to respect the spatial and temporal 
characteristics of the process.  

Section 3 presented a methodology to generate ensembles of radar QPE and deriving the 
uncertainty estimation using rain gauges as a reference, while neglecting rain gauge uncertainty. 
Here, a method to generate rainfall ensembles from a kriging product, which can include a 
comprehensive uncertainty estimation, is presented.  

The model considers each ensemble member as the sum of a mean, equal for all ensemble 
members, and a variable error component. The mean is modelled as the kriging mean. The error 
components are derived from the kriging variance.  

Each ensemble member is modelled as: 

𝑃9 𝑥, 𝑡 = 	𝑃�¬ 𝑥, 𝑡 +	𝜎�¬ 𝑥, 𝑡 ∙ 𝜖9(𝑥, 𝑡) (41) 

where 𝑃9 𝑥, 𝑡  is the 𝑖de ensemble member; 𝑃�¬ 𝑥, 𝑡  and 𝜎�¬ 𝑥, 𝑡  are, respectively, the KED mean 
and the KED standard deviation; and 𝜖9 𝑥, 𝑡  is a standardized, zero-mean, spatially auto-correlated 
residual field. 

To generate 𝜖9 𝑥, 𝑡 , an unconditional simulation is used, with mean equal to zero, and standard 
deviation equal to one, using the residuals’ variogram at the corresponding time step. Subsequently, 
to reconstruct the auto-correlation of the residuals, a 𝐴𝑅 2  model is used. The auto-correlation and 
the parameters of the 𝐴𝑅 2  model are derived from the residuals time series (Germann et al., 
2009). 

A large number of such fields can be generated with unconditional simulations, respecting the spatial 
characteristics of the observed rainfall (Sawicka and Heuvelink, 2016a, 2016b). Once a large 
number of possible alternative rainfall time series are generated, they can be used as model input, 
obtaining a large number of outputs. The obtained outputs can be used to reconstruct the output 
probability distribution, and therefore evaluate the uncertainty in the output due to the input 
uncertainty. 
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8 Summary 
This deliverable presented a set of geo-statistical tools that can be used to study, characterise and 
propagate the uncertainty in radar QPE and in merged radar-gauge rainfall estimates. Each section 
described a different tool. 

In Section 2, a logarithmic error model for radar QPE uncertainty was introduced. The model 
considers radar QPE random errors additive in the logarithmic domain, thus multiplicative in the 
original domain. The model, consistent with previous literature, has the advantage of producing 
Gaussian residual errors. This model feature makes it easier to: 1) characterise the errors with only 
a mean, a variance and a variogram; 2) produce synthetic error with the same characteristics of the 
observed errors that can be used for ensemble applications, as presented in Section 3. 

In Section 3, an innovative method to generate radar QPE ensembles was presented as a tool to 
model and propagate radar rainfall uncertainty. Compared to other methods based on the use of 
the residual error covariance matrix, the presented method introduces some advantages. Firstly, the 
use of variograms allows for a faster and more flexible calculation of spatial correlation of errors, at 
the point that a time-variant error characterisation is possible. The time-variant application allows us 
to capture temporary phenomena that may affect the nature of errors, generating ensembles that 
are specific for the simulated time step. The adoption of a logarithmic multiplicative error model 
allows for Gaussian modelling of the errors that makes the error characterisation and the alternative 
error field generation easier. As a drawback, it introduces some bias in the back-transformation. In 
this application, the problem of mean and variance inflation is addressed with a linear re-adjustment 
that corrects the absolute values of the ensemble members without affecting their spatial 
characteristics. Using the overall mean and standard deviation of the ensemble for adjustment, the 
adjusting method forces the whole ensemble to have the observed statistical characteristics, but 
does not coerce the single ensemble members. Another significant advantage of the presented 
method is that using conditional simulations allows us to generate spatially-correlated Gaussian 
realisations of the random fields. Therefore, no interpolation of the simulated error components is 
needed. The use of interpolation has a smoothing effect due to the use of the kriging mean, rather 
than the full probabilistic kriging outcome. This can partially cover the problem of mean and variance 
inflation, but also modifies the spatial characteristics of the errors. The errors are generated with 
conditional simulations, where sufficient error observations were available, drawing correlated 
realisation for the conditional distribution of the whole grid. Conditioning the simulation to the 
observations allows us to partially reproduce the spatial variability of the error statistical properties 
that is neglected using an omni-directional variogram. 

