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Executive Summary 

  

This report combines deliverables D1.1 and D4.2 and focuses on uncertainty 

frameworks and their applications in urban drainage modelling. 

  

We review the research found in literature dealing with uncertainty quantification or 

analysis of water quantity and quality simulations using urban drainage models 

followed by a critical analysis of uncertainty framework proposals by Refsgaard et al. 

(2006), Refsgaard et al. (2007) and Deletic et al. (2012) by discussing the merits and 

limitations of these frameworks. 

  

This report further suggests potential future improvements which should be 

incorporated in upcoming uncertainty frameworks. These improvements have been 

suggested by addressing the limitations of the three frameworks through latest 

research found in the literature on uncertainty analysis. In addition, certain merits 

which are not common to all the three frameworks are also suggested as an area of 

potential improvement. 
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1. Uncertainty in urban drainage and environmental 

modelling 

Decision making in urban drainage infrastructure management is mainly performed 

by urban drainage managers and engineering professionals. The definition of an 

efficient decision often strongly revolves around strict compliance with 

regulatory/policy guidelines while satisfying organisational budget constraints. 

Regulatory authorities set certain environmental thresholds for water utility 

companies such that the combined sewer overflows (CSO) and the discharges from 

wastewater treatment plants (WWTP) managed by the utility companies must 

conform to the regulations. These utility companies face the risk of paying a penalty 

and/or negative publicity if they breach the permitted environmental thresholds for 

the release of untreated and treated wastewater into receiving waters in the natural 

environment. Decisions on measures to control untreated sewage discharge to the 

receiving surface water bodies are often based on simulation models which are 

mathematical representations of the physical processes involved. However, these 

numerical models should also provide uncertainties accompanied with the model 

predictions because any unaccounted uncertainty in these model predictions could 

have a significant effect on the outcome of the decision making process of water 

utilities that manage the drainage infrastructure. An uncertainty analysis provides 

information on the limitation of models and simulation methodologies employed to 

predict the physical processes. 

The modelling uncertainty can be classified into two broad categories, aleatory and 

epistemic (Kiureghian & Ditlevsen, 2009). Aleatory uncertainty refers to the inherent 

randomness in any physical process while the epistemic uncertainty arises from a 

lack of knowledge about the physical process in question. Kiureghian & Ditlevsen 

(2009) argue that the categorization of the uncertainties in any modelling study 

depends on the choices a modeller makes. Typically, a modeller should categorise 

uncertainties as aleatory uncertainties when they cannot be reduced by improved 

knowledge through additional data collection or model structure or calibration 

improvement. In contrast to aleatory uncertainty, epistemic uncertainty is associated 

with the assumptions and simplifications made while formulating the mathematical 

equations to represent the physical processes. As a result, epistemic uncertainty can 



5 

be reduced by various measures such as enhanced calibration using better or more 

measurements and improvement of the underlying mathematical relationships. 

In this report, we define uncertainty, wherever mentioned from here on, as epistemic 

uncertainty arising from model simulations. Among the various sources contributing 

to this type of uncertainty in model calculations, Refsgaard et al. (2007) classified the 

uncertainty in modelling into model input data, model parameters and model 

structure uncertainties whereas, Deletic et al. (2012) expressed the uncertainty in the 

calibration of model parameters as a separate source of modelling uncertainty. In 

this report, the classification of uncertainty proposed by Refsgaard et al. (2007) is 

used by treating any calibration uncertainty as a subset of model parameter 

uncertainty. 

The major input to urban drainage models is rainfall whose uncertainty can have a 

significant effect on the overall model uncertainty (Hoppe, 2008). Rainfall data 

uncertainties are characterised by spatial and temporal variability and the error in 

data measurement. Thorndahl and Willems (2008) looked at the effect of the 

uncertainty in rainfall estimation on the failures of urban drainage system where they 

looked at localised flooding failures by modelling one manhole at a time. It was found 

that synthetic rainfall events generated using depth and duration of measured rainfall 

events were sufficient to simulate the occurrence of manhole surcharge and flooding 

events. Freni et al. (2010) studied the impact of rainfall time resolution on urban 

water quality assessments and concluded that rainfall temporal resolution had a 

greater effect on water quality sub-models than the structure of the water quantity 

sub-models due to the dependency of the wash-off sub-model on the rainfall 

intensity. However, when a lower temporal resolution of rainfall is applied, parameter 

calibration compensates this lack of information in rainfall data by adjusting the 

parameter values to reflect the real world behaviour. The physical significance of the 

parameters might have been lost as a result of this forced calibration adjustment of 

parameter values. 

