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Executive Summary  

Integrated catchment models are useful decision making tools that can couple urban and natural 

hydrology, modelling both water quality and quantity. Rainfall is one of the main inputs of 

integrated models, and its uncertainty affects the model output uncertainty. Not much is known on 

the optimal spatial and temporal resolution of rainfall, as input for an integrated catchment model. 

The QUICS project has conducted research on rainfall uncertainty estimation and on rainfall 

optimal resolution for model application. The main research outcomes are illustrated in this 

document. The document is discursive and does not report mathematical derivations, technical 

details and case studies, but the appropriate references are reported, both in terms of QUICS 

publications and in terms of bibliography. 

Since there is no unique answer to the question “What are the optimal spatial and temporal 

resolutions for rainfall as an input to an integrated catchment model?” the approach presented 

here is to provide the user with the tools to evaluate it for each case study. In particular, the 

document offers an overview of the constraints and factors that influence the selection of the 

optimal rainfall resolution and a list of tools that can be used to change the spatial and temporal 

resolutions, to estimate rainfall uncertainty, and to propagate rainfall uncertainty in a model.  

Geo-statistical tools are suggested to accomplish these tasks. In particular the following 

instruments are recommended: 

 Ordinary Kriging can be used to interpolate rain gauges when no radar rainfall estimate is 

available. 

 Kriging with External Drift is recommended to optimally merge radar estimates and rain 

gauge measurements. 

 Block Kriging is recommended to obtain rainfall estimates on areas, rather than on points. 

 Accumulation and disaggregation techniques are illustrated to change the temporal 

resolution of the rainfall estimates, but also of the associated uncertainty. 

 Kriging techniques have the advantage of estimating the interpolation uncertainty 

associated to the rainfall estimate and the use of a nugget effect or the use of Kriging for 

Uncertain Data can help to include the measurement uncertainty.  

 A fourth root transformation is recommended to reduce the uncertainty due to the non-

Gaussianity of rainfall probability distribution. 

 An ensemble approach is suggested to propagate rainfall uncertainty in models. 

Once the users are able to produce rainfall estimates at different spatial and temporal resolutions, 

to estimate the associated uncertainty, and to propagate it in the studied model, they can select 

the optimal product minimising the uncertainty in the model output. 
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1  Introduction  

1.1  Partners involved in deliverable 

University of Bristol (UB): Francesca Cecinati (FC), Miguel Rico-Ramirez (MRR), Dawei Han (DH) 

Delft University of Technology (TUD): Antonio Moreno Ródenas (AMR) 

University of Sheffield (USFD): Manoranjan Muthusamy (MM) 

1.2  Deliverable Objectives 

The general objective of the deliverable is to provide practical advice on the optimum spatial and 

temporal resolutions of rainfall estimates for an integrated water quality model, in order to 

minimise uncertainty. 

The deliverable addresses the following specific objectives: 

A. Define and discuss the optimal spatial resolution for integrated catchment models (ICM) 

B. Define and discuss the optimal temporal resolution for integrated catchment models (ICM) 

C. Provide advice on techniques to produce probabilistic rainfall estimate at optimal spatial 

and temporal resolutions 

D. Provide advice on techniques to estimate the uncertainty of rainfall estimates and the 

propagation of uncertainty in ICM 

1.3  Related publications 

The material in this deliverable is partially derived by journal papers and conference proceedings 

produced (or in phase of development) in the QUICS project framework. Technical details, 

mathematical formulations, and case studies are not reported in this work, but can be found in the 

related QUICS publications. In particular, the publications relevant for the deliverable are: 

 Cecinati F., Rico-Ramirez M.A., Heuvelink G.B.M., and Han D. “Representing Radar 

Rainfall Uncertainty with Ensembles Based on a Time-Variant Geostatistical Error 

Modelling Approach.” Journal of Hydrology. Under review. 

 Muthusamy M., Schellart A., Tait S., and Heuvelink G.B.M. “Geostatistical Upscaling of 

Rain Gauge Data to Support Uncertainty Analysis of Lumped Urban Hydrological Models.” 

