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Executive Summary 

This deliverable provides a framework for the application of uncertainty analysis in 

integrated urban water modelling. Its structure aims to provide a help for modellers by 

including the different uncertainties into a good modelling approach. Therefore, next to 

extensive literature for further information, a real world case study, which exemplary shows 

the approach, is included. 

It is an implementation of existing frameworks for a global assessment of modelling 

uncertainties and uncertainty propagation analysis into a step-wise integrated urban water 

modelling approach, while expanding the scope of uncertainties incorporated. The idea is 

to see uncertainty analysis not as a standalone and separate process from the usual 

modelling workflow but as an integral part of it. 

The process to construct and apply an integrated model can be subdivided into seven 

steps until a final report and assessment can be made. The assembled model and the 

sub-models applied need to be revised and if necessary refined with every step, creating a 

feedback loop for the model. Contemporaneously with this process, a thorough continuous 

documentation of the information, data, changes and assumptions applied during the 

process and the uncertainties of the beforementioned should be included to enable third 

parties to comprehend what has been done, what information the in- and output data can 

provide and how reliable are those results for further decision making. The treatment of 

uncertainties is incorporated here not as one step included in model analysis or calibration, 

but as a continuous work accompanying the entire integrated modelling process. 
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1  Introduction  

1.1  Background 

The European Water Framework Directive (WFD (European Parliament and Council of the 

European Union, 2000)) has introduced a step change in water management in the 

European Union (EU), shifting the compliance focus from achieving water quality 

standards at individual locations to an approach on the scale of catchment systems. The 

WFD aims to achieve ‘good ecological and chemical status’ in inland and coastal waters 

through the implementation of “programs of measures” by EU member states against set 

timetables. Increasing wastewater treatment plant (WWTP) effluent quality standards and 

reducing intermittent wastewater discharges are suggested elements in the strategies by 

which these standards may be achieved. 

Meeting the challenges of the WFD at an acceptable cost will require a sophisticated and 

holistic understanding and assessment of the water quality processes within a catchment, 

the ability to deploy models and assessment tools to achieve such a catchment wide 

overview is essential for informed decision making, efficient and effective management of 

the environment as well as delivering cost effective asset management and treatment 

strategies across the EU. 

Until now deterministic integrated water quality models to predict water quality and 

treatment requirements across urban and rural catchment scales, have been the chosen 

method of assessment to deliver the WFD. Such models can simulate the interlinked 

dynamics of the catchment system, enable the assessment of a range of alternative 

responses (infrastructural/regulatory) and then allow the selection of the “best” response, 

i.e. the lowest “cost” or highest value response, although the impact of any response could 

be quite remote from the location of its implementation. Such an integrated modelling 

approach is increasingly seen as an essential technique for managing the impact on water 

quality from urban drainage and waste water systems, (mainly point sources) and diffuse 

pollution from rural areas (mainly associated with agricultural diffuse sources), on the 

environment and should lead to more cost effective and lower impact, both in terms of the 

achieved results for water quality and the consequences on the environment (e.g. fewer 

carbon emissions) when applying different solutions. 

Significant asset investment and detailed water management strategies are based on the 

outputs of such modelling studies. However, there is an increasing concern that these 

deterministic models are being used improperly, leading to incorrect problem diagnosis 

and inefficient or possibly even adverse water quality and environmental management 

strategies. This is especially problematic for water infrastructure decisions, which are often 

very long lasting and extremely costly when over-sized, or when undersized and the 

performance of the asset is insufficient, resulting in a low quality of the receiving surface 

waters. The processes that impact on water quality in catchments include physical, 

chemical and biological processes with complex interactions that occur and propagate 

over a wide range of temporal and spatial scales. The modelling of these processes 

currently have a high level of uncertainty, which may be due to these processes not being 
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fully understood, or because the chemical and physical transformations are dependent on 

parameters which are very difficult and expensive to quantify accurately, or have a high 

natural variability. 

1.2  Partners Involved in Deliverable 

Delft University of Technology, University of Sheffield and CH2M 

1.3  Deliverable Objectives 

The European project QUICS (Quantifying Uncertainty in Integrated Catchment Studies) 

contains 12 PhD candidates (Early Stage Researchers, ESR) and four postdoctoral 

researchers (Experienced Researchers, ER) in order to perform high quality research and 

collaborate with each other for developing and implementing uncertainty analysis tools for 

Integrated Catchment Modelling. 

The objectives of QUICS Deliverable 6.7 are to provide: 

• Definitions for the observable uncertainties in integrated catchment studies 

• Linkage to scientific literature and further reading on the topic 

• A framework for the practical application of uncertainty analysis in integrated 

catchment studies 

• A practical example for the application of the proposed framework 
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2  Definitions 

2.1  Integrated urban water modelling 

Integrated modelling is founded on a set of interdependent science-based components 

(models, data, and assessment methods) for constructing an appropriate modelling 

system for a certain task (Laniak et al., 2013). Integrated urban water modelling means by 

definition the joint modelling of two or more systems of the urban water system (see Figure 

1), primarily the affected water bodies (HSGSim, 2008), by interweaving a sequence of 

sub models for the various elements of the system (Rauch et al., 2002). In general the 

integrated urban water modelling can be characterized by three main features (Bach et al., 

2014): 

• The modelling of a multitude of components and interactions between these 

components. 

• The consideration of acute, chronic and delayed impacts of water quantity and 

quality processes over a long period (typically years) of simulation. 

• The ability to see both local processes and the global perspective to broaden the 

scope for decision-making, policies or scientific knowledge. 

 

Figure 1: The urban water system 
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Integrated models are built to satisfy one or more of the following purposes (Brugnach and 

Pahl-Wostl, 2008; Kelly et al., 2013): 

• Prediction of a system’s variable in a specified time period given knowledge of 

other system’s variables in the same time period 

• Forecasting of a system variable in future time periods, without knowledge of the 

values of other system variables in those periods 

• Management and decision-making under uncertainty for selection between 

different options 

• Social learning, which refers to the capacity of a society to communicate, learn 

from past behaviour, and perform collective action from this experience 

• Developing system understanding and experimentation with different influences 

doing exploratory analysis 

In the wide field of integrated environmental modelling those models can be classified into 

four groups with increasing complexity and a steadily broader scope – spatially as well as 

in terms of involved stakeholders (Bach et al., 2014): 

• Integrated Component-based Models represent the lowest level of integration 

and focus on the integration of components within the local urban water sub-

system (e.g. the coupled modelling of different processes in a receiving water 

body). 

• Integrated Urban Drainage Models or Integrated Water Supply Models are the 

second stage of integration, integrating sub-systems of either the urban 

drainage or water supply streams, particularly treatment and transport 

processes. 

• The next level of integration is the linkage of these two models to an Integrated 

Urban Water Cycle Model. 

• The final step of integration is then the implementation of further external 

influences, infrastructures and disciplines into an Integrated Urban Water 

System Model, which uses the interdisciplinary knowledge to assess water 

related problems. 

Of course several steps in between these four groups with mixtures of implemented 

infrastructures and influences exist, depending on the posed problem or targeted concern, 

may it be in research or for day-to day operational decisions. An integrated assessment, 

which is still only a partial representation of reality, should cover all relevant issues to the 

stated problem (Rauch et al., 2005). However, the integration of too many subsystems and 

processes irrelevant to the problem formulation can lead to unnecessary complexity (and 

errors) of the applied models. Furthermore, the decision on what is relevant for the actual 

question leaves room for subjective interpretation and differences of approach from the 

specialists that use integrated models, unless clear criteria are formulated. Due care is 

needed to ensure scale and concept consistency when linking components together 

(Voinov and Shugart, 2013). 
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2.2  Uncertainties 

Models of integrated water systems do inherently include all aspects of uncertainty that 

occur due to the uncertainties inherent to the modelled subsystems (e.g. drainage system, 

wastewater treatment plant, receiving water system) and the linkage of these subsystems, 

however they also need to be acknowledged by their applicants. The diversity of 

uncertainty sources in these models (either for water quantity or quality) makes it non-

trivial to deal with all of them in a rigorous way. Therefore, it is always important to provide 

a complete description of the existing and implemented uncertainties in any integrated 

model. 

Walker et al. (2003), Refsgaard et al. (2007) and van der Keur et al. (2008) differentiate 

three dimensions of uncertainty: 

• The location or source of uncertainty 

• The type of uncertainty 

• The nature of uncertainty 

In the following sections a brief overview of the definitions from existing literature is given. 

These tend to be at times overlapping (e.g. mixing of input data uncertainty with model 

parameter uncertainty) in their definitions and also use different terminology. As an 

example can serve the usage of the term level (Walker et al., 2003) and type (Refsgaard 

et al., 2007) for the same dimension of uncertainty. While level could also indicate the 

magnitude (to some extend also a connection could exist - see Figure 2) in this the less 

ambiguous term type is used. On the other hand, we keep the terms of location and 

source as exchangeable definitions, describing where the uncertainty manifests itself 

within the model complex. For definition of uncertainties apply the decision trees adapted 

as part of this deliverable, the reader is referred to Figure 4. 

2.2.1 Location or source of uncertainty 

Due to the fact that uncertainty can manifest itself in different locations within the model 

complex at an element in the process description of the integrated model, these locations 

can be used for differentiation, although the description of the model locations will vary 

according to the applied model (Walker et al., 2003). 

Deletic et al. (2012) distinguish three main sources of uncertainty: 

• Model input uncertainties 

• Calibration uncertainties 

• Model structure uncertainties 

Model input uncertainties concern the input data and selected model parameters (often 

from literature), that are required to apply a model to a problem. Model input data can be 

differentiated into input data that is needed for simulation (e.g. rainfall time series) and 

input data, that is needed to build the model (e.g. geometry of a sewer system, which may 

come from a system design drawing or GIS). While the first group of input data is mostly 

directly measured the second group is often estimated (although in theory should be 
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measured) from existing data and depends therefore greatly on the quality of the data 

collection process. The uncertainties deriving from this data collection process can be 

large as well as the sensitivity of the model output to these uncertainties. Clemens (2001) 

showed that even often omitted network data (e.g. house connections, gully pots) can 

cause systematic errors when calibrating hydrodynamic models. The only possibility to 

minimize these uncertainties would be by detailed field inventories and subsequently 

keeping a consistent and up-to-date database to achieve the so-called “transparent 

infrastructure” (Tscheikner-Gratl, 2016). Uncertainties in measured input data can often be 

characterised as systematic uncertainties (e.g. insufficiently calibrated measurement 

equipment) or Gaussian distributed random uncertainties or a combination of these two 

effects. Input data as well as model parameter uncertainties are strongly related to 

calibration uncertainties (Kleidorfer, 2010). Uncertainties in input data can in parts be 

compensated during the calibration process by adaptation of the model parameters, if the 

spatial and temporal properties of the available data for calibration is the same as for the 

input data (Kleidorfer et al., 2009a; Muschalla et al., 2015). On the downside this 

compensation can lead to force fitting of model parameters (Vrugt et al., 2008) and errors 

in the estimation of the relative importance of different uncertainty factors on the integrated 

model (Muthusamy et al., 2017). If the model parameters are considered as reflecting 

reality, this representation is reduced when input and calibration data errors are 

considered (Dotto et al., 2014). 

Calibration uncertainties are related to the data used for calibration and their selection, and 

to the calibration methods (Leonhardt, 2015), depending on the model concept and even 

on the specific software applied. Deletic et al. (2012) trace their sources to measurement 

errors in both input and output data, the selection of appropriate calibration data, the 

applied calibration algorithms and objective functions used in the calibration process. 

Some model parameters cannot be taken from literature only, they have to be determined 

during model calibration. The choice of the measurement and model output data (e.g. the 

choice between using concentrations or loads to calibrate the empirical coefficients of a 

water quality model, or the choice between flow volume or water depth to calibrate 

parameters of a hydrodynamic sewer model) and the amount of data available for 

calibration (e.g. number of storm events, length of time series) can have a serious impact 

on the estimation of the calibrated model parameters. For example, Tscheikner-Gratl et al. 