Most water quality and hydraulic models have model parameters which are required 

to be empirically estimated. Model parameter uncertainty is the uncertainty 

associated with the estimation of each parameter in the model. Input data such as 

roughness values, geometrical parameters which remain fixed during the single 

model run are grouped as model parameters in this report. Often these parameters 

are estimated using monitoring data; however, if there is no evidence or data 
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available and the parameter value has to be assumed, this may result in an unknown 

and possibly higher degree of uncertainty. In some cases, the desired parameter is 

estimated by combining two or more parameters from different sub-models because 

there is no direct measure for its estimation. The uncertainty associated with the 

parameter of interest consists not only of the uncertainties in the values of sub-model 

parameters but also of how these uncertainties propagate between sub-models. For 

example, roughness in sewer pipes can be estimated using the Colebrook-White 

equation which uses geometrical and flow characteristics in the pipe (Swaffield & 

Bridge, 1983). The potential uncertainty in these characteristics affect the estimated 

values of pipe roughness. 

The steps involved in uncertainty analysis are directly linked to the estimation of the 

values of parameters. Standard statistical methods result in a point estimate and a 

measure of precision around this point estimate, for example, a 95% confidence 

interval. However, within a multivariate framework, an additional measure 

‘covariance’ is also generated which reflects the relationship among parameters. 

Representation of the parameter uncertainty depends on the method applied. In a 

deterministic uncertainty analysis, the uncertainty is expressed as the possible range 

based on the belief about the parameter, however, in probabilistic uncertainty 

analysis, a distribution is produced by specifying the distribution parameters which 

provide the likelihood of the parameter values. Uncertainty distribution around the 

‘true’ parameter value (expected value) can be expressed through either Bayesian or 

frequentist approach. It is suggested that the assumptions to specify the probability 

distribution should follow standard statistical methods, for example, one may use a 

beta distribution for binomial data, or a gamma or lognormal for the right skewed 

parameter (O’Hagan et al., 2006; Briggs et al., 2012). 

Sometimes there is very little information available about the parameter because 

either there is no data or there are not many studies related to its estimation. In such 

cases, a conservative approach can be followed by relying upon expert opinion and 

the uncertainty can be explained through an appropriate range of possible estimates 

elicited from each expert (Garthwaite, Kadane, & O’Hagan, 2005). If formal elicitation 

is not feasible, a wide uniform distribution can be assumed to account for the 

uncertainty around this parameter. There has been a lack of studies where prior 

parameter distribution was estimated from field measurements representing the 

measured behaviour of a parameter. Studies such as Freni et al. (2008), Korving et 
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al. (2002), and Vezzaro et al. (2013) proceeded with the prior assumption that the 

input and model parameters followed uniform or normal distributions which may not 

reflect reality. These distributions do not account for uncertainty at the extremes or 

beyond the range specified. In addition, continuous distributions which give a reliable 

estimate of uncertainty around the expected parameter value should be preferred. 

Instead of using a triangular distribution (Iooss & Lemaître, 2014) while performing 

three-point estimates, it is recommended to use PERT distribution which is a special 

case of a Beta distribution (Benke, Lowell, & Hamilton, 2008). The distribution is 

specified by assigning maximum, minimum values and the mode which is the most 

likely value. The scale parameter λ for the height of the distribution is taken as 4 by 

default (Vose, 2000). The PERT distribution has a distinct advantage over a 

triangular distribution because it can be changed from a symmetrical distribution to a 

skewed distribution by changing the mode. It can be used instead of a normal 

distribution when the parameters take values within a specified range and the 

extreme values are not important (Benke, Lowell, & Hamilton, 2008). 

The choice of methods to represent the uncertainty in input data and model 

parameters in model simulations depends on the computational requirements and 

complexity in implementing such methods (Dotto et al., 2012). Monte Carlo 

simulation is one such method which is non-intrusive, meaning it does not require 

modifications to the model structure. However, Monte Carlo is not easy to implement 

for computationally expensive models, hence this technique is usually applied to 

simplified models. The Monte Carlo method involves repeated simulations with 

samples of the selected input/ model parameters drawn from the parameter space. 