Earth Syst. Sci. Discuss. Earth Syst. Sci. Under review. 

 Moreno Ródenas, M. A., Cecinati F., ten Veldhuis M., and Langeveld J. 2016. “Effect of 

Spatiotemporal Variation of Rainfall on Dissolved Oxygen Depletion in Integrated 

Catchment Studies.” In 8th International Conference on Sewer Processes and Networks. 

 Cecinati F., Moreno Ródenas A.M., Rico-Ramirez M.A., and Han D. 2016. “Integration of 

Rain Gauge Measurement Errors with the Overall Rainfall Uncertainty Estimation Using 

Kriging Methods.” In EGU General Assembly 2016. 

 Cecinati F., Wani O., Rico-Ramirez M. A., “Dealing with non-Gaussianity of rainfall data in 

Kriging-based merging”, Water Resources Research. Under review. 

 Cecinati F., Wani, O., Rico-Ramirez M.A. 2016, “Evaluation and correction of uncertainty 

due to Gaussian approximation in radar – rain gauge merging using kriging with external 

drift” In AGU Fall Meeting 2016. 
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 Cecinati F., de Niet A.C., Sawicka K., Rico-Ramirez M.A., “Optimal temporal resolution of 

rainfall for urban applications and uncertainty propagation”. In preparation phase (expected 

in 2017). 

 Cecinati, F., de Niet A. C., Sawicka K., and Rico-Ramirez M. A. 2017. “Optimal Temporal 

Resolution of Merged Radar – Gauge Rainfall for Urban Applications.” In 2017 International 

Symposium Weather Radar and Hydrology. 

 Sawicka K. and Heuvelink G.B.M. 2016, “Software tools for quantifying uncertainty across 

different scales”. QUICS deliverable n. 2.1. 

 Sawicka K. and Heuvelink G.B.M. 2016 “spup – an R package for uncertainty propagation 

in spatial environmental modelling”. In 12th International Symposium on Spatial Accuracy 

Assessment in Natural Resources and Environmental Sciences. 

1.4  Background 

The Water Framework Directive (WFD, 2000/60/EC 200) aims at reaching a good quality standard 

for inland and coastal water bodies under an ecological and a chemical point of view. Many 

European river systems are highly urbanised and struggle to meet the WFD targets. Complying 

with the environmental standards requires substantial investments and regulatory measures 

(Moreno Ródenas et al., 2016). Integrated catchment models (ICM) are powerful tools for decision 

support, modelling interactions between urban sewer networks, water treatment plants and 

receiving water bodies. ICM are designed to perform fast and being robust for long-term scenario 

studies and system optimization (Benedetti et al., 2013; Langeveld et al., 2013; Langeveld et al., 

2013). However, not much is known about the rainfall input requirements and their impact on the 

model performance.  

There are several factors affecting the optimization of the rainfall input for ICM, for example: data 

native resolution, data aggregation for uncertainty reduction, data disaggregation to improve 

process definition or to meet model requirements, rainfall process characteristics in space and 

time, model characteristics, model objectives, and computational limits.  

The optimal spatial and temporal resolutions of rainfall in urban hydrological models has been 

widely investigated. For example, Schilling, (1991), studied the optimal spatio-temporal resolution 

of rainfall as a function of catchment hydrological parameters; Berne et al., (2004), proposed 

equations to find the optimal spatio-temporal resolution of rainfall, given the catchment area. 

However, models radically evolved in the last decades and the concept of optimal rainfall 

resolution with them. Thanks to the increasing computing power, model complexity increases and 

allows us to represent finer scale processes, typical of the urban environment (Einfalt et al., 2004). 

The trend to move towards ICM, builds on the recent years of technological development (Fletcher 

et al., 2013). At the same time, rainfall measurement techniques improved; weather radars 

achieved a finer spatial resolution and their accuracy improved thanks to technological 

developments like dual polarization and Doppler capabilities (Berne and Krajewski, 2013; Islam 

and Rico-Ramirez, 2013). Nowadays, operational weather radars typically provide rainfall 

estimates at 5 minutes/1 kilometre resolutions, although they still have a lower accuracy compared 

to rain gauges, due to the indirect nature of radar rainfall estimation (Villarini and Krajewski, 2010). 

