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Executive Summary  

This report is intended to serve as an opinion piece – based on the lessons learned in the 

past few years by the author related to the proper quantification and reduction of 

uncertainties in hydrologic model predictions. 
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1  Introduction  

Going by Newtonian mechanics, if we know the state of any hydrologic phenomenon 

exactly, we should be, in principle, able to predict its future state exactly (Laplace, 1814). 

However, in practice we make various approximations – among other things, neglecting 

many processes in the modelling exercise - which result in simulations differing from 

reality. Therefore, even if we start with the assumptions of classical mechanics, we are 

beset with uncertainties. There has been extensive research on various sources of 

uncertainty in environmental modelling and its proper quantification (e.g. Renard et al., 

2010; Reichert and Schuwirth, 2012). Epistemic uncertainties, like model structure deficits, 

and the ignorance about parameter values play a significant role in determining the quality 

of a model prediction (Del Giudice et al., 2013). It has been documented and researched 

that oversimplification of models and usage of erroneous inputs reduce the accuracy of 

environmental predictions (Del Giudice et al., 2015). To put the model predictions to 

proper use in design and forecast, proper quantification of uncertainty is required.  

 

In this document, we intend to put forth our experience with two uncertainty quantification 

paradigms:   

1) Bayesian Inference: Uncertainty analysis is essentially an attempt to capture the 

probability of occurrence of events, conditioned on our most updated knowledge of the 

system. The formal description of such probability can be made using a likelihood function. 

If used within the Bayesian framework, a likelihood function also allows to learn about 

model parameters from available data through inference.  

2) Post-processors: Other techniques, such as post-processors, are also available to 

quantify predictive uncertainty, without the need to recalibrate the model. They generally 

learn about the error processes from the past errors of the model and project that 

uncertainty into predictions. 

We also provide references for those who want to study these paradigms in detail. 
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2  Likelihood Function Based Uncertainty Estimation 

In the recent past, the additive description of bias arising from model structure 

deficits and uncertainty inputs has been widely studied. Reichert and Schuwirth (2012) 

describe true system response Yt at time t of an environmental system as the sum of a 

deterministic model m and a stochastic process B: 

Yt = 𝑚t(𝐱, 𝛉𝐦) + Bt(𝛉𝐁). (1) 

Representing variables by capital letters and write vectors bold. In Eq. (1), the stochastic 

process B captures the bias of the model due to structural limitations and input errors. The 

model inputs are denoted with x and parameters with 𝛉. Knowledge about the physics of a 

hydrologic system (represented by m) and the error-generating processes can be 

formulated in terms of a conditional probability distribution, called likelihood function. It is 

defined as the probability of observing a system response, given a set of parameters and 

input. Mathematically: 

pY(y |x, θ)   (2) 

Given a set of observations, which constitute the samples from the likelihood function, the 

parameters of the likelihood function can be inferred using Bayes theorem. It has been 

suggested to represent the bias B as a Gaussian process (Kennedy and O'Hagan, 2001). 

This makes it possible to write the likelihood function as a multivariate normal distribution 

with a mean and a covariance matrix.  

The likelihood function can also be defined by having a stochastic model for the process 

itself, or having a deterministic model and introducing stochasticity by a multiplicative 

random variable. In case of explicit consideration of bias, the deterministic model and the 

additive bias may be equally able to explain the data. To avoid identifiability problems 

during inference, proper priors can be chosen. As we would like the model to explain the 

underlying trend of the hydrologic process, the mean of the bias should be zero.  

Once a likelihood function is explicitly defined, it can be also extended for different data 

types. For example, when censored data is available, inference can be carried out by 

integrating the likelihood function over correct intervals. 

 

The advantages of using such a paradigm are: 

1) Proper quantification of parametric uncertainty. The prior knowledge about the 

system can be captured by the prior probability distribution and data can be used to 

update the prior. 

2) The likelihood function can be formulated to decompose uncertainty due to model 

structure deficits, parameters and inputs. 

3) The paradigm can be extended to different types of data like censored or binary. 

(Wani et al., 2017b) 
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4) The dependence between the parameters gets captured in the posterior 

distribution, thus helping in proper estimation of parametric uncertainty.  

The challenges of using such a paradigm are: 

1) The likelihood function needs to be defined properly so that the properties of the 

error process are adequately represented. 

2) The computational costs of running a sampling algorithm, which helps provide 

parameter samples from the posterior, is higher than a simple optimization 

algorithm, which finds the best fit parameters. (However, the use of emulators is 

alleviating this concern. (Carbajal et al., 2017)) 

3) The specification of priors for the parameters of the error process can be a 

challenge. 