(2016) showed the effect of different storm events and rain gauges used for calibration of 

the parameters subcatchment width (representing the flow time on the surface), 

imperviousness and pipe roughness for a hydrodynamic urban drainage model on the 

performance in terms of urban flooding. Achleitner (2008) compared three different quality 

indicators (Nash-Sutcliffe Efficiency, Index of agreement and Bias) and their influence on 

the calibration quality of parameters (maximum autotroph growth rate, autotroph decay 

coefficient and autotroph concentration in WWTP inflow) in a wastewater treatment plant 

model. 

Model structure uncertainties, depend on how well the numerical model represents the 

systems and processes (Deletic et al., 2012). They include uncertainties regarding the 

temporal and spatial resolution (for example using a 1D or 2D approach to simulate river 
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mixing), the formulation and numerical solution of the posed problem and 

conceptualisation errors, such scale-issues or omitting key processes (Kreikenbaum et al., 

2004). It is difficult to assess these uncertainties when using only a single model approach, 

which may fail to sample adequately the relevant space of plausible models for one 

problem. It is prone to modelling bias and underestimation of predictive uncertainty 

(Refsgaard et al., 2006). 

The classification of Deletic et al. (2012) makes it difficult to include the model parameters 

into one of the classes for application in uncertainty analysis and documentation. While 

exact and fixed parameters can be included into the model structure, calibrated 

parameters can be seen as calibration uncertainties, and a priori selected parameters that 

may be difficult to identify by calibration and are selected to have a certain value range can 

be treated as model input. For example there are model parameters such as hydraulic 

roughness and also contributing area – which could be argued to fall either under input 

uncertainties, or, calibration uncertainties, e.g., you can estimate hydraulic roughness by 

looking at a river and comparing it with a library of river images with given roughness, or, 

you take the material and age of a sewer system into account and estimate hydraulic 

roughness and express this as ‘input uncertainty’ or you calibrate your model for hydraulic 

roughness, in which case it becomes a calibration uncertainty. 

Furthermore, there is a relationship between model structure uncertainty and calibrated 

parameter uncertainty. A less sophisticated model with a limited number of parameters 

that does not simulate reality well may be calibrated with data obtained for both input and 

output under well-known conditions. In this case, model structure uncertainty will most 

likely dominate the result. In the case of a more complicated model with many parameters, 

the parameters may be manipulated to fit the calibration data beautifully, but the result 

may be dominated by parameter uncertainty (Walker et al., 2003). It is however very 

difficult to isolate the value of the contribution of structure uncertainty in those cases, 

because it is then incorporated in the parameter uncertainty after calibration. 

Therefore, to avoid ambiguity in definition the differentiation of uncertainty sources into 5 

subgroups, as shown in Figure 4 and subsequently used in Table 1, containing these 

model parameters and the context (e.g. external circumstances at the boundaries of the 

system modelled), as done by Walker et al. (2003) and Refsgaard et al. (2007), is 

implemented into this deliverable (see Figure 4).  

2.2.2 Type of uncertainty 

Van der Keur et al. (2008) defined the types of uncertainty as a gradual transition from 

determinism (see Figure 2). They are distinguished by the knowledge about the possible 

outcomes of a model and the probability of the occurrence of these outcomes (Brown, 

2004). 

Starting point is the ideal of determinism, where all outcomes are known with absolute 

certainty and therefore no uncertainty exists (Refsgaard et al., 2007). It bases on the 

concept, that if all underlying physical, chemical and biological processes can be identified 

and described, so that a full and exact understanding is possible (Harremoës and Madsen, 
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1999). This, of course, is a state, which does not exist in reality. The next step contains 

uncertainties, which can be grasped and handled statistically. All the possible outcomes 

are known and the probabilities of these outcomes can be described statistically. When the 

probabilities cease to be describable by statistical means but the possible outcomes are 

estimable we have scenario uncertainties. When not all probabilities of the outcomes and 

not even all of the outcomes themselves are estimable, then qualitative uncertainty takes 

place. Recognised ignorance occurs when there is an awareness of lack of knowledge on 

a certain issue (van der Keur et al., 2008). If this cannot be resolved by further research, 

indeterminacy takes place, where some possible outcomes are deemed unknowable 

(Brown, 2004). Finally, total ignorance describes a state of complete unawareness of 

missing knowledge (van der Keur et al., 2008). We separate deep uncertainties from the 

more tractable uncertainties encountered in statistics and scenario analysis with known 

probabilities (Cox, 2012). In practice, it is not uncommon to have to address different 

uncertainty types simultaneously in the modelling and decision making processes. For 

example, some uncertainties are represented by probability distributions when sufficient 

data is available, while others are better represented by fuzzy sets to capture linguistic 

expert knowledge (Fu et al., 2011). 

 

Figure 2: Types of uncertainties adapted from van der Keur et al. (2008) 

2.2.3 Nature of uncertainty 

An important feature of the nature of uncertainty is the distinction between epistemic and 

variability uncertainty (Walker et al., 2003). While epistemic uncertainty describes the 
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uncertainty due to lack of knowledge, which may be reduced by more research and 

empirical efforts, variability or aleatory or stochastic uncertainty represents the inherent 

variability of the examined system (e.g. short-term climate variability). The fundamental 

difference between these two uncertainties is the fact that epistemic uncertainty can be 

reduced, for example statistical uncertainty by collecting more data (however, also the 

opposite can happen depending on the data), while variability uncertainty cannot be 

reduced (van der Keur et al., 2008). Therefore, also a discrimination into reducible and 

irreducible nature of uncertainty could be applied (Belia et al., 2009). However, a lot of 

times uncertainty on a certain event includes both epistemic and stochastic parts 

(Refsgaard et al., 2007), so it seems more applicable to keep this differentiation for this 

deliverable. Still the differentiation between epistemic and variability is difficult and could 

also be dependent on the scale of observation.  

For example, uncertainty about climate change could be reduced if we collect more data 

on carbon outputs, reflection from sea ice, methane outputs and so on. As a result more 

sophisticated models to try and understand it better can be developed – so the uncertainty 

can be defined as epistemic. About the dependency on the scale of the observation, 

rainfall has a variability which is dependent on spatial and temporal scales, e.g. to work out 

average rainfall on a 10 km2 area, you could collect data from a single rain gauge in this 

area, but there is an uncertainty as to how representative this data is for the whole 10km2 

area, so you can collect more data to reduce this uncertainty, defining it as an epistemic 

uncertainty. You could collect data from 3 rain gauges within the same 10km2 area, which 

means you have more confidence in the average rainfall value. However, due to the 

inherent variability of rainfall, you can move these 3 gauges around to different places 

within the 10 km2, or add more gauges, and you would keep getting slightly different area 

average values, due to the inherent variability of rainfall, hence it won’t ever become a 

deterministic input – it stays a variability uncertainty. Examples for this can be found in 

Tscheikner-Gratl et al. (2016) and Muthusamy et al. (2017). 

Warmink et al. (2010) discriminate a third nature of uncertainty called ambiguity, which is 

the simultaneous presence of multiple equally valid frames of knowledge (Dewulf et al., 

2005). For example the different involved parties and stakeholders in an environmental 

impact study (from environmental activists to project manager) can have very different 

views on the model boundaries, which are all in themselves absolutely valid. Before 

deciding on a frame and boundaries thinking about other possible frames from different 

viewpoints should be included in an integrated modelling process. Therefore, this further 

discrimination is necessary and included into this deliverable, because ambiguity is neither 

stochastic, nor is it fully reducible by more information. 

3  Application of uncertainty analysis 

3.1  Framework 

The framework proposed here (see Figure 3) is an implementation of the framework for a 

global assessment of modelling uncertainties (Deletic et al., 2012; Refsgaard et al., 2007) 
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and uncertainty propagation analysis (Heuvelink et al., 2017) into integrated urban water 

modelling using the outlines proposed by HSGSim (2008), Belia et al. (2009), Muschalla et 

al. (2009) and Bach et al. (2014) while broadening the framework by Deletic et al. (2012), 

which focussed on statistical descriptions of uncertainty, through incorporating a wider 

definition of uncertainty The idea is to see uncertainty analysis not as a standalone and 

separate process from the usual modelling workflow but as an integral part of it 

(Sriwastava and Moreno-Rodenas, 2017). 

 

Figure 3: Framework for uncertainties in integrated urban water models 

The process to construct and apply an integrated model can be subdivided into seven 

steps until a final report and assessment can be made (see Figure 3). The used model and 
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sub-models need to be revised and if necessary refined with every step, creating a 

feedback loop for the model. Contemporaneously with this process, a thorough continuous 

documentation of the information, data, changes and assumptions used during the 

process and the uncertainties of the before mentioned should be included to enable other 

people to comprehend what has been done and what every bit of data means (Tscheikner-

Gratl, 2016). The treatment of uncertainties should therefore not be seen as one step 

included in model analysis or calibration, but rather as a continuous work accompanying 

the entire integrated modelling process. 

3.2  Documentation and classification of uncertainties 

The documentation of an integrated model simulation study must comprise of a detailed 

list of the objectives of the study, selected modelling approaches (including explanatory 

statements), software packages used (including version number), all the relevant operation 

and process data of the system analysed, final simulation models, list of used parameter 

sets (with an explanation if the selected parameter values differ significantly from the usual 

parameter ranges), relevant results of data evaluation (e.g. mass balance) and calibration 

and validation results (Muschalla et al., 2009), assumptions made and the estimated 

uncertainties following the framework shown in Figure 3. Every step of this framework has 

to be described to enable reproduction of the modelling approach and the final simulation 

results. In terms of the uncertainty assessment of the modelling approach it is advisable to 

take the time and define for every step of the framework the inputs and define them in 

terms of source, type and nature of uncertainty (use Table 1 and Figure 4). 

Table 1: Uncertainty matrix for definition and examples for uncertainties adapted from Walker et al. (2003), 

Refsgaard et al. (2007) and Warmink et al. (2010) 
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Climate change scenarios X       X   X  

Infiltration parameters   X    X    X  

Rainfall data  X     X    X  

Car parking in urban 
catchment , which increase 
the friction (drag force) in 
surface flooding 

X        X X   

Geographical data of urban 
drainage manholes and of 
other subsystems that should 
be taken into account with 
different scales  

 X    X    X   
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Figure 4: Decision trees for defining uncertainties, adapted from Warmink et al. (2010) 

 

Thereby, it is not the most important task to mark all the boxes, but to assess what the 

modeller knows about his data, inputs and models. In addition, it is important that thought 

is given to “deep uncertainties” (as in Figure 2), assessing what is not known or definable 

for the chosen integrated model and its boundaries. In filling in the matrix, one should be 

aware that the type and nature of the uncertainty that occurs at any location can manifest 

itself in various forms simultaneously (Walker et al., 2003). So, even a more pragmatic 

approach by defining uncertainty only by their treatment in the modelling process either 

into statistical, scenario or deep uncertainties (i.e. not considered) can be sufficient if it is 

done by an extensive data, inputs and models assessment. 
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Because models, in most cases, can have a high number of inputs it is, although in theory 

necessary, not possible in practice to treat all inputs as uncertain, due to constraints in 

time and resources allocated to the modelling process. To decide, which inputs contribute 

most to the uncertainty in model output, two factors have to be considered (Heuvelink et 

al., 2017): 

• The magnitude of uncertainty about the model input 

• The sensitivity of the model output to changes in the input 

Both factors are either based on expert judgement and/or deterministic sensitivity analyses 

and depend highly on the aim of the modelling activity. Expert elicitation can be used to 

estimate the level of uncertainty in model inputs and parameters even when field data is 

limited (Schellart et al., 2010). The decision about which of the input will be considered 

further can be aided by using a priority table, where the magnitude of uncertainty and the 

sensitivity of each input is ranked (Heuvelink et al., 2017), in addition to an graphical 

assessment (see Figure 5). The input is depicted as a data point in the area of the two 

decision factors and the distance to the point of no uncertainty (0,0). Substantial 

contribution to output uncertainty occurs when both factors are higher than a certain 

threshold. The definition of these thresholds will influence the assessment of uncertainty 

greatly and should therefore be taken with care. Furthermore, if the two factors are based 

on expert knowledge alone, an evaluation of these assumptions has to be made and if 

necessary adjustments and recalculations. It must be taken care that these assumptions 

derive from really comparable cases, due to the differences in perception of the magnitude 

of uncertainty and sensitivity depending on the goal of the modelling approach. That is 

also true for the following examples in Figure 5: 

• High magnitude of uncertainty and low sensitivity (1): 

For example: the dry weather flow, when modelling urban flooding. The model 

output may not be very sensitive to this input but (depending on the input data 

quality) the magnitude of uncertainty may be quite high. 