In Section 4, Kriging with External Drift (KED) was introduced. KED is a very popular merging 
method, thanks to its good performance, its robustness and its limited computational requirements. 
Being a kriging method, KED is based on the concept of minimising the variance between the 
estimation and the true process. Thanks to its probabilistic nature, KED offers a good platform for 
uncertainty analysis, thanks to the possibility to calculate the kriging variance. The kriging variance 
is the variance associated to the rainfall estimation after minimisation, and includes the uncertainty 
due to interpolation and process observed decorrelation. The decorrelation of the modelled process 
in space is estimated through a variogram. Two methodologies to calculate the variogram for KED 
are presented, taking into consideration that the KED variogram is estimated on rainfall residuals 
(difference between the process and its estimated mean) and that the presence of a large number 
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of zero values can make the number of rain gauge observations too small for a correct, time-variant 
estimation of the variogram. For this reason, the two suggested methods propose to use the radar 
for the variogram estimation, using a subset of the wet pixels, or a Fast Fourier Transform approach, 
respectively. 

In Section 5, the uncertainty associated to rain gauge measurements was considered. Although 
rain gauges are known to be affected by a multitude of errors, often dependent on the rainfall 
intensity, rarely the measurement uncertainty is considered in merged radar-rain gauge rainfall 
products. When uncertainty is considered, it is often approximated with a stationary model, invariant 
in space and time, and independent from the rainfall intensity. Section 5 presents Kriging for 
Uncertain Data (KUD to include measurement uncertainty in the overall uncertainty estimation of 
kriging rainfall products. The uncertainty for each rain gauge can be modelled separately as a 
function of the rain gauge type, of the accumulation interval, and of the rainfall intensity, therefore it 
is neither stationary in space nor in time. The overall rainfall uncertainty is estimated using the kriging 
variance. 

Section 6 introduced a merging technique named Kriging with External Drift and Non-Stationary 
Variance. The technique is able to consider the non-stationarity of the process variance, and 
extends the KED formulation to consider the process standard deviation as a linear function of 
external factors affecting the rainfall uncertainty. In particular, factors influencing the radar QPE 
uncertainty are considered.  

Finally, in Section 7, a technique to generate ensembles from kriging products, including a kriging 
prediction and a kriging variance, was presented. The algorithm allows to propagate the uncertainty 
associated to merged radar-gauge rainfall products into different types of models, taking into 
consideration the spatial and temporal correlation of rainfall uncertainty. 

The methodologies presented in this deliverable are modular, and can be applied or easily adapted 
to KED and other kriging-based merging methods. The methodologies (KUD, KED-NSV, Gaussian 
transformations, downscaling techniques, ensembles, etc.) were presented one by one, but, in 
practice, they can easily be combined to consider several aspects of uncertainty at the same time. 
However, it must be kept in mind that a trade-off between model complexity, necessary assumptions 
and model identifiability is often necessary. Indeed, a more complex and descriptive model is not 
always a better model, in terms of result accuracy, due to the necessity of making additional 
assumptions, or to the increasing difficulty in identifying the model parameters. In practice, each 
case study should be evaluated independently to understand what the main causes of uncertainty 
are, and what aspects are more important to address. This deliverable offers a wide selection of 
tools that can help to model and address rainfall uncertainty. We hope that these tools can be used 
not only by researchers, but also by practitioners in order to analyse how rainfall uncertainty 
propagates through natural and urban hydrological models. 
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