This results in a mapping of input/model parameters to the desired model output. To 

cut down the required number of simulations, Latin hypercube sampling (LHS) can 

be used instead of random sampling because the LHS method results in a better 

convergence than random sampling approach for models which require long 

simulation time and it has the ability to generate samples representing the entire 

parameter space (Helton & Davis, 2003). Korving et al. (2002) propagated the 

uncertainty in model parameters to simulate combined sewer overflow volume using 

Monte Carlo simulations where the sewer system was simply represented as a 

reservoir connected to an external weir and a pump. Alternately, model reduction 

techniques have been used for complex models, for example Schellart et al. (2010) 

used a response database for model reduction before applying Monte Carlo 
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simulations for uncertainty propagation in an integrated catchment model which 

comprised a rainfall generator, a simplified hydrological model, a computationally 

expensive sewer hydrodynamic model and a simple river impact model to estimate 

water quality failures in a receiving watercourse over an extended time period. Model 

reduction is an approximation of a complex model and introduces additional 

uncertainty in the realisation of the physical system on top of the uncertainty in the 

complex model. 

A further approach to quantify the uncertainty of the output for complex models is to 

select only a small subset of dominant model inputs and parameters which can 

explain the model output variance for uncertainty analysis or parameter estimation 

(Wainwright et al., 2014). Key processes to be included in the uncertainty analysis 

were identified by ranking all the parameters using sensitivity analyses. This reduced 

the computational cost by only including the most significant parameters in the 

uncertainty analysis. There are several methods proposed in the literature for 

performing sensitivity analysis which can be broadly classified as Global Sensitivity 

Analysis (GSA) or Local Sensitivity Analysis (Saltelli et al., 2000).  Local sensitivity 

analysis is performed to study the effect of small input perturbations on the model 

output and has been performed around a point in the parameter space whereas a 

GSA has been performed over the whole parameter space of model inputs 

considered for study (Gamerith et al., 2013; Iooss & Lemaître, 2014; Borgonovo & 

Plischke, 2016). Global sensitivity analysis is performed using different approaches 

e.g. Standard regression coefficients (SRC) (Saltelli et al., 2008), Extended-FAST 

method (Saltelli et al., 1999), Morris Screening method (Morris, 1991), Sobol’ indices 

(Sobol, 2001). Although Vanrolleghem et al. (2015) preferred Extended-FAST over 

SRC and Morris Screening method for water quality simulation in the catchment and 

sewer network, they concluded that for water quantity simulations all three methods 

Extended-FAST, SRC, and Morris Screening produced similar results. Kroll et al. 

(2016) further demonstrated that Morris Screening performed on par with Extended-

FAST while ranking the influence of parameters on CSO volume. It can be 

concluded that Morris Screening is an appropriate method for performing GSA 

because it is computationally cheap and it performs at a level with other available 

more computationally expensive methods. 

Model structure uncertainty corresponds to the inaccuracy in the simulation used to 

represent the process. This uncertainty can also arise from inappropriate methods to 
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define the boundary conditions, errors in construction plan databases which are 

transferred to the geometrical model structure of pipelines (Clemens, 2001) or the 

choice of numerical solution techniques (Deletic et al., 2009). These different 

uncertainties get coupled with each other and propagate through to the model 

outputs (Swayne et al., 2010). 

2. Uncertainty quantification frameworks 

Simulations from urban drainage and water quality models are subjected to 

significant levels of uncertainty. This is due to the inherent characteristics of those 

systems; complex processes represented with limited knowledge, relationships 

calibrated with small data sets, and linked simulations carried out over a wide range 

of spatiotemporal scales. During the last decade, there has been a clear agreement 

within the environmental engineering and urban drainage scientific community 

regarding the need to quantify and communicate modelling uncertainties. This was 

further recognised by the development of several frameworks directed to provide the 

community with a common uncertainty language and repository of methods. 

Refsgaard et al. (2006) brought the focus of uncertainty analysis to the quantification 

of model structure errors. This is recognised as a significant uncertainty source in 

most water quality modelling applications. Refsgaard’s work discusses the process 

to assess model structural uncertainty in cases in which data are not available. 