• High magnitude of uncertainty and high sensitivity (2): 

For example: water quality parameter (e.g. BOD, P) concentrations of CSO into 

receiving water bodies, when modelling dissolved oxygen concentration in 

rivers. The model output may be very sensitive to these concentrations 

(depending on the volumes) and they may be very uncertain, when for example 

few measurement values were used or none at all but literature values. 

• Low magnitude of uncertainty and high sensitivity (3): 

For example: the height of weir crests, when modelling CSO volumes. The 

model output may be very sensitive to these values but the uncertainty in most 

cases is very low and restricted to geodetic measurement errors. 

• Low magnitude of uncertainty and low sensitivity (4): 

For example: pump characteristics of wastewater pumps, when modelling urban 

flooding. The sensitivity of the model output may be in cases very low, 

depending on the pump locations in the network, and can be quite certain due to 

sufficient data. 
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Figure 5: Graphical assessment of contribution to the uncertainty in the model output 

 

3.2.1 Sensitivity analysis 

Sensitivity analysis (SA) can be defined as the investigation of the response function that 

links the variation in the model outputs to changes in the input variables or/and 

parameters, which allows the determination of the relative contributions of different 

uncertainty sources to the variation in outputs using qualitative or quantitative approaches 

under a given set of assumptions and objectives (Song et al., 2015). So, sensitivity 

analysis assesses the sensitivity of the model outcome to changes in the model input, 

highlighting the input which has a high impact on the model result. The result enhances 

the understanding of the model and further delivers information about parameter 

boundaries for calibration. For sensitivity analysis no measurement data is necessary but 

could be helpful to limit the parameter space (Camhy et al., 2013). An important factor for 

choosing sensitivity analysis is the available time and computational budget of the project. 

Depending on these factors, the method and the parameters, the graphical assessment in 

Figure 5 can be used for preselection in case that not enough budget is available to 

assess all parameters. Although a maximisation of the assessed parameters for the 

computational budget is recommendable, care has to be taken that the amount of 

simulations does not drop below a certain level (depending on the method and the 

parameter space (Vanrolleghem et al., 2015)) in order to keep the results reliable. 

The Sensitivity Analysis (SA) methods can be classified into three categories (Saltelli et 

al., 2006), which can be seen as complementary (Sun et al., 2012): 

• Local sensitivity analysis (LSA) 

• Global sensitivity analysis (GSA) 

• Screening methods 
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A local sensitivity analysis evaluates sensitivity at one point in the parameter hyperspace. 

This point may be defined by default values or a crude manual model calibration. Typical 

choices are published “default” values or values gained through preliminary analysis 

(Kleidorfer, 2010). Sensitivities are usually defined by computing partial derivatives of the 

output functions with respect to the parameters. A sensitivity index can be calculated for a 

small change of the parameter value, while the other input parameters are held constant 

(van Griensven et al., 2006) and therefore are also called ‘‘one-factor-at-a-time’’ (OAT) 

approaches (Saltelli et al., 2006). Local sensitivity analysis is based on a linearization of 

the model and use for other models than strictly linear ones can be problematic (Saltelli et 

al., 2006). Its main advantage is that local sensitivity analysis is computationally relatively 

inexpensive (Kleidorfer, 2010) and specific methods for local sensitivity analysis for 

computationally expensive urban hydrodynamic systems exist (Clemens, 2001). The use 

of a local SA method to draw conclusions on the relative impacts of uncertain model 

parameters on model prediction should be avoided unless the uncertainty of the model 

parameters is small (Sun et al., 2012). 

Integrated modelling consists mainly of non-linear dynamic models; hence local sensitivity 

analysis can only deliver a rough estimation of sensitivity. Contrary to local sensitivity 

analysis, Global sensitivity analysis (GSA) methods assess how the model outputs are 

influenced by the variation of the model factors over their entire variation range 

(Vanrolleghem et al., 2015). This is already similar to methods used for uncertainty 

analysis and if parameter distributions are chosen according to known uncertainties this 

can be interpreted as analysis of sensitivity of model result in respect to uncertainties of 

model parameters (Kleidorfer, 2010). Essential to this method is the sampling strategy, 

often Monte Carlo (MC) or Latin–Hypercube (LH) sampling (van Griensven et al., 2006; Fu 

et al., 2009). The robustness of GSA can be significantly increased by using multiple 

methods, multiple objectives and testing convergence (Vanrolleghem et al., 2015). 

Screening methods (e.g. Campolongo et al. (2007)) are model simplifications. The 

objective of this setting is to identify the factor or the subset of input factors that can be 

fixed at any given value over their range of uncertainty without reducing significantly the 

output variance and therefore without significant loss of information in the model. It gives a 

good overview with respect to importance and interactions/non-linearity (Gamerith et al., 

2013). It can also be used to prove or falsify prior assumptions in the model (Saltelli et al., 

2006). This screening process can be used as a first step before applying a GSA, when 

the number of input factors involved in the model is too high to afford a computationally 

expensive quantitative analysis (Sun et al., 2012). However, care must be taken that no 

factors are excluded, that in the end turn out to be important (Vanrolleghem et al., 2015). 

3.3  Problem statement 

The foundation of any modelling and decision making approach is the definition of a 

problem statement (Hoppe, 2006). A problem statement contains objectives or project 

goals, context, questions to be answered and a targeted concern. The purpose of the 

problem statement is to provide the information needed to guide the subsequent steps 
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(Laniak et al., 2013). Also it should answer the question if and why modelling is required 

for this particular study (Refsgaard et al., 2007). Furthermore, the question about the 

tolerance boundaries of uncertainty in the model should be addressed, which is still 

seldom done in modelling practice. This can vary significantly, depending on the overall 

problem statement and the objectives connected to it. 

Usually, the problem statement derives from known deficits, often due to legal 

requirements, of an observed system or the need to optimisation of an existing (Muschalla 

et al., 2009). Although the knowledge about the modelled system increases during the 

modelling process, this gain of knowledge is seldom the driving force in practice (but rather 

in science), but often external motivation on the operator of a system is triggering the 

process (e.g. by public opinion or legislative changes). Often integrated models are used 

to demonstrate that a system will comply with a regulation. A first step is therefore the 

translation of this motivation from more abstract and qualitative formulations to a concise 

problem formulation. 

Muschalla et al. (2009) suggest a deficit analysis to help with this formulation process. The 

first step is therefore the determination of the current state from available data, which is 

then in the next step compared to a target condition. These target conditions can be 

classified into water quantity (e.g. flooding, storage volume) or quality requirements (e.g. 

river water quality). Often they can be quantified by application of legal requirements 

(HSGSim, 2008). Another possibility is the targeting of monetary values (e.g. pumping 

costs) if the motivation is of an economical nature. To define the target conditions and the 

expected accuracy of modelling results (which can vary from case to case), the involved 

actors and their goals have to be thought of. Refsgaard et al. (2007) define four types of 

actors, which is extended to five in this deliverable, which could be involved in the problem 

definition process: 

• The water manager, representing the organisation or person that owns the 

problem and commissions the study 

• The modeller, which conducts the modelling study. He could be of the same 

organisation as the water manager or an external expert 

• The reviewer, which adds external expertise to the study by reviewing the work 

• The stakeholders/public, which can be either a competent authority, interest 

groups and general public 

• The regulator with legal powers, which should be independent from the other 

four types 

Because the necessary effort (e.g. expressed as monetary and social costs) increases 

with increased requirements, it is important to reach a consensus between the involved 

parties on the level of confidence and effort required to achieve each project goal, because 

a correlation between increased effort and increased complexity of the modelling objective 

can be surmised (Belia et al., 2009). 
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3.3.1 Deep uncertainties  

The modeller has to consider, that the overall uncertainty might be larger than the 

quantifiable uncertainty. Non-quantifiable or deep uncertainties (as defined in Figure 2) 

may in some case be more serious than the quantifiable uncertainties (Willems, 2008). 

Deep uncertainties are hard to incorporate into any modelling study. However, when 

thinking about the problem statement and defining the goals of the modelling approach it is 

good to think about the things one cannot know, or know but cannot incorporate. 

Nevertheless, the realisation that we may be completely ignorant to case-effect 

relationships (Harremoës and Madsen, 1999) may be beneficial in concentrating on the 

aim and the possible outcome of the modelling process. However, the definition of total 

ignorance and indeterminacy implies that implementation is nearly impossible (or more of 

a philosophical matter) and therefore we will focus on qualitative uncertainty and 

recognized and reducible ignorance. The nature of this ignorance allows it to be reduced 

by further research, if wanted. 

How to treat these uncertainties depends on the aim of the modelling approach. If the idea 

is to design a system for longer periods the implementation of these uncertainties can be 

useful to accomplish the aim of a fault-tolerant, survivable, and resilient one (Cox, 2012). 

The same applies if the goal is exploratory for understanding the system behaviour for 

different influences as well as showing these influences to other stakeholders. If it is used 

for showing that present regulations are met it is less important to treat these uncertainties. 

Nevertheless, this decision should be documented and based on good arguments (e.g. by 

using an uncertainty matrix as shown in Table 1). 

For these levels of uncertainty the uncertainty matrix (Table 1) can be used for definition, 

while for magnitude assessment expert elicitation, extended external review and 

discussion with stakeholder involvement and if available numeric and literature values can 

be applied (Refsgaard et al., 2007). Furthermore it is possible to identify context scenarios, 

in contrast to a traditional scenario planning, to cover a wide range of scenarios to explore 

the deeply uncertain scenario space, even if it does not cover all of it (Urich and Rauch, 

2014). These context scenarios can be developed from qualitative guidance (e.g. strong, 

medium, low increase of area) and narrative perceptions (for examples of narratives see 

e.g. Ashley and Tait (2012)). Together with more certain scenarios at the level of scenario 

uncertainty, they could be implemented in scenario analysis. Depending on the available 

resources (time and computational) as many scenarios as practical would have to be 

modelled to cover as much as possible of the uncertainty scenario space. The results can 

then be involved into a robust decision-making (RDM) approach (Lempert et al., 2006). 

3.4  System and processes analysis and definition of criteria 

After the definition of the objectives and the deficits, the reasons for these deficits and the 

involved processes and criteria together with possible optimization potentials have to be 

identified (HSGSim, 2008). This requires a more detailed system and significant process 

analysis, which correlates directly with the definition of relevant criteria (Muschalla et al., 

2009). These relevant criteria can be derived from the aforementioned project goals. For 
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water quality it can be either emission or immission based evaluation (Benedetti et al., 

2010), for quantity flooding and CSO volumes, number and return periods of events. If the 

criteria are not representing fixed legislative values, they can be however updated if 

necessary during the process. Finally, for both quality and quantity, costs can be used for 

evaluation. 

In general, integrated modelling should cover the full urban water system (see Figure 1). 

Depending on the scope and objectives of planning, it is permissible to exclude or neglect 

single sub-systems, components, interfaces or processes within or between sub-systems, 

which do not contribute to the solving of the stated problem (Schmitt and Huber, 2006). 