 

For details on the additive description of bias, please be referred to (Del Giudice et al., 

2013) 

 

Fig. 1. Inference of model parameters in the calibration phase of a two-bucket conceptual model and the 

uncertainty intervals in the prediction phase using the likelihood function description in Eq. 1 and 2.  
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Fig. 2. The improvement in the model performance in the validation phase after inference using five hundred 

binary data points. The model is a two parameter linear model, with a sinusoidal input. (source: (Wani et al., 

2017b)) 

 

Fig. 3. Bivariate posterior distribution of model parameters a and b of the linear model (Fig. 2). The negative 

correlation that is not assumed by the prior gets captured in the posterior. (source: (Wani et al., 2017b)) 
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3  Post-Processor Based Uncertainty Estimation 

Post-processing uncertainty estimation techniques generally work with a defined set of 

model parameter values. Once the model structure and the parameter vector is defined, 

the properties of the errors made by the model for the past time series are used to predict 

future errors. These techniques are heavily data driven and learn from the statistical 

properties of model-observation mismatch of the past simulations. One of the simple 

uncertainty estimation techniques is based on instance-based learning (Wani et al., 

2017a). It is a non-parametric method and thus does not make an explicit assumption 

about the nature of the error distribution. It employs a k-nearest neighbour search for 

similar historical hydrometeorological conditions and determines the uncertainty intervals 

from historical errors. This technique has the advantage of being conceptually simple and 

computationally inexpensive.  However, the post processing techniques do not allow for 

the disaggregation of uncertainty. Also, the uncertainty is not reduced, as no inference is 

performed. Many of these techniques are generally unable to capture the observational 

uncertainty. 

For more details on the different post-processor uncertainty estimators, please be referred 

to (Dogulu et al., 2015; Wani et al., 2017a). 

 

 

 

Fig 4. Prediction intervals for a hydrologic catchment case study generated using kNN resampling. The 

hydrographs are shown for the two different lead times. (source: (Wani et al., 2017a)) 

  



10 

 

4  References 

 

Carbajal, J.P., Leitao, J.P., Albert, C., Rieckermann, J., 2017. Appraisal of data-driven and 
mechanistic emulators of nonlinear simulators: The case of hydrodynamic urban 
drainage models. Environ. Model. Softw. 92, 17–27. 
doi:10.1016/j.envsoft.2017.02.006 

Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., Rieckermann, J., 
2013. Improving uncertainty estimation in urban hydrological modeling by statistically 
describing bias. Hydrol. Earth Syst. Sci. 17, 4209–4225. doi:10.5194/hess-17-4209-
2013 

Del Giudice, D., Reichert, P., Bareš, V., Albert, C., Rieckermann, J., 2015. Model bias and 
complexity - Understanding the effects of structural deficits and input errors on runoff 
predictions. Environ. Model. Softw. 64, 205–214. doi:10.1016/j.envsoft.2014.11.006 

Dogulu, N., López López, P., Solomatine, D.P., Weerts, A.H., Shrestha, D.L., 2015. 
Estimation of predictive hydrologic uncertainty using the quantile regression and 
UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. 
Sci. 19, 3181–3201. doi:10.5194/hess-19-3181-2015 

Laplace, Pierre Simon, 1814, translated into English from the original French, 6th ed. by 
Truscott,F.W. and Emory,F.L. (1951). A Philosophical Essay on Probabilities. Dover 
Publications, New York. 

Reichert, P., Schuwirth, N., 2012. Linking statistical bias description to multiobjective 
model calibration. Water Resour. Res. 48, 1–20. doi:10.1029/2011WR011391 

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., Franks, S.W., 2010. Understanding 
predictive uncertainty in hydrologic modeling: The challenge of identifying input and 
structural errors. Water Resour. Res. 46, 1–22. doi:10.1029/2009WR008328 

Wani, O., Beckers, J.V.L., Weerts, A.H., Solomatine, D.P., 2017a. Residual uncertainty 
estimation using instance-based learning with applications to hydrologic forecasting. 
Hydrol. Earth Syst. Sci. Discuss. 1–30. doi:10.5194/hess-2017-75 

Wani, O., Scheidegger, A., Carbajal, J.P., Rieckermann, J., Blumensaat, F., 2017b. 
Parameter estimation of hydrologic models using a likelihood function for censored 
and binary observations. Water Res. 121, 290–301. doi:10.1016/j.watres.2017.05.038 

 