Refsgaard et al. (2007) postulated a more comprehensive framework for uncertainty 

tractability in the environmental modelling process. Several methods were 

qualitatively presented and classified depending on their relation with the model 

conceptualization stage and the type of source uncertainty. This work discussed 

uncertainty analysis not as an additional product to be added to the finished model, 

but rather as a process that should happen in parallel to the problem identification, 

model design, build and operation. 

Deletic et al. (2012) presented a Global Assessment of Modelling Uncertainties 

(GAMU) produced by the IWA/IAHR Joint Committee on Urban Drainage. This was 

an effort to provide urban drainage modellers with a unifying terminology and 

understanding on uncertainty analysis. Within GAMU, modelling uncertainties were 

classified in three main sources; I) Model input uncertainties, II) Calibration 
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uncertainties and III) Model structure uncertainties. The links between uncertainty 

sources are depicted in Figure 1. 

 
Figure 1. Key sources of uncertainties in urban drainage models. From Deletic et al. (2012). 

 

The GAMU framework focuses on statistical uncertainties at the calibration and 

prediction phases of the model, thus diverting from the process established by 

Refsgaard et al. (2007). 

The GAMU framework defined a procedure for uncertainty analysis composed of 

three steps: 

1. Selecting analysis tools and data sets to minimise uncertainties: Each 

type of model/objective influences the requirement/suitability of calibration 

tools (CA), objective functions (OF) and the calibration-validation dataset. The 

prior selection and justification of them is directed to minimise uncertainties in 

the modelling process. 

2. Creating probability distributions of model parameters while 

simultaneously propagating all data uncertainties: The GAMU scheme 

recommends proceeding with the calibration/inference of parameters while 

simultaneously propagating uncertainties due to input data. The calibrated 

model is then used to determine model predictive uncertainties. Total 

predictive uncertainties are assessed using the residuals of the validation 

process. 

3. Comparing different model structures for similar scenarios: Uncertainties 

due to model structure could only be assessed by comparing the performance 

of different model conceptualisations under the same conditions. GAMU 
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appoints the modeller to propose several model structures which total 

uncertainty is compared by applying step 1 and step 2. 

3. Advances in uncertainty analysis methodology 

After the presentation of the GAMU and Refsgaard et al. (2007) frameworks, several 

studies appeared addressing some aspects of uncertainty quantification in urban 

drainage and water quality modelling. This is not an exhaustive list yet it aims to 

provide the reader with an overview of the research interests after the initial 

frameworks. 

  

Addressing parameter inference/calibration tools 

Following the release of the GAMU framework, Dotto et al. (2012) presented a 

comparative analysis of four techniques for parametric inference/calibration in urban 

drainage. This work discussed the suitability of GLUE, SCEM-UA under GLUE, 

AMALGAM and MICA to fit parameter vectors to observed data and to evaluate 

parametric correlations. Algorithms were classified according to their ability to 

identify parameters values, correlation, availability and the required user skills. This 

study refers to the first step of the GAMU framework which discusses how tools for 

uncertainty analysis should be carefully chosen in order to minimise biased 

outcomes. 

It should be noted though, that the applicability of GLUE-based techniques and non-

formal likelihood measures are still subjected to debate in the literature (Stedinger et 

al. 2008; Freni et al. 2008; Mantovan and Todini, 2006 and Beven et al. 2008). 

Formal Bayesian methods are discussed in the GAMU framework as one of the main 

ways to infer probability density functions of parameter spaces. However, the 

influence of likelihood selection and posterior validation was not discussed. Schoups 

and Vrugt, (2010) proposed a generalised likelihood relaxing the assumptions of 

residual gaussianity, autocorrelation and homoscedasticity. Del Giudice et al. (2013) 

proposed a statistical description of bias in a likelihood function for urban drainage in 

which autocorrelation of errors are taken into account. Freni and Mannina (2012) 

explored the influence of the use of Box-cox transformations in Bayesian inference 

for water quality modelling. 
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Uncertainty analysis and propagation 

Willems (2008) and Willems (2012), presented a methodology and application to 

quantify the contribution of different sources of uncertainty in urban drainage models. 

This method is based on a variance decomposition approach, which separates the 

total variance presented by the residuals in different characteristic sources; Input, the 

parameter (expert elicited), and structural uncertainty (quantifiable uncertainty). 