Merging radar rainfall and rain gauge data improves the accuracy of the rainfall estimation, 

maintaining the radar rainfall spatial characteristics (Goudenhoofdt and Delobbe, 2008; 
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Haberlandt, 2007; Jewell and Gaussiat, 2015; Schuurmans et al., 2007; Wilson, 1970). Among the 

various developed techniques, Kriging with External Drift (KED) and Conditional Merging (CM) are 

often preferred thanks to their high performance and robustness (Goudenhoofdt and Delobbe, 

2008; Jewell and Gaussiat, 2015; Li and Heap, 2011; Nanding et al., 2015). The performance of 

KED is often better than the performance of CM (Berndt et al., 2014). However, KED does not 

perform comparably well at short temporal resolutions, due to the sensitivity to low quality data, 

and some temporal accumulation is recommended (Berndt et al., 2014). 

No unique answer exists to define the optimal spatio-temporal resolution for rainfall in ICM, but 

different techniques can be used to optimise the rainfall input according to the data, the model, 

and uncertainty needs. This document illustrates the available data and the spatio-temporal 

characteristics of commonly adopted models, as well as techniques that can be used to adapt the 

rainfall input to the required resolution, to estimate the associated uncertainty, and to assess its 

propagation in models. The suggested approach is based on the idea that optimisation can be 

reached producing different rainfall products at different resolutions, and selecting the one that 

minimises the ICM output uncertainty. The research developed in QUICS by early stage and 

experienced researchers is used as an example to illustrate the variety of available rainfall data as 

well as the variety of models, in terms of structure, data requirements, and objectives that one can 

potentially encounter when studying and working with ICM. Section 2 illustrates the typical spatial 

characteristics of rainfall data and model requirements; Section 3 2 discusses the typical temporal 

characteristics of rainfall data and model requirements;  Section 4 illustrates techniques that can 

be used to adapt the data resolution to the desired one, in order to meet model requirements or to 

reduce uncertainty; Section 5 presents techniques that can be used to estimate the rainfall input 

associated uncertainty and to estimate its propagation in models. In Section 0conclusions and 

recommendations are drawn. 

2  Optimal spatial resolution 

Some studies tried to propose equations to derive the optimal rainfall resolution for model 

applications. Schilling, (1991) defines the optimal spatio-temporal resolution for urban applications 

as a function of catchment hydrologic parameters, and recommends a resolution of at least 1 

minute and 1 kilometre. Berne et al., (2004), derived equations to assess the optimal spatio-

temporal resolution as function of the catchment area, and recommends for example 5 minutes – 

3 kilometres for a 1000 ha catchment and 3 minutes – 2 kilometres for a 100 ha catchments. 

However, in conditions of convective storms, a finer spatial resolution is necessary (e.g. 5 ha 

according to Faures et al., 1995). Rainfall is a highly variable process and its spatial 

characteristics are strongly variable. Rainfall processes are commonly more uniform and 

correlated in space during stratiform events, in Europe more common during winter in the form of 

frontal weather systems, and they are more spatially variable during convective events, commonly 

happening in the warmer summer conditions (Van De Beek et al., 2011). The Foundation for 

Water Research and the Wastewater Planning Users Group found that 5 ha and 2 minutes 

resolutions are necessary for modelling street and building scale processes (WaPUG, 2004). 

Despite rainfall variability can be relevant even at small sub-kilometre scales (Fiener and 

Auerswald, 2009; Peleg et al., 2013), its detailed spatial description may not be significant for 

every model application (Moreno Ródenas et al., 2016). 
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The optimal spatial resolution for a model’s rainfall input is therefore influenced by the available 

data resolution, by the characteristics of the process to be represented, and by the characteristics 

of the model in use. 

2.1  Overview of rainfall data resolution 

Three main sources of rainfall data are commonly available: satellite estimates, weather radar 

estimates, and rain gauge measurements. Satellite data are characterised by a lower resolution 

and a lower accuracy, and are mainly used for global or continental scale applications or for data-

scarce environments; therefore this source is not relevant for the aim of this deliverable, looking at 

smaller European basins with sufficient data coverage, and it is not discussed here.  