However, the utmost care has to be taken when deciding these system boundaries in 

order to cover all the significant processes. It is very important to be aware, that omitting of 

processes introduces an unknown magnitude of model structure uncertainty. Therefore, 

these decisions have to be a well-documented, well-discussed and well-argumentized 

choice. Furthermore, the setting of the system boundaries is a continuous process 

influenced by the system and process analysis. The final goal is to set the system 

constraints as narrowly as possible, which can be achieved by starting with a full 

integrated model and then reducing it by eliminating parts of the model which are not 

significantly influential (Meirlaen and Vanrolleghem, 2002). This model reduction, driven by 

sensitivity analysis, with minimal deterioration of the accuracy of the model output is also a 

way to develop a fast, less computationally expensive, model (Vanrolleghem et al., 

2005a). 

For example, for a quantitative estimation of the hydraulic performance of a combined 

sewer system only flow volume will be considered, excluding water supply systems, water 

quality aspects as well as groundwater, if no high infiltration is expected. For water quality 

modelling of receiving water bodies other system boundaries are necessary, including 

wastewater treatment plants and depending on the detail of the evaluation either standard 

wastewater parameters, such as suspended solids (SS), Chemical Oxygen Demand 

(COD) and nitrogen, or specific trace pollutants (Schmitt and Huber, 2006). 

3.4.1 Context and framing uncertainties  

Context can be defined as the conditions and circumstances which are the base of the 

selection of the system boundaries, as well as the framing and formulation of problems 

within these boundaries (Walker et al., 2003) and occurs mainly in the problem definition 

phase. Context includes the boundary conditions as regulatory conditions and other 

external factors such as the impacts of future economic, environmental, political, social 

and technological developments (van der Keur et al., 2008), if these aspects are not 

explicitly included in the modelling study. This context could fall within the past, the 

present, or the future (Walker et al., 2003), while for practitioners mainly the future (and to 

a smaller extent the present) is of interest, for researchers the past can also be of interest. 

Framing includes differences in societal views of different actors on an issue, i.e. different 

definitions or recognition of the main problems, different view on what’s at stake, difference 

on which goals should be achieved at what price (Newig et al., 2005). Simultaneous 



25 

 

presence of multiple equally valid frames of knowledge, the so-called ambiguity (Dewulf et 

al., 2005), often occurs in multi-actor projects, which is true for most integrated catchment 

studies. Care should be taken that these different frames are made explicit in the 

documentation and therefore the implementation into uncertainty assessment transparent. 

For example, the different involved parties and stakeholders in an environmental impact 

study (from environmental activists to project manager) can have very different views on 

the model boundaries, which are all absolutely valid in themselves. Before deciding on a 

frame and boundaries, considering other possible frames from different viewpoints (and 

maybe estimating them in the wake of stakeholder involvement) and documenting those 

viewpoints and frames can be beneficial for the modelling process but mainly for the 

communication and justification of model results at the end of the process. 

These two sources of uncertainty can be implemented into a scenario analysis, if they are 

not statistically graspable, which is mostly the case, either if the possible outcomes are 

known as scenario uncertainties and if not as deep uncertainties. 

3.5  Modelling approaches and data demand 

In general the modelling approaches adopted should be flexible to fit the identified problem 

(Harremoës and Madsen, 1999). After reducing the system boundaries to enable a 

manageable (in terms of complexity and computational effort) model concept, the model 

approaches for the different integrated processes should be selected. Hereby, it is not the 

most complex model that is preferred, but, following Ockham’s razor, the least complex 

that answers the asked question reliably, in a comprehensible and verifiable way (Rauch 

et al., 2002). This also includes the knowledge of the limitations of the applied models and 

sub-models, which will include models for diverse processes such as rainfall runoff 

relationship, hydraulic transport/routing, pollutant transport/routing and pollutant 

transformation processes (Achleitner, 2008). Also between the subsystems, the level of 

complexity has to be consistent, depending on the problem statement. For some 

applications and scales the estimation with coarse models of CSO volumes, multiplied by 

a fixed concentration, as input for a detailed river model, taking several water quality 

processes into account, can be acceptable, while for others a detailed river water quality 

model makes no sense if the input from wastewater treatment plants and urban runoff is 

estimated by more rough models (Rauch et al., 1998). On the other hand, it can be 

unnecessary effort to use a very detailed model as input for a simple one, for example a 

very detailed sewer model for water quality for estimating input into a very simple river 

water quality model (Schellart et al., 2010). Essential is that the selection of the models is 

a conscious decision, also considering the uncertainties implied, and not dictated by 

availability and commodity. Potential mismatches of models could lead to waste of 

computational resources, while not improving the accuracy of the model output. 

Beyond the modelling approaches, an adequate amount of data is essential to define the 

model setup and to identify the model parameters (Muschalla et al., 2009). Different level 

of model integration also demands different amount and quality of data for modelling and 

decision-making (Eggimann et al., 2017). Normally, the data for the subsystems will be 
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available with different quality and on different (temporal and spatial) scales. The required 

quality of the data is determined by the selected modelling approaches and by the defined 

processes respectively. The more detailed the modelling approach to describe the physical 

interrelationships is, the higher the data requirements are (Muschalla et al., 2009). 

The selection of modelling approaches is an iterative process (HSGSim, 2008). The 

modelling approaches and the available data always need to be evaluated and compared 

with the selected objectives and evaluation criteria. If a discrepancy arises, three solutions 

are possible: 

• Conduction of additional measuring campaigns to close the data gap (Muschalla 

et al., 2009) or the usage of historical data collection and reconstruction tools 

(Benedetti et al., 2008). 

• Usage of alternative model approaches which allow modelling with the available 

restrictions or the development of new models based on them. 

• Limitation of the project objectives and reconsideration what objectives can be 

reached given the restrictions on data and if these objectives suffice for the 

agreed problem statement. 

The decision between these three solutions is often an economic one, although an 

objective beneficial cost-benefit ratio is still missing (Eggimann et al., 2017), as well 

dictated by time constraints given by project timeframes. Higher complexity in modelling 

approaches requires larger and more costly monitoring campaigns (Freni et al., 2009). 

One possibility is the restriction of the objectives to the achievable results for the available 

data, if this does not inhibit the solving of the stated problem too much. If other models or 

the expertise to develop new ones exist, suitable for the objectives, this would be the next 

possibility. Finally, if no other possibility is left a data demand has to be defined and data 

collection has to be carried through. Sometimes the use of data reconstruction tools 

(Benedetti et al., 2008) or the adoption of literature-derived parameter values (Freni et al., 

2009) could be applicable, however good quality measurement data is preferable. 

3.6  Data and model analysis 

Based on the estimated input and calibration data demand a quality assurance strategy for 

the data has to be applied. This strategy should include the available data (geographical 

data and historical and/or ongoing measurements) as well as necessary additional 

measurements. The planning of measurements and the model setup is a mutually 

dependent process. While measuring is necessary for the model setup, the model itself 

can be used to design the monitoring (Kleidorfer et al., 2009b). 

Data validation should be based on criteria derived from available information about the 

data themselves, the sensors used, the environment and the context of the measurement 

process or a combination of these elements (Bertrand-Krajewski et al., 2003). 

Furthermore, it also depends on the focus of the study as well as the required spatial and 

temporal scale for approaching the problem statement. It should be taken into account that 
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due to data validation the amount of available validated data can be significantly less than 

the amount of measured data (Langeveld et al., 2013b). 

Preliminary simulations should be performed using the sub-models and the integrated 

model under development. The primary objectives of this analysis are the identification of 

unstable simulation runs as well as wrongly set parameter value definitions as well as 

problems in the model structure. Useful indicators can be implausible loads and 

concentrations in the receiving water (e.g. by comparing to literature values (Brombach et 

al., 2005)) or surcharged nodes at high points in the sewer system and so on (Muschalla 

et al., 2009). Furthermore, a sensitivity analysis of selected input data and parameters 

regarding the sub-models should be carried out to make sure that all the sensitive data 

was included. 

An important point for all these data and modelling approaches is the data management. 

All of the available, measured or estimated data as well as all of the sub-models should be 

stored in the project database. Preferably, versioning should be used to enable 

assessment of the model evolutions. This can be included into data management schemes 

of operating companies (Tscheikner-Gratl, 2016). 

3.6.1 Minimization of uncertainties in data collection 

This section will briefly present the main sources of uncertainties (in data) and how to 

reduce them. It is crucial to validate data and to evaluate uncertainties and representativity 

of measurements carried out (Bertrand-Krajewski et al., 2003). Uncertainty is defined here 

as the dispersion of the measured values around the true one. The values are measured 

by a data acquisition system, containing at least one sensor, one transmitter and one data 

logger i.e. from the value of interest until the final file where the data are stored. Two main 

sources may lead to large uncertainties: bias and noise. 

Bias consists of systematic errors, i.e. over or under estimations (sometimes both for the 

same sensor, with different behaviour along the measuring range). Bias can be decreased 

with a smart positioning of the probe and the accurate calibration of the entire data 

acquisition system. The correct positioning does respect standard methods (mostly 

defined in standards, guidelines or codes of practice) and common sense: e.g. a rain 

gauge should not be placed too close to a building, a water level sensor should not be 

placed in a hydraulic jump or in a layer of sediment. Even if those affirmations seem trivial, 

basic mistakes such as the ones described still happen relatively often. 

All sensors and analytical methods shall be calibrated with specific certified standard 

devices, solutions or procedures (Bertrand-Krajewski et al., 2003). Calibration enables the 

correction of the data acquisition errors, aging, drifts, and so on. Standard methods for 

sensor or sensor and transmitter calibration are well documented and easily accessible. 

Bias can also originate from data logging systems: e.g. tension falls along the cable, 

mistakes and bugs in the software, logger time drift. That’s why a calibration of the full data 

acquisition is required, i.e. from the standard value (solution, pressure, etc.) to the value 

record in the final file. The dispersion of the measured values around the corrected values 

(i.e. after applying the calibration correction) can be influenced by several factors: the 
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design and the realization of the data acquisition system, the environment, the selection of 

the sampling location and the presence of (sometimes hidden) smoothing algorithms 

within the data acquisition system. In order to start a detailed check of the system, those 

algorithms should be disabled and the access to raw data should be guaranteed. 

A wrong choice of equipment (some types are known to be noisy), the wrong choice of the 

location (close from powerful antenna, high-power electricity cables) and the wrong cables 

(non-shielded cables or shielded cables not connected to the earth) may lead to noisy, 

random values i.e. non-systematic uncertainty. Also, the relation between process 

variability, accuracy and sampling frequency should be considered. For example, a 

measurement with high frequency but low accuracy can still produce only noisy data. 

Discussions with experienced people, a general scientific culture and a deep observational 

sense will help to reduce those sources of uncertainties. Another key to reduce uncertainty 

is the selection of the necessary quality and purchase of accurate equipment for this task. 

For example, the usage of tipping bucket rain gauges (Chvíla et al., 2005) or electronic 

weight systems (Sevruk and Chvíla, 2005) for precipitation measurements can lead to 

different measurement errors, although errors induced by wind-induced loss and spray 

water can be comparable (Hoppe, 2006). 

3.7  Setting up the integrated model 

The first step of linkage covers the aspects of model robustness and verification of the 

interfaces’ functionality (Muschalla et al., 2009) and compatibility (Bach et al., 2014). The 

main challenges of linkage in terms of data transfer are (HSGSim, 2008; Bach et al., 

2014):  

• variables have different definitions or change their meaning from one component 

to another, or simply do not exist in all sub-models 

• conversion processes (especially chemical processes in particular, where the 

chemical mass balance cannot be easily solved) at the interfaces are tedious 

and error-prone including problems with data units 

• differences in temporal or spatial discretization between the sub-models 

These issues also primarily relate to water quality rather than quantity. One challenge is 

the linking between different water quality models, which usually have different sets of 

state variables (Benedetti et al., 2013). This can be approached for example by using a 

continuity-based model interface (Vanrolleghem et al., 2005b). Blöschl and Sivapalan 

(1995) distinguish between a process, observation and modelling scale. Under the best 

scenario, those scales should match, but this is not always the case, and transformations 

based on downscaling and upscaling techniques might be necessary to obtain the required 

match between scales (Cristiano et al., 2017). 