Nevertheless, the variance decomposition approach described is subjected to 

several assumptions. First, it requires a homogeneous variance of the model-

observations residuals. This is seldom found in real applications, thus Box-cox 

transformation was used in order to stabilise residual variance (reaching 

homoscedasticity). Secondly, variance decomposition relies strictly on the 

independence of error terms. This fact was pointed by Freni and Mannina (2010) by 

comparing the relationship between the sum of partial variances and total variance. 

This difference indicates non-independency of the error terms. They concluded that 

the applicability of this method is increasingly reduced when propagating 

uncertainties downstream of the sub-model chain, where correlation amongst 

parameter uncertainties appears to be higher. The variance decomposition method 

provides a valuable source of knowledge by pointing out the relative importance of 

each contributor when the assumptions are met. 

Most of the above-mentioned studies have considered the probabilistic 

representation of uncertainty in different model components. Fu et al. (2011) argued 

that the type of uncertainty in urban drainage modelling is quite broad and cannot be 

expressed adequately by probabilistic measures alone. They proposed a 

mathematical framework which facilitated the inclusion of vagueness in expert 

knowledge about model parameters using fuzzy sets and imprecise rainfall data 

using probabilities. This framework suggests the use of imprecise probabilities for 

input rainfall data when more than one probability distributions fit the data. For model 

parameters, data scarcity to characterise their uncertainty is widely cited as one of 

the major problems. This framework includes a fuzzy set representation for such 

model parameter uncertainty. These two different types of uncertainty 

representations are combined in a joint random set using two methods, discretization 

and Monte Carlo method where the latter was found to be more computationally 

efficient. 
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Input and measured data 

The GAMU frameworks proposed the definition of error models for input and 

measured data, which should be propagated together in the total uncertainty 

analysis. Dotto, et al. (2014) explored the impacts of data uncertainty on urban 

stormwater models, concluding that although random errors could easily be filtered 

by the parameterization, systematic errors had a significant impact. Biases in the 

measured data led to distinct parameter distributions. Del Giudice et al. (2016) used 

a stochastic model for rainfall inputs in a water quantity urban model. Outflow data in 

the sewer system was used to constrain the characteristics of the rainfall stochastic 

process. Uncertainties in model inputs are often represented by a correcting factor 

(eg. rainfall multipliers) which limits the variability of the measured time-series to 

places where measurements are not zero. This prevents rainfall measurement 

failures to be represented in the input uncertainty representation. Findings from Del 

Giudice et al. (2016) indicate that this extra flexibility can help to better refine the 

rainfall-runoff and urban drainage model parameters. Although it can be arguable 

that providing too much flexibility to an input process should not lead to issues of 

process identifiability. Sun and Bertrand-Krajewski (2013) analysed the effect on 

water quantity modelling uncertainties of small urban catchments of rainfall input, 

concluding that the contribution of rainfall input to uncertainties is relatively minor. 

4. Discussion and future prospects  

The following section is framed as a discussion on the possible shortcomings and 

gaps identified in the current frameworks for uncertainty assessment. Deletic et al. 

(2012) serves as a base to reach a common definition of uncertainty terminology. It 

correctly discusses the need for model identification, calibration and validation. 

However, the applicability of the current framework for real cases is probably limited. 

Additionally, some concepts might lead to confusion within the scientific community 

and so might need further revision. 

 

(1) Uncertainty Quantification vs Uncertainty Analysis 

There is still certain confusion on the use of terminology for uncertainty analysis, 

propagation and quantification. Those terms are still used interchangeably although 

they address fundamentally different (but not exclusive) problems. The GAMU 
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framework dealt only with the propagation of statistical uncertainties. Thus directing 

the modeller to the following process:  

1.   Define uncertainty distributions for input data sources 

2.   Identification of important input/model parameters through a sensitivity 

analysis 

3.   Infer parameter probability density functions from the comparison of a 

given model structure vs measured data (inverse modelling). 

4.   Propagation of uncertainties in the selected input/model parameters, 

model structure and input data for a validation data set (forward 

modelling). 

5.   Comparison of total uncertainty propagation from two or more different 

model conceptualisations.  