Weather radars are ground-based systems that operate in the microwave frequency range (3-

10GHz) and are capable to send high-power waves in a particular direction; if precipitation 

particles lie along the path of the waves then a small percentage of energy is reflected back to the 

radar antenna. The reflected power is related to the radar reflectivity and this in turn is used to 

retrieve Quantitative Precipitation Estimates (QPE) from precipitation targets. Although the indirect 

nature of radar QPE makes them typically less accurate than rain gauge measurements, weather 

radars are becoming increasingly popular thanks to new technologies that improve their accuracy 

(e.g. Doppler and dual-polarisation capabilities) and to their ability to produce areal estimates with 

a high spatio-temporal resolution (Berne and Krajewski, 2013). Typical European operational 

weather radars operate at C-band (5.5GHz) and produce rainfall estimates at 1-kilometre 

resolution. For urban applications, some X-band (10 GHz) radars are used and able to estimate 

rainfall at sub-kilometre resolution, but they are not usually available for operational use (ten 

Veldhuis and van Riemsdijk, 2013). 

Rain gauges are the most traditional instruments for rainfall measurements, and technological 

advancements keep on improving their accuracy. Rain gauge measurements are more direct and 

are typically considered more accurate than radar QPE, but provide only point measurements that 

require interpolation. National and regional rain gauge networks usually have densities lower than 

1 rain gauge per km2. 

In the QUICS project, several case studies are analysed by the researchers, using very different 

rainfall data. Radar data is provided for research purposes by the UK Met Office, by MeteoSwiss, 

and by the Royal Netherlands Meteorological Institute (KNMI), in all cases with a spatial resolution 

of 1-kilometer. Rain gauge networks used in the QUICS project have very diverse resolutions, 

spacing from a density of 1 rain gauge per 160 km2 for larger scale applications, to sub-kilometer 

research networks with a density of 3.4 rain gauges per km2. 

Often radar and rain gauges are merged in order to obtain an areal rainfall estimate, with higher 

accuracy than radar QPE. Out of the several possible techniques that can be used to merge radar 

rainfall and rain gauge measurements, Kriging with External Drift (KED) is recognised as one of 

the best in terms of product quality, computational efficiency, robustness, and in terms of 

uncertainty estimation. Section 4 discusses how KED can be used to obtain rainfall estimates on a 

desired grid or on a desired area, while Section 5 illustrates how to estimate uncertainty with KED. 
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2.2  Model input requirements 

If on the one hand available data are a constrain in the selection of the optimal rainfall resolution, 

on the other hand ICM and hydrological models have very different characteristics, both in terms 

of structure and in terms of objectives.  

In terms of structure, many ICM (e.g. SWMM, WEST - MIKE) require lump rainfall information, i.e. 

time series of rainfall on a catchment or a sub-catchment (Muthusamy et al. - under review). 

Depending on the scale of the problem to address, the catchment or sub-catchment sizes are 

highly variable; in the QUICS project lumped models are used with sub-catchments ranging from 

0.2 km2 to 150 km2. Other models instead accept time series of rainfall distributed on grids of 

arbitrary resolution (e.g. InfoWorks, MIKE SHE). Methodologies to derive rainfall data at a given 

catchment resolution or on a grid are presented in Sections 4 and techniques to estimate the 

associated uncertainty are presented in Section 5  

In terms of objectives, ICM usually have the ability to model different water quality and quantity 

variables (e.g. river stage, flow, dissolved oxygen, various pollutant concentrations, etc.). Each of 

these variables can be more or less sensitive to the rainfall spatial resolution and requires a 

different input resolution optimisation. For example, Moreno Ródenas et al., (2016) found that the 

use of only one rain gauge in an area of 570 km2 is not sufficient to correctly model the dissolved 

oxygen (DO) in an ICM, but in case of stratiform rainfall the use of only 13 rain gauges performs 

comparably to the use of distributed radar rainfall or merged rain gauge – radar products at 1 

kilometre resolution. Ochoa-Rodriguez et al., (2015) observed that the ideal spatial resolution for 

urban drainage modelling is strongly correlated to the size of the catchment, but in general found 

that a typical rain gauge network density is not sufficient to correctly estimate the hydraulic 

behaviour of urban catchments. 