Integration of sub-models is a simulation as well as a software or computational hardware 

requirements question. Sub-models either run for the entire time-period before information 

is conveyed on to the next component (sequential) or models are run alongside each other 

(parallel) (Bach et al., 2014). The parallel simulation of subsystems is not vital for an 



29 

 

integrated modelling (Achleitner et al., 2007), as long as no feed- back fluxes occur (e.g. 

for real time control). However, in order to minimise calculation time, the possibility of 

parallel calculation of models should be exploited as far as possible, as long as it does not 

interfere with model performance. It also is an important part in the application of parallel 

computing (i.e. multi-core computing) to exploit all of the available computing resources 

provided by modern CPUs (Burger et al., 2016). The linkage of the sub-models can in 

terms of software either be implemented in a common language (Burger et al., 2016) or by 

establishing interfaces (e.g. open software interfaces (Gregersen et al., 2007)) between 

the sub-models. 

3.7.1 Model structure uncertainties 

When describing a system there are three major dimensions in which the system has to be 

conceptualised for a model (Kelly et al., 2013): 

• Space 

• Time 

• Structure 

Spatial resolutions in models range from non-spatial models over lumped spatial models, 

compartmental spatial models, grid, cell or element based spatial models to continuous 

space models. Different spatial scale results also in different outcomes for the same 

model. For example a build-up/wash-off model physically-based at the scale of elementary 

surfaces, is actually a black-box model at the catchment-scale (Bonhomme and Petrucci, 

2017). Or different levels of detail in the representation of urban sub-catchments can lead 

to  substantial differences in the shape of the hydrograph for a rainfall runoff model 

(Tscheikner-Gratl et al., 2016). 

Similar to the treatment of space, temporal resolution can increase from mere steady state 

models over discrete and dynamic models to continuous ones. A good example is the 

usage of rainfall data with different temporal (and spatial) resolution as input for 

hydrological models (Cecinati et al., 2017; Muthusamy et al., 2017), which can have a high 

impact on the results. For hydrodynamic models of urban drainage systems these different 

scales, in terms of temporal resolution of rainfall input data (Notaro et al., 2013) or spatial 

distribution of rainfall measurements (Notaro et al., 2013; Rico-Ramirez et al., 2015; 

Tscheikner-Gratl et al., 2016) can have a high impact when forecasting urban flooding. For 

integrated models, the entire model may not employ a single spatial or temporal scale or 

resolution, which creates additional problems in integration. In terms of structure we can 

distinguish between individual-based and aggregated models (Kelly et al., 2013). 

Model structure uncertainties are difficult to assess and distinguish from other sources of 

uncertainty. Model sensitivity is highly dependent on the adequate selection of model 

parameters and processes, adequate process formulation and the adequate choice of the 

spatial and temporal resolution of the model (Del Giudice et al., 2015). Often, when a 

model structure lacks a certain component or when the different sub-models are 

unbalanced in their complexity, errors can be compensated by calibration on the cost of 

introducing another ‘error’ in the parameter estimates (Cierkens et al., 2012). 
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Neumann and Gujer (2008) propose model structure extension to correctly estimate the 

influence of model structure uncertainty, but it was difficult to apply. Del Giudice et al. 

(2015) proposed a process to estimate the effect of structural errors, by analysing a 

system with increasingly complex model structures while describing their output bias. 

However this can only partially quantify the effects of the different error sources and not 

distinguish all of it, but using different models for comparison gives a good first impression 

and can better represent the system under investigation (Deletic et al., 2012). If different 

models end up with very different estimates for the same scenario and similar 

parameterization, it may be a safe assumption that the structural uncertainty related to the 

estimate is large. However, it is again crucial to make sure that the variables presented in 

the model are equal or reasonably comparable (Uusitalo et al., 2015). 

Dotto et al. (2011), for example, compared an empirical regression model to a process-

based build-up/wash-off model for storm water pollutant prediction, finding that these 

models poorly represent reality and have a high level of uncertainty. Refsgaard et al. 

(2006) compared five alternative conceptual models by five different consultants for the 

same problem in water resource modelling, which differed substantially from each other. 

This also shows the connection between the model structure uncertainty and framing 

ambiguity, where different stakeholders can have very different views and therefore 

approaches and models for the same problem. 

3.8  Calibration, validation and plausibility checks 

As the complexity of the models grows, so does the difficulty in assessing their accuracy 

(Fletcher et al., 2013). This is also true for the difficulty in calibrating and validating of 

integrated models. Calibration can be defined as the (mostly iterative) adjustment of any 

model parameter to improve the fit to measured data (Belia et al., 2009). For this purpose, 

simultaneous measurements of precipitation, discharge, and concentration need to be 

available at different locations in the system considered to deliver sufficient measurement 

data for the calibration process (Muschalla et al., 2009). One of the problems of calibration 

using this measurement data is a possible limitation of the model representability to the 

boundaries of the applied data, when those data series often do not include extreme 

events (Harremoës and Madsen, 1999). Furthermore it requires a substantial amount of 

data and in consequence computational effort in order to allow calibration and validation 

(Langeveld et al., 2013b). Missing data on important input, for example, precipitation can 

render a data set useless for calibration of integrated models (Benedetti et al., 2013). 

Bach et al. (2014) defined three possible approaches for calibration of integrated models, 

with descending quality: 

• Calibration of the entire integrated model at once 

• Gradually calibrating the sub-models of the integrated model 

• Calibrating the sub-models before integrating them into the integrated model 

Gradual calibration means that upstream sub-models parameters are calibrated first and 

then kept constant during the calibration of downstream parameters, so errors elicited by 
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upstream models can be compensated by downstream models. Analogously, water 

quantity modules were calibrated first and then kept constant during the calibration of the 

quality modules (Freni et al., 2009). In all the steps the calibration is performed first only 

for the hydrology and hydraulics and second for the quality processes, where the 

hydraulics are independent from the quality processes but not the other way round 

(Muschalla et al., 2009). 

It is possible to use multiple of these steps in combination, for example starting with 

calibrating the sub-models before integrating and then a calibration of the whole system 

with a special focus on the targets of modelling. Calibrating the sub-models alone tends to 

deliver different results than the calibration of the integrated model. However, aimed at 

identifying systematic errors in the model performance the calibration of the sub-models 

can deliver important insights (Langeveld et al., 2013b). Therefore integrated models need 

adjustments and re-calibration after the components are put together (Voinov and Cerco, 

2010), as far as it is applicable. This usage of calibration to deal with issues such as data 

transfer between models and time and space mismatch between models distorts our 

model results to a certain amount, and leads to the consequence that the modular design 

of our integrated models has less advantage because for every application a new 

calibration is necessary. However, due to the fact that not all sub-models can be calibrated 

(missing measurements e.g. for run-off models) and every sub-model will always be 

influenced by the calibration of the ‘upstream’ models used as input, distortion is 

unavoidable in practice with linked models and could only be avoided by building an 

integrated model from scratch. 

Validation can be defined as testing of the model performance against independent data 

that have not been used for calibration in order to assess the accuracy and credibility of 

the model simulations for situations comparable to those intended in the goals of the 

modelling approach (Refsgaard et al., 2007). A wide range of statistical measures and 

visual techniques can be used to assess goodness-of-fit to validate a used model 

(Bellocchi et al., 2010). 

If no calibration and validation can be conducted or a proper parameter estimation is not 

possible (e.g. due to missing data) only qualitative statements can be derived from 

integrated models. Then at least a plausibility check of the parameter set and of the 

simulation results has to be carried out (Muschalla et al., 2009). However, from the 

perspective of accuracy it is often better to apply a simplified calibrated model than 

uncalibrated models (van Daal-Rombouts et al., 2016). 

So essentially in practice a five step general procedure can be applied (Bennett et al., 

2013): 

• Revisit, reassess and implement the models aim for the process 

• Check the used data for calibration and/or validation for sufficiency and quality 

• Visual performance analysis and plausibility check 

• Select a performance criteria depending on the aim of the modelling for 

calibration and/or validation 
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• Application of the calibration and validation process and refinements of the 

model if necessary 

3.8.1 Calibration and parameter uncertainties 

Defining calibration uncertainties can be difficult, especially differentiating them from 

parameter and model input parameters. As can be seen in Figure 4, the differentiation 

from parameter is made if the uncertainty consists of an a priori determined value, which 

does not change due to causal relations in the model or calibration. So calibration 

uncertainties can be uncertainties that are caused by or influence the calibration process 

while uncertainty in the parameter estimates is directly related to the amount and quality of 

the available information (Der Kiureghian and Ditlevsen, 2009). Either the data used for 

calibration, in terms of quality as well as the pre-selection of data, or the methods used for 

calibration, both the algorithm and the objective functions (Deletic et al., 2012). 

To address the uncertainty from considering the data quality does not differ significantly 

from model input data uncertainty. Choosing the data for calibration is another problem. 

Special attention has to be paid to temporal and spatial availability of calibration data. It 

was shown that – as worst case – a model could seem to be calibrated sufficiently on few 

single events or on few measurement sites, but completely fails in predicting outside the 

calibration period (Kleidorfer, 2010). So, the selection of sufficient length, amount and 

variability (both temporal and spatial) of calibration data, depending on the model target is 

of paramount importance. 

In general, calibration is an optimisation problem that can either be solved by trial and 

error approaches or by using an adequate optimisation technique using suitable quality 

indicators (Muschalla et al., 2009). Bennett et al. (2013) gives a good overview of the 

different quantitative performance indicators and quantitative testing methods for 

performance characterization of environmental models in overall, which not all may make 

sense for all applications in calibration. The selection of one method depends on the goal 

of calibration (volume, peaks, etc.). In general quantitative testing methods can be 

subdivided into 7 categories (Bennett et al., 2013): 

• Methods for direct comparison of models (e.g. comparison of mean and 

variance) 

• Metrics that compare real and modelled values concurrently (e.g. information 

mean square error) 

• Key residual criteria (e.g. root mean square error) 

• Residual methods that use data transformations (e.g. Square-Root Transformed 

Root Mean Square Error) 

• Correlation and model efficiency performance measures (e.g. Nash-Sutcliffe 

Model Efficiency or Relative Absolute Error) 

• Metrics based on model parameters (e.g. Bayesian Information Criterion) 

• Transformation methods (e.g. Empirical Orthogonal Functions) 

Moriasi et al. (2007) recommend a combination of graphical techniques and dimensionless 

error index statistics for model evaluation. In addition to hydrographs and percent 
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exceedance probability curves, the correlation and model efficiency performance 

measures Nash-Sutcliffe efficiency (NSE), Percent bias (PBIAS) and root mean square 

error observations standard deviation ratio (RSR) were recommended. 

To avoid trial and error approaches a variety of search algorithms can be applied to 

calibrate various environmental models. These can be subdivided into local, global, and 

hybrid search techniques. A good overview is given by Matott et al. (2009). The calibration 

performance itself may in some applications be not very sensitive to the choice of 

optimization algorithm and objective function, but the parameters obtained may be 

significantly different. As parameters represent processes, the choice of the calibration 

algorithm and objective function may be critical in interpreting the model results (Kouchi et 

al., 2017). To limit the uncertainty the usage of different performance indicators (e.g. one 

sensitive for volume and one for peaks) and algorithms, if computationally viable, is 

encouraged. Also the usage of different objective functions in a multi-objective framework 

could be thought of (Wöhling et al., 2008). 