This, when carried out appropriately could provide an estimation of the model 

predictive uncertainties. The quantification of total predictive uncertainties is 

recognised as a necessary exercise for a transparent communication of model 

results. However, this quantification alone will hardly provide any additional 

knowledge to the modeller beyond an assessment of how reliable a model is in a 

given context (boundary conditions and input data). Perhaps even of more 

importance from the scientific and operational perspective is the case of model 

structure improvement. Every modeller seeks to increase its capability to reproduce 

reality; this is done by applying all available theoretical and experimental knowledge 

to the service of a good conceptualization of the phenomena, often this imperfect 

knowledge is translated to a structural misfit (often referred as epistemic uncertainty 

and model structural error). With the proposition of the GAMU only a comparison of 

the relative performance between two already conceptualised strategies can be 

performed, requiring a “blind” updating of the model structure. GAMU suggests the 

need to perform sensitivity analyses to identify important input and model 

parameters. However, this represents an inefficient strategy to lead to model 

improvement, as long as the detection of individual uncertainty contributors remains 

unaddressed. 

As mentioned previously, Willems, P. (2008) and Willems, P. (2012) discussed a 

methodology to decompose the total uncertainty in different contributors, which 

should be further tested and developed. Other approaches as in Reichert and 

Mieleitner (2009), focused on using time-dependent parameters as a proxy to detect 
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temporal windows of structural mismatch, pointing therefore at examining particular 

physical processes. 

In the field of hydrology, Gupta et al. (2008) discussed the need for developing a 

new philosophy of model evaluation, as a “diagnostic approach”. They acknowledge 

the poor capability of current data assimilation methods to pin-down and detect 

incorrect individual structural definitions. Formal likelihood-based inference methods 

fail to produce this information since they evaluate the measurement n-dimensional 

informative space through a one-dimensional criterion, which by definition generate 

an ill-posed system. The alternative proposed is based on the extraction of the 

relevant patterns and signatures from data. If those pattern signature statistics are 

carefully chosen to be discriminatorily sensitive to certain process-based 

parameters, this brings the possibility to detect which parameter cluster is not able to 

be fitted to the data, pointing then to a possible main contributor to the epistemic 

uncertainty. An early adoption of this idea can be found in Vrugt and Sadegh (2013) 

and Sadegh and Vrugt (2014), in which an implementation of this philosophy is done 

for an Approximate Bayesian Computation (ABC) scheme. Although many issues 

are still to be addressed: 

● how to deal with input uncertainties, the need to include an error-generating 

process (not included in Sadegh and Vrugt (2014))  

● how to perform the correct detection of epistemic errors 

● how to define a sufficient number of pseudo-orthogonal parameter signatures 

which provide a diagnostic information extraction 

Further research on uncertainty analysis should focus on uncertainty source 

decomposition and its use to provide valuable information to the modeller, 

incrementing the overall knowledge on the processes studied, directing monitoring 

network design and understanding the characteristics of the particular system. 

 

(2) Assessment of uncertainties 

The second limitation of the uncertainty quantification framework proposed by 

Deletic et al. (2012) is that it recommends uncertainty analysis as a standalone and 

separate process than the usual modelling workflow. Model calibration using 

observed data is nothing but correcting the model in order to generate predictions 

which are as close as possible to the real world. However, it does not provide any 

information about the accuracy of the model predictions such as by which amount 
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the model predictions would deviate from this ‘corrected’ model prediction and what 

is the likelihood of such deviations. An uncertainty analysis acknowledges the 

limitation of the model predictions by providing an error band with the corresponding 

likelihood of model predictions. This additional information gives more confidence to 

the modellers on their model performance which would further facilitate a better-

informed decision making. Therefore, it is recommended that uncertainty analysis 

should be treated as a process which runs parallel and is integrated into the model 

definition, building, calibration, and validation stages. 

For example, Deletic et al. (2012) recommend that parameter uncertainty should be 

quantified using observed data through Bayesian inference which provides posterior 

distribution for such parameters by tuning the prior parameter distribution using the 

observed data. This process indirectly addresses the discussion on the validation of 

quantified uncertainty in model predictions against the observations in the real world. 

Even if there is limited data available about parameters, expert elicitation or literature 

references can be used as a prior in the Bayesian inference so that the resulting 

posterior distribution encompasses the expert knowledge as well as the added 

information from the limited available data. Therefore, instead of a traditional model 

calibration process giving ‘corrected’ parameter values, a Bayesian inference may be 

applied to generate a posterior probability distribution of model parameters along 

with the information about the correlation between the model parameters followed by 

uncertainty propagation of these uncertainties. This will ensure the consideration of 

the real world observations into the uncertainty analysis process and will also ensure 

that local catchment and environmental conditions are well reflected into the 

uncertainty predictions. 