3.8.2 Uncertainty propagation 

For the uncertainty propagation analysis (UPA) one QUICS deliverable exists (Heuvelink 

et al., 2017), therefore only an small overview of the methodology is represented here. For 

further details see Heuvelink et al. (2017). For each dataset and sub-model used in the 

integrated model the steps presented in Figure 6 are needed to perform a Monte Carlo 

UPA. 

 

Figure 6: Flowchart of uncertainty propagation analysis (adapted from Heuvelink et al. (2017)) 

The objective of an uncertainty propagation analysis (UPA) is to analyse how uncertainties 

in model input data, parameters and structure propagate to model outputs. Application of 

UPA in integrated urban water modelling requires that the uncertainty propagation is 

analysed for each of the sub-models used in the integrated model. The most common 
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approach to uncertainty propagation analysis makes use of Monte Carlo (MC) stochastic 

simulation. In short, the MC method consists of two main steps. First, many sets of 

possible uncertain inputs are generated from their joint probability distribution using a 

pseudo- random number generator. Second, the model is run for each of the simulated 

input sets. This creates a sample of model outputs that can be used to derive statistical 

properties of the model output. In particular, the spread in the model outputs characterises 

how uncertainty about the model inputs have propagated to the model output. Some of 

these steps (especially step 1 and 2) can be taken from the documentation following the 

proposed framework (see Figure 3). 

3.9  Approaches for statistical uncertainties 

In general, two groups of approaches exist that typically are applied to this type of 

uncertainty (statistical): 

• Forward modelling 

• Inverse modelling 

The selection of the method depends on the problem statement, data availability and 

computational expense for running the model. For forward modelling, influences on the 

model results deriving from uncertainties of the input (data, parameter or context) are 

estimated either using error propagation equations or Monte Carlo based methods. 

Inverse modelling is mainly used to estimate model parameters and their distribution (e.g. 

calibration). Model results are compared to measurement data to thereby estimate 

uncertainties. Often both methods are used in combination (see Figure 7). The first step 

would then be the usage of a reference or calibration period with available measurements 

to estimate uncertainties and then apply the estimated findings on a forecast period 

(without available measurement data) using forward modelling. 

 

Figure 7: Scheme of combined application of forward and inverse modelling 
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For forward uncertainty propagation, different approaches are possible which can be 

mainly divided into two groups which are (analytical) uncertainty propagation equations or 

(probabilistic) Monte Carlo sampling based methods. Please refer to e.g. Kuczera and 

Parent (1998), Bertrand-Krajewski et al. (2002), McCarthy et al. (2008), Thorndahl et al. 

(2008), Thorndahl and Willems (2008) and Kleidorfer et al. (2009b) for more information. 

Uncertainty can be propagated analytically through simple, linear or nearly linear models. 

The sub-models used and the integrated model itself however are seldom linear and an 

application of the analytical uncertainty propagation can lead to inaccuracies. This is 

discussed in another QUICS deliverable (Sriwastava and Moreno-Rodenas, 2017). The 

limiting factor of the Monte-Carlo analysis is the computational time required to adequately 

sample the parameter space, which for high dimensional problems will be considerable. 

Random sampling provides no guarantee that the higher likelihood parameter space is 

adequately sampled, which makes it difficult to identify a priori the required number of 

samples and therefore estimate the necessary computational budget (Hutton et al., 2011). 

The inverse problem attempts to infer the values of the model parameters that are 

consistent with the observed data and prior information on the parameters. In water 

infrastructure system models the model structure is not exact, has a non-linear response 

and the observed data is limited in time, space and representativeness, and subject to 

error. As a result, the inverse problem may be ill-posed in the absence of prior information 

(Renard et al., 2010) with many plausible combinations of parameters producing model 

simulations consistent with the observed data and their uncertainties. Vanrolleghem et al. 

(2011) propose a step-wise procedure for statistical uncertainty assessment by inverse 

modelling: 

• Preparing the calibration problem by defining objectives, calibration data and 

methods 

• Parameter estimation for example by using either a Bayesian, optimisation or 

trial and error approach 

• Diagnostic testing of hypotheses either using residuals analysis or singular value 

decomposition 

• Model validation and estimation of prediction intervals 

Dotto et al. (2012) compared some of the most common methods used for assessing 

urban drainage model parameter uncertainties: 

• Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) 

• Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) applied in 

combination with GLUE (Blasone et al., 2008) 

• A multi-algorithm, genetically adaptive multi-objective method (AMALGAM) 

(Vrugt and Robinson, 2007) 

• Classical Bayesian approach based on a Markov Chain Monte Carlo method 

and the Metropolis Hastings sampler 

The four investigated methods provides similar results in terms of model performances 

(Wöhling et al., 2008; Dotto et al., 2012). Vanrolleghem et al. (2011) recommend the 
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usage of the Bayesian paradigm for the inverse problem. However, the identification of the 

most appropriate method for the specific problem is always a trade-off between the need 

for a strong theory-based description of uncertainty, simplicity and computational efficiency 

(Dotto et al., 2012). If enough capacity is available the application and comparison of 

different method is encouraged. Furthermore, there exist multiple software packages 

combining several optimization approaches (e.g. Houska et al. (2015)). 

3.10  Scenario uncertainties 

Scenario uncertainties must be considered if probabilities cease to be describable by 

statistical means but possible outcomes are known. These uncertainties stem mainly from 

the context (e.g. urban development, climate change) or ambiguities between different 

stakeholders in the planning process. The role of scenarios in planning is to help policy 

and decision-makers recognise, consider and reflect on uncertainties they are likely to face 

in the future. While no scenario provides an accurate description of what will happen in the 

future, they serve to identify and describe possible or preferred futures as part of the 

planning process. Therefore, a minimum requirement for any modelling approach is at 

least to apply interval analysis by using a median scenario, a worst- and a best- case 

scenario. One of those scenarios often includes the business-as-usual scenario. The 

mitigation measures to be analysed should be implemented in those simulation scenarios. 

The scenarios are then assessed regarding the defined criteria and objectives. The 

different scenarios are compared with a reference scenario (mostly a scenario without 

mitigation) based on the defined criteria either as an absolute and/or a relative assessment 

of the scenarios (Muschalla et al., 2009). 

Three main categories of scenario studies can be distinguished (Börjeson et al., 2006): 

• Predictive scenarios, which attempt to predict what is going to happen in the 

future. They can be further subdivided into forecasts, that are conditioned by 

what will happen if the most likely development unfolds and what-if scenarios, 

which investigate what could happen on the condition of some specified near-

future events of great importance for future development. 

• Explorative scenarios, which explore situations or developments that are 

regarded as possible to happen, usually from a variety of perspectives. They 

can be further subdivided into external scenarios, which focus only on factors 

beyond the control of the relevant actors and strategic scenarios, which 

incorporate policy measures at the hand of the intended scenario user to cope 

with the issue at stake. 

• Normative scenarios, which aim to define solutions to reach a specific target. 

They can be further subdivided into preserving scenarios, where the task is to 

find out how a certain target can be efficiently met and back-casting, where the 

result is typically several target-fulfilling images of the future, which present a 

solution to a problem, together with a discussion of what changes would be 

needed in order to reach these targets. 
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Predictive forecasts are normally short-term scenarios of the existing system structure. An 

example for forecasts can be probabilistic forecasts (Laio and Tamea, 2006) of continuous 

hydrological variables (e.g. discharge). Predictive What-if scenarios are typically short-

term scenarios, which allow the comparison of different system structures or one system 

structure using varying different external influences. An example can be different 

construction measures in an urban drainage system to reduce combined sewer overflow 

volume in the next year (HSGSim, 2008). Explorative external scenarios focus mainly on 

the external influences on a system over a longer period, for example the impacts of 

climate change and urbanisation on the performance of a combined sewer system 

(Semadeni-Davies et al., 2008). Explorative strategic scenarios include an internal 

response to the long term external influences of the external scenarios, for example 

adaptation and rehabilitation of combined sewer systems (Tscheikner-Gratl et al., 2014) or 

the adaptation of the urban water management in general (Urich and Rauch, 2014) to a 

changing environment. Normative preserving scenarios are setting goals for a distant 

future and explore ways towards these goals. An example is regional planning, where the 

starting point for a new plan is often a group of targets concerning environmental, social, 

economic and cultural factors (Börjeson et al., 2006). Back-casting sets a desired state in 

a distant future and tries to explore pathways to this desired state. For example a gradually 

change of an existing city to a new more ecological and inhabitant friendly state at a new 

location is set as a goal and the pathways of gradually adapting the urban water 

infrastructure (while maintaining their functionality) during the relocation process is 

explored (Zischg et al., 2017). 

3.11  Model application, result assessment and reporting 

The final step of integrated modelling is the application and assessment of the model. If 

the level of uncertainty in the final assessment is outside of the tolerable range, as defined 

in the problem statement, a revision of the modelling process will be necessary. It is 

advisable to start with the most influential input in terms of uncertainty as defined in Figure 

5. 

The final integrated product will need to be evaluated in the light of the study’s objectives. 

The modelling outcomes should be discussed with a wide, multidisciplinary, group of 

project participants. Such a participatory approach to project evaluation can ensure 

whether the model is truly an output of an integrative effort that project participants can 

identify with (Kragt et al., 2013). In addition, it is important for the modeller to seek and 

share experience by professional exchange with other modeller colleagues. 

An often overlooked but important part of integrated modelling is the reporting of the 

results to the decision makers. It is important to communicate our results to the decision 

makers in an appropriate way for the aspired audience. A scientific audience requires a 

different report than a political decision maker or an internal technical specialist, which will 

present the model results to a decision maker within a water utility. Communicating the 

uncertainties in our models has to be part of this reporting, not only in order to show the 

uncertainties of the model and the data but also to strengthen the confidence of the 
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decision makers in the model by showing that uncertainties have been accounted for. 

Further, it is good to show and also discuss how much uncertainty we are willing to accept 

for our problem. To find an optimum of uncertainty is difficult to achieve, while too few 

uncertainty leads to “safe” solutions which tend to be costly and not innovative while 

accepting too much uncertainty may lead to non-applicable solutions (Geldof, 1997). 

4  Example for the application of the framework 

As an example a theoretical exercise based on the results of the KALLISTO project 

(Benedetti et al., 2012b), which encompassed the assembly of the integrated model and 

decision support based on this model without the herein described uncertainty analysis, is 

shown. 

4.1  Problem statement 

The river De Dommel (see Figure 8) is a relatively small river located in the southern part 

of the Netherlands and the northern region of Belgium. The section of interest 

encompasses roughly 120 km of river tributaries. The river flow at the end of the section 

fluctuates between 5-40 m3/s during dry and storm conditions. This river system receives 

discharges of several urban areas by 200 combined sewer overflows (CSOs) and through 

a wastewater treatment plant (WWTP) representing a population equivalent of 750,000 

(located at the city of Eindhoven). Due to the intense urbanization in the area, the river is 

confronted with water quality issues, which threaten its ecological status. Dissolved 

oxygen content suffers strong fluctuations after rainfall events with medium and high 

intensities. This impact is suspected to derive mainly from CSOs at overloaded urban 

drainage systems and a low DO concentration in the WWTP effluent during wet weather 

flow conditions. 

 

Figure 8: Geographical boundaries of the De Dommel catchment 
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The Waterboard de Dommel envisioned a series of substantial investments in a plan to 

improve the ecological status in the river. An integrated river water quality model was 

developed as a decision support tool to efficiently direct resources and estimate the effect 

of the selected measures. 

Therefore, a modelling study was carried out with the following objectives: 

• Simulation of the water quality status expressed by environmental metrics based 

on dissolved oxygen (DO) and ammonium dynamics (NH4). 

• Assessing and evaluating of the effects of different corrective structural and 

operational changes on the water quality status. 

• Establishing of a knowledge repository, which includes information about the 

status of the physical system. 