In cases where there is vagueness in the available information about the uncertainty 

in model components, the framework proposed by Fu et al. (2011) should be 

integrated into the wider uncertainty analysis framework to characterize the 

uncertainty in different sources using fuzzy sets, interval based probabilities, 

imprecise probabilities etc. depending on the type of uncertainty. 

 

(3) When model inference is not viable 

The procedure proposed in the GAMU framework is often not applicable to full-scale 

urban water quality models in real applications. The methodology depicted relies on 

the possibility to infer converged probability distributions of the sensitive parameters. 
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In most cases, this requires a prohibitive number of model runs, which seldom will be 

affordable for a modeller in a real sale study. Uusitalo et al. (2015) presented a 

comprehensive review of strategies for uncertainty analysis in slow paced models. 

Some examples with direct application to hydrology and urban drainage could be 

listed as: 

  

1.   Conceptual model schemes: Langeveld et al. (2013) 

2.   Model data-driven emulation: By interpolating a model output metric like in 

Schellart et al. (2010), emulation of the posterior probability density function 

or likelihood (Dietzel and Reichert, 2012) which can speed up sampling from 

the likelihood. 

   Often, the uncertainty analysis interest lays in a dynamic model response 

(output time-series). This presents the added difficulty of having a multi-

variable process with heavy autocorrelation structures (time structure). Some 

authors have proposed strategies to deal with those cases; Carbajal et al. 

(2017) compared a physically based emulator (which merges a simplified 

physical model and error interpolation) with a fully data-driven emulator 

(based on Gaussian process interpolation of a decomposed time-series) for 

an urban drainage case. Conti and O’Hagan (2010) presented three 

strategies to deal with multi-output or dynamic simulators a multivariate 

Gaussian process, ensembles of single-output emulators or the use of time 

as an extra dimension. Emulation of time-dynamic processes can also be 

proposed by the use chaos polynomial expansions as in Xiu and Karniadakis 

(2003). This technique can also provide sensitivity analysis result, therefore, 

both processes SA and emulation can be done under the same model 

sampling scheme. However, the integration of dynamic input uncertainties in 

emulation based problems is still not readily solved the problem, limiting the 

process to parametric uncertainty propagation. 

3.   Parallel model sampling algorithms: which speeds up the convergence of 

posterior exploration (Laloy and Vrugt 2012; Dejanic et al. 2017) 

4.   Postprocessor based strategies; slow models which are used operationally 

(eg. flood forecasting, resources estimation etc.) often present large 

databases of measurement and model results. This information can be used 

to estimate the model behaviour against new scenarios. If model residual 

http://www.sciencedirect.com/science/article/pii/S1364815214002813?via%3Dihub
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patterns for similar conditions are present in the database, this can be 

directly used for estimation of the current uncertainties (eg. Wani et al. 2017). 

Those strategies are reserved for the case in which the interest is only on 

approximating total predictive uncertainties. 

5. Conclusion 

The objective of this document is to discuss the validity of currently available 

frameworks for uncertainty analysis in urban drainage and water quality modelling 

based on their impact in the scientific bibliography and to identify gaps for 

improvement. Some issues still remain poorly addressed and they require further 

attention, some of the most relevant ones can be listed as: 

● Uncertainty analysis should be discussed as a process in parallel to the 

modelling exercise. Aiming to evaluate the degree of uncertainty of model 

outputs, the decomposition of source contributors, and to use this knowledge 

to direct needs in monitoring data acquisition and model structure 

improvement. 

● There is a lack of a common methodology to decompose uncertainties. The 

studied frameworks only discussed quantification of total uncertainty, 

neglecting the separation of contributing sources. 

● The methodologies proposed for inference of parameter probability 

distributions will often not be applicable to many integrated catchment studies 

(computationally demanding). Further research in model emulation and model 

reduction is required.  

● Future frameworks should provide the capability to include different ways of 

representing uncertainty in modelling on the similar lines to the framework 

proposed by Fu et al. (2011). This ensures a more suitable representation of 

the available knowledge about the uncertainty.  

Nevertheless, it is necessary to mention that the 3 frameworks discussed in this 

document represented an excellent starting point for discussion in a field in which 

uncertainty analysis is still not of wide use in practice or research.  
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