In view of conciseness, we will focus only on the first objective in this deliverable. A 

relevant point in the uncertainty analysis process is the definition of an acceptable 

uncertainty level. If the model predictive uncertainty is too large, there is no guarantee that 

the decisions are well supported by the model results. The water quality status of the 

system is evaluated through the use of intensity-duration-frequency tables (FWR, 2012). 

The acceptable levels for this case study are shown in Table 2. 

Table 2: Intensity-duration-frequency levels for the De Dommel river 

Duration 

NH4 critical (mg/l) DO critical (mg/l) DO basic (mg/l) 

1-5 

h 

6-24 

h 

>24 

h 

1-5 

h 

6-24 

h 

>24 

h 

1-5 

h 

6-24 

h 

>24 

h 

Tolerated 

Frequency per year 

12 1.5 0.7 0.3 5.5 6 7 3 3.5 4 

4 2 1.2 0.5 4 5.5 6 2.5 3 3.5 

1 2.5 1.5 0.7 3 4.5 5.5 2 2.5 3 

0.2 4.5 3 1.5 1.5 2 3 1 1.5 2 

Occurrence frequencies in the simulated time series are compared with the tolerated ones. 

From this comparison, a classification into 5 condition states derives: 

• Class 1 simulated frequency less than 0.5 tunes the tolerated one 

• Class 2 simulated frequency less than 1 time the tolerated 

• Class 3 simulated frequency more than 1 time the tolerated 

• Class 4 simulated frequency more than 1.2 times the tolerated 

• Class 5 simulated frequency more than 2 times the tolerated frequency 

Due to the uncertainty analysis the results of the modelling approach will deliver a more 

detailed view on these environmental criteria classes. Uncertainty level required by the 

model is therefore specified as a level of dispersion of the water quality status class. This 

results in probabilities of occurrence for all five classes, which can be compared for 

different future measures as well as the status quo. These dispersion has to be presented 
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and discussed with the decision maker or authority and then limits have to derive from this 

process. 

The geographical boundaries were selected to be the area of the river De Dommel 

between the border of Belgium and the Netherlands up to 20 km downstream of the city of 

Eindhoven as seen in Figure 8. The proposed case study is affected by a series of 

inherent uncertainties, which should be identified and taken into account during the 

modelling process: 

Uncertainties due to boundary conditions: 

An appropriate identification of the influxes of external masses should be carefully 

performed and will be a source of inherent (or deep) uncertainty. For example: 

• Pollution loads from upstream sections (beyond the Belgium border) were not 

considered in the study and they were estimated from monitoring data, based on 

monthly grab samples. 

• Connections of many small surface bodies were neglected when possible to 

minimize the added complexity.  

• The implementation of external influences (e.g. the water level at diversion 

structures). 

Uncertainties due to extrapolation of system structure: 

The model structure was developed and calibrated based on the current physical status. In 

order to test alternative measures, they are virtually implemented in the model and its 

effect modelled. This is considered structural extrapolation since the model structure is 

changed in the process (e.g. adding new control rules, changing physically based 

parameters as sewer capacity, infiltration etc.). 

Deep uncertainties: 

Investments on the water system present long payoff periods (10-30 years). Thus, the 

modelled conditions should be representative of worst expected conditions. Such 

conditions can only be approximated, for many aspects are unforeseeable. Those include: 

• Change of environmental criteria and legislation 

• Dominating technology change (e.g. adoption of decentralised wastewater 

treatment strategies) 

• Change in urbanisation structure or land usage (industrial-agriculture 

development) 

• Change in climatological conditions 

4.2  System and processes analysis 

The water system of the De Dommel is representative for a lowland river area, although 

drainage in certain sections is dominated by gravity due to mild sloped terrain. The flow 

velocity of the river is relatively slow with significant flow-depth regulatory structures in the 

river section and a significant diffusive flow propagation behaviour. The urban areas, 
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consisting of around 30 contributing subcatchments (in 10 municipalities), are scattered in 

an area of roughly 25x25 km and all drain to a centralized WWTP located in the lower part 

of the catchment in the middle of Eindhoven. The WWTP effluent can provide up to 50% of 

the base-flow in summer conditions during dry weather and up to 90% at certain times 

during wet weather in the river section near the WWTP, due to the higher response time of 

the WWTP with respect to the river. The city of Eindhoven represents the largest 

contributing area (generating a spatial clustering factor). A high in-sewer retention volume 

characterizes urban drainage structures with transport affected by backwater effects. 

The main subsystems considered in the model design are listed below: 

Urban drainage processes: 

• Rainfall-runoff, accounting for wetting losses and infiltration dynamics 

• Sewer transport of storm and wastewater effluents on combined-separative 

systems 

• Production of urban wastewater 

• Combined sewer overflow discharges 

Wastewater transport system:  

• Collection and transport of effluent towards the treatment facilities. 

Wastewater treatment processes:  

• Primary settling tanks 

• Biologically activated sludge reactors 

• Secondary clarifiers 

• Nutrient removal 

• By-pass storm settling tank 

Rural hydrology:  

• Hydrological base-flow contribution 

• Rural baseflow water quality characteristics 

River dynamics: 

• Flow propagation and pollutant transport 

• Organic matter degradation 

• Nitrification-denitrification 

• BOD-COD sedimentation 

• Sediment dissolved oxygen consumption 

• Macrophyte dynamics 

The description and selection of the relevant processes is key in the model structural 

design. Only certain processes can be described by the model equations, due to the lack 

of data at certain processes and due to the ignorance of certain system elements. Some of 

those elements, which limit the description of the correct processes, are assigned to 
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structural uncertainties and ignorance influencing the formulation of problems within the 

system boundaries. 

Context uncertainties due to process ignorance: 

• Inability to model water quality dynamics at the rural hydrology baseflow (lack of 

data). 

• River microstructure characteristics (depth variability, lateral flows). 

• Effect of annex water surface storage (ponds, small connected channels etc.). 

• Inaccuracy to describe real control characteristics (pump/element failure, WWTP 

maintenance patterns). 

• Sediment patterns (flooding sediment wash-off, river dredging and cleaning 

operations). 

The sensitivity of the model to and the level of influence of these uncertainties could be 

determined by explorative scenario analysis. This would extend the scope for this study 

and the necessary effort beyond reasonable measures and was therefore omitted. 

4.3  Modelling approaches and data demand 

The modelling platform should integrate all relevant subsystems defined before (river, 

urban drainage and water treatment works). Real time control loops are proposed as 

corrective measures. Therefore, the modelling study should account for the subsystem 

interaction at simulation time. Urban water drainage systems were modelled using lumped 

conceptual models. This simplifies the model complexity and reduces significantly the 

necessary computational requirements for running the simulation. It should be verified, that 

the loss in accuracy of this simplified representation has no significant effect on the 

performance of the sub-models located downstream. The urban drainage model requires 

the following input data: 

• Rainfall input at each contributing area 

• Evaporation dynamics 

• Water infiltration in/out the sewer system – groundwater connection 

• Residential wastewater production patterns 

• Industrial wastewater production patterns 

• Inhabitant density (Tourist seasonality) 

• Control inputs (pumping operational rules) 

The WWTP was modelled by a fully detailed Biokinetic model (ASM2d (Henze et al., 

1999)), a secondary settler, aeration and a Phosphate removal unit model. This structure 

requires as inputs: 

• The characteristics of the influent water quality (influent synthetic generator 

(Langeveld et al., 2017)) 

• Atmospheric temperature 

• Control characteristics 

• Maintenance logs 
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The river was conceptualised by a simplified model. This is based on discretising the 

model in fully mixed tank-in-series in which the biochemical processes of relevance are 

computed. This requires as input: 

• Discharge at CSO flows and water quality characteristics (from the urban 

drainage subsystem) 

• WWTP effluent and water quality characteristics (from the WWTP sub-model) 

• Rural hydrological base-flow and water quality characteristics 

• Water temperature 

• Solar radiation 

• Diversion and control structures operational logs 

• Inputs for water quality at the upstream boundary 

4.4  Data and model analysis 

An extensive dataset was collected about the system. Table 3 shows the most relevant 

measured variables. 

Table 3: Description of measured variables adapted from Langeveld et al. (2013) 

Type of 

measurement 

Monitoring 

frequency (min
-1

) 
Remarks 

Rainfall 

10 1 automatic weighting rain gauge KNMI 

5 
8 Rain gauges Waterboard de Dommel and the 

municipality of Eindhoven 

5 C-Band corrected radar KNMI 

Water level 

1 
Water level sensors in all pumping stations and control 

structures 

1 
Water level sensors at 26 CSOs at the Municipality of 

Eindhoven 

1 Water level sensors at 200 CSO of the system 

Flow 
1 

Flow monitoring at all pumping stations and control 
structures at the river De Dommel 

1 WWTP influent separated by 3 regional drainage systems 

Water quality 

2 UV/VIS at WWTP influent 

1 NH4 at WWTP influent 

1 PO4 at WWTP primary clarifier effluent 

2 UV/VIS at WWTP primary clarifier effluent 

1 NH4, NO3 and PO4 at WWTP effluent 

1 DO at the WWTP aeration tank 

1 DO at 6 locations in the River De Dommel 

1 NH4 at 1 location in the River De Dommel 

Individual sampling 
Samples of water quality at several CSO (BOD, COD, NH4, 

NO3, PO4, TSS). Campaign at individual storm events. 
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These data were provided by the Water Board de Dommel and by the municipality of 

Eindhoven. Data quality was categorized based on visual observations and expert 

knowledge on the system’s behaviour. Details on the data availability and associated 

quality can be found at Langeveld et al. (2013). The sub-models were individually tested to 

characterise their limits of applicability and to validate the proposed assumptions (Moreno-

Rodenas et al., 2017a). Special attention should be paid to the settings of the model 

solver. A pre-screening of the sub-model dynamics at the individual and integrated model 

was performed to minimise the errors due to time discretization and solver errors. An 

example of this process (for WWTP modelling) can be found at Benedetti et al. (2012a). 

Uncertainties associated to this section can be identified as: 

• Model structural uncertainties (conceptualisation at each sub-model) 

• Selection of ODE solver and solver settings 

• Statistical uncertainties due to sensor errors 

• Errors due to spatial-temporal sampling characteristics 

4.5  Setting up the integrated model 

A key factor in the process of linking sub-models is the definition of the appropriate 

transformations between model state-variables. Since sub-models often produce outputs 

at different “related” state variables (e.g. transformation of organic matter content at the 

WWTP effluent to fractionated chemical and biological oxygen demand in the river (COD-

BOD)). It is of importance to verify the effect of the sub-model linkage, which presents 

different space-time characteristic patters. 

Uncertainties associated to the sub-model integration can be identified as: 

• State-variable transformations at the sub-model boundary 

• Spatiotemporal scales of the different subsystems 

4.6  Documentation of uncertainties 

Before applying calibration and uncertainty propagation techniques we will show here the 

documentation of uncertainties, which was an on-going process during the aforementioned 

steps. The list of identified main uncertainty sources, founding on the uncertainty matrix, 

and the prioritization of relevant sources will lay the foundation of the assessed 

uncertainties in the following steps. 

Table 4 presents the sources of uncertainties, which were identified in the model design 

process. This follows the classification scheme proposed in the uncertainty analysis 

framework. The identified uncertainty sources are classified by its degree of uncertainty 

and the expected model sensitivity, presented in Figure 9. 

In this manner, a pre-screening of uncertainties can be done, selecting those inputs, which 

should be carefully addressed. This follows the iterative nature described in the uncertainty 

analysis framework in which uncertainty sources are initially identified and classified based 

on expert knowledge. 
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Table 4: List of identified main uncertainty sources 

System ID Uncertainty sources 

Source Type Nature 
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River 

1 Temperature River (measurement)             

2 Luminosity River (measurement)             

3 River upstream Pollution             

4 Baseflow hydrology             

5 Pollution load rural catchment             

6 River diversion/retention structures levels             

7 River geometry             

8 River energy losses/roughness             

9 
Sediment evolution (unaccounted dredging 

and transport) 
            

10 Errors at measured water quality data             

 

Urban 
drainage 

11 Rainfall Data measurement errors             

12 
Rainfall data input characteristics (time-space 

resolution) 
            

13 Soil characteristics for infiltration             

14 Water infiltration in the sewer             

15 Evaporation potential             

16 Daily/seasonal pattern urban pollution load             

17 Population density             

18 
Urban drainage CSO pollution mean 

concentration 
            

19 Pumping capacity-activation levels             

20 Georeference of main CSO structures             

21 CSO weir geometry             

22 Layout of connected draining areas             

23 Transport line to WWTP capacity             

 

Waste-
water 

treatment 
plant 

24 WWTP reactor conditions             

25 Temperature WWTP             

26 Control WWTP             

27 Water treatment chemical addition             

 

Integrated 
Model 

28 
Model extrapolation to simulate corrective 

measures 
            

29 Climatological scenarios             

30 
Urban to WWTP link state-variable 

transformations 
            

31 
WWTP to River link state-variable 

transformations 
            

32 
Changes of environmental criteria and 

legislation 
            

33 Technological changes             

34 Change in urbanisation structure             

35 Change in land usage (agriculture-industrial)             

36 Solver settings             
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Figure 9: Elicited uncertainty source prioritization graphical panels 

Those sources considered highly relevant (large uncertainty and high model sensitivity) 

are further studied in the process. This generates a feedback loop in which first an initial 

model structure is proposed, uncertainty sources are propagated-studied and this directs 

efforts for model refinement or monitoring data acquisition. 

Here we present some of the most relevant uncertainty sources (extracted from the red-

yellow sections in Figure 9). The numeration can be found at Table 4. We provide also 

with a discussion on the process followed to quantify or minimise their effect as a feedback 

loop in the model design and operation process. 

• River upstream pollution load (3): Water quality dynamics beyond the Belgium 

border were not included in the model platform. Thus, constant pollutant 

concentration loads were assumed. This simplified description was expected to 

present high uncertainties and a significant contribution to the system dynamics. 

To ascertain the effect of this assumption, the Waterboard de Dommel carried 

out a dedicated measurement campaign. This verified that the boundary 

pollutant input had very little effect on the downstream sections of the system 

and therefore the sensitivity of the model is significantly lower than initially 

expected. The new measurement dataset also rendered a reduction on the 

uncertainty level. Figure 10 presents an updated uncertainty source graphical 

prioritization after the evaluation. 
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Figure 10: Updated uncertainty source prioritization graphical panel for the river sub-model after 

the dedicated monitoring study of the upstream boundary pollution load (3) 

 

• Sediment evolution (dredging and transport) (9): The river Dommel sediment 

bed represents a significant source oxygen demand. This effect was modelled 

through a constant oxygen demand rate based on onsite measurements, and by 

modelling the sedimentation of BOD matter in the river and its latter degradation. 

However, this model structure assumed that the physical layout of the sediment 

bed remains constant. Nevertheless, it is known that the river authorities have 

performed dredging activities to clean the riverbed and this is likely to happen in 

the future. This creates two effects: Firstly, during the activity period, strong 

oxygen depletion processes occur in the river (which will not be represented by 

the model), and secondly it will create a non-stationary process between before-

after cleaning. This can be accounted for by varying the constant sediment 

oxygen demand parameter. 

• Base-flow hydrology (4): The effect of baseflow hydrology uncertainties was 

taking into account through the use of a constant multiplier factor of the 

modelled hydrology input. This dominates the river volume (therefore dilution), 

which has an important effect in pollutant transformation and transport rates. 

• Errors at measured water quality data (10): Conditions for monitoring stations in 

the river section are not ideal and this can generate significant errors in the 

measured dataset. This can affect the calibration phase. Thus, a dedicated 

quality control was performed in the data set to identify reliable time series. 

• Pollution load rural catchment (5): The contribution from rural areas to river flow 

can become significant in some conditions. No monitoring data addressed this 

issue. Therefore, possible values for this pollution were represented using 

elicited parametric ranges. 

• Urban drainage CSO mean pollutant concentration vectors (18): Uncertainties 

due to the CSO water quality input were assessed by propagation forward their 

effect based on feasible ranges extracted from monitoring datasets. More 

information can be found in Moreno Ródenas et al. (2017b). 

• Rainfall data input characteristics (space-time resolution) (12): A dedicated 

study was performed to identify the optimal description of the temporal and 

spatial characteristics at urban rainfall inputs. This was performed by using 2 
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rain gauge networks (KNMI and de Dommel Waterboard) and a C-Band radar. 

This aimed to minimise and characterise the effect of uncertainties contained in 

the rainfall estimated input to CSO and dissolved oxygen dynamics. Further 

details can be found at Moreno Ródenas et al. (2016). 

• WWTP reactor conditions (24): The internal state variables at bioactive reactors 

in the WWTP model can have a significant effect in the model performance. 

Concentration rates at reactors can take several weeks-months to reach stable 

levels. Therefore, initial conditions for the WWTP were always extracted from a 

burn-in simulation period. 

• Model extrapolation to simulate corrective measures (28): This source of 

uncertainty is not directly quantifiable since no monitoring data is present when 

using an extrapolated model structure. However, this effect should be 

acknowledged and communicated. 

• Changes of environmental criteria and legislation (32): Conclusions from the 

decision-making process based on modelling results are affected by the 

selected environmental criteria. 

• Solver settings (36): A series of pre-test were performed to extract optimal 

solver settings, which minimise simulation times but respect the required output 

accuracy. 

4.7  Model calibration 

Calibration of the individual sub-models was performed based on: 

• Urban drainage: Calibration using detailed hydrodynamic modelling outputs as 

ground-truth. Validation using year-accumulated discharged volumes. Details 

can be found in Langeveld et al. (2013a). 

• WWTP: The calibration was performed following the BIOMATH calibration 

protocol (Vanrolleghem et al., 2003). 

• The river model was calibrated using flow and dissolved oxygen data in a 

section of the catchment. The outputs of WWTP and CSO (inputs of the river 

sub-model) were derived from the monitoring database during 8 months. The 

calibration phase consisted in a parametric inference in which 4 geometrical 

parameters for flow and 8 parameters for the water quality process description. 

(Moreno-Rodenas et al., 2017a). 

Figure 11 presents the uncertainty quantification at the inference process for the 

flow propagation at the river De Dommel (assuming a normally distributed error 

process). Figure 12 presents the posterior probability distributions for the 

inferred parameters at flow dynamics. 
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Figure 11: Flow river model inferred with 95% confidence intervals vs monitoring data. In green, 

the calibration phase and in orange the prediction phase vs monitoring (validation) 

 

Figure 12: Posterior probability density function for the 5 parameters inferred from flow data 



50 

 

The performance of the integrated model was validated against modelling data during 3 

years. The process of partial sub-model inference helps identifying structural model errors 

while at the same time the effect of upstream sub-model errors is minimized. However, 

measurement data uncertainties and erroneous description of the error process can 

influence parametric inferred (or calibrated) values. Additionally, highly parameterised 

models can provide enough flexibility to fit the process to the data under erroneous 

parameter values. This degenerates in a black-box model structure, which provided that it 

is used for extrapolation purposes (virtual corrective alternative testing) can lead to 

erroneous conclusions. 

4.8  Uncertainty propagation 

The time series (in orange) in Figure 11 represents a forward propagation of the 

uncertainties contained in the flow modelling process at the river model. This was part of 

the preliminary study to evaluate the effect of river geometrical description (sediment 

dynamics) and the effect of rural hydrology, and the uncertainties produced at the flow 

propagation model structure (which corresponds to uncertainty sources (4) and (9)). 

In Moreno Ródenas et al. (2017b) the uncertainties contained in the CSO water quality 

input were propagated through the river water quality (see Figure 13). This attended to the 

study dedicated to evaluate the uncertainty source (18). 

 

Figure 13: River dissolved oxygen forward uncertainty propagation due to errors in the CSO water 

quality input 

4.9  Model application 

The model structure described was used to study the effect of implementing a real-time 

control system (RTC), which actuates on selected variables at the urban drainage and 

WWTP subsystem (see Figure 14). The uncertainty analysis described on this document 

was carried out to discriminate between different sources and improve the model structure. 

Further details of this application can be found at Langeveld et al. (2013a). 
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Figure 14: Global sensitivity analysis of DO and NH4 concentrations at different sections in the river 

by the use of a RTC system (adapted from Langeveld et al. (2013a)) 

The accuracy of model outputs for the RTC application in the De Dommel catchment 

proved sufficient to evaluate its effect in the system’s dynamics. This study concluded that 

RTC can improve the receiving water quality on the current system, yet it was insufficient 

to meet the desired water quality criteria established by the authorities. This example is 

based on the results of the KALLISTO project (Benedetti et al., 2012b), which 

encompassed the assembly of the integrated model and decision support based on this 

model without the herein described uncertainty analysis. Therefore, this example should 

be taken as a theoretical exercise. Further information can be found in the work of van 

Daal-Rombouts et al. (2016) and van Daal et al. (2017). 

Nevertheless, it seems important to highlight that this process did not only focus on a 

quantification of the output model uncertainty, which although necessary for its 

communication to the user, is of little use for the modeller. Rather, the uncertainty 

framework appoints the modeller to perform an inline uncertainty assessment in the model 

development phase. This feedback loop served to gain detailed information in the physical 

processes involved and in the performance of the individual sub-models. Which were used 

to direct further model structural improvements and guide efforts for monitoring data 

acquisition. 
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5  Conclusion 

The application of uncertainty analysis in planning practice depends on the available data, 

computational resources and an equilibrium between effort, in terms of labour and costs, 

and the expected benefit. A basic uncertainty analysis of the model however should be 

part of any planning process. The framework established in this deliverable covers the 

bandwidth between these minimal requirements and more sophisticated methods, which 

are advisable for models assigned to more complex planning endeavours. The treatment 

of uncertainties is incorporated here not as one step included in model analysis or 

calibration, but as a continuous work accompanying the entire integrated modelling 

process. This deliverable, in concert with other outcomes of the QUICS project, provides 

information and references for modellers in integrated catchment studies. 

Four main points sum up the content and intent of this deliverable and for these points 

this deliverable also wants to provide a discussion contribution: 

• Uncertainty analysis should be a process performed in parallel to the modelling 

exercise rather than being a small part of it. It is a continuous work 

accompanying the entire integrated modelling process. The same applies to 

documentation of the modelling steps and the uncertainties connected. When 

uncertainties are approached in this manner, it gets much easier to rehearse 

and justify the simplifications, assumptions and finally decisions made. 

• Linking together different models is a difficult task and requires proper handling. 

The important issue is not the scale of a model, but the integration of different 

models developed at different scales. It is often at these interfaces that the 

modelling approach radically changes. This also intertwines with the question of 

calibration of integrated models. Due to the fact that not all sub-models can be 

calibrated and every sub-model will always be influenced by the calibration of 

the ‘upstream’ models used as input, distortion is unavoidable in practice with 

linked models and could only be avoided by building an integrated model from 

scratch. 

• Although not all uncertainties are graspable for every modelling effort and some 

still for none, the choice of omitting them in the modelling process should be a 

conscious choice. Even if it is not completely voluntarily but rather forced by 

limitations in budget, time, information or computational budget implementing 

these uncertainties into the modelling process and knowing (and documenting) 

the reasons why they were not considered can bring benefit to all involved 

parties as well as following projects. 

• An often overlooked but important part of integrated modelling is the reporting of 

the results to the decision makers. It is important to communicate our results to 

the decision makers in an appropriate way for the aspired audience. This will be 

an ongoing discussion on how uncertainty can be included into the decision 

process, especially about how much uncertainty are the decision makers willing 

to accept for different goals as well as in future regulations. 
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