3  Optimal temporal resolution 

The optimal temporal resolution for rainfall applications in ICM is affected by several factors. 

Rainfall data are often available with high temporal resolution, but accumulation is advisable to 

reduce the impact of random errors in rainfall measurements and to reduce uncertainty. At the 

same time, some urban hydrological processes have short characteristic time, depending on the 

study area size and on the modelled phenomena, and rainfall input needs a sufficiently fine 

temporal resolution to capture the variability of the processes; for example, Schellart et al., (2012) 

found that using a coarse temporal resolution in the rainfall measurements results in the 

underestimation of peak flows and Combined Sewer Overflow (CSO) volumes in small urban 

catchments. Some other processes instead may be insensitive to a fine description of rainfall 

temporal variability. Moreno Ródenas et al., (2016) did not observe significant differences in 

Dissolved Oxygen (DO) modelling using rainfall information of 10 minutes, 30 minutes and 1 hour 

temporal resolution in urban ICM applications with a large WEST model. In addition, the optimal 

rainfall resolution may be affected also by the temporal resolution of other model input data, i.e. 

fine temporal resolution rainfall inputs may be beneficial only if the other model inputs have a fine 

temporal resolution as well.  
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3.1  Rainfall data temporal resolution 

Radar QPE are usually available at 5-minute resolution, throughout most European radar 

networks. This is due to the time that radars require to scan 360° at different elevation angles.  

Rain gauge data, instead, are very variable in terms of temporal resolution. A primary factor is the 

type of rain gauge to be used. The simplest rain gauges require a manual reading of the water 

level and this is typically done on a daily basis (e.g. KNMI manual network). Tipping bucket rain 

gauges (TBR) record a tip every time a fixed amount of rainfall is accumulated (usually 0.1 or 0.2 

mm). This means that TBR can provide rainfall data with variable temporal resolution every time 

they record a tip, or can report the number of tips in a given temporal interval (e.g. 1, 10, or 15 

minutes). Due to the underlying mechanism, TBR data are more accurate with longer 

accumulation intervals. Other more sophisticated rain gauges are able to provide more accurate 

estimates for short accumulation intervals (e.g. 1 minute) using weighting or floating devices. Rain 

gauge networks can be diversified, due to the fact that the most accurate rain gauges are usually 

also significantly more expensive. Some countries have invested considerable resources to 

substitute national networks with high-accuracy rain gauges, some other couple a limited number 

of accurate rain gauges with a larger number of less accurate ones, other prefer to have a denser 

network of tipping bucket rain gauges. In addition, local networks are often available, which can 

have highly variables accuracy characteristics, depending on their type, their purpose, and on the 

network and data management.  

Merging radar and rain gauge measurements usually requires to meet the temporal resolution of 

the coarser data source or the minimum common multiple. Alternatively, downscaling techniques 

exist and are discussed in Section 4 , but would introduce additional uncertainty. A good practice 

for merging is to accumulate time series to a coarser temporal resolution in order to reduce 

uncertainty, perform the merging, and then downscale the merged results (Berg et al., 2016; 

Cecinati et al., 2017). The optimal accumulation and downscaling resolutions need to be 

investigated for each specific case. For example, Cecinati et al., (2017) estimated that the optimal 

accumulation and downscaling resolutions for an ICM in an area of approximately 20 km2 were 

respectively 3 hours and 30 minutes, in terms of optimal water level estimation. 

3.2  Model input requirements 

In terms of structure, most models are very flexible in accepting rainfall inputs of different 

resolutions. The optimal temporal resolution, under a model point of view, is often driven by the 

process to be modelled. In QUICS, models are operated with temporal resolutions ranging from 1 

minute to 1 day. Due to the small scale, urban applications often require higher temporal 

resolution than rural areas (Einfalt et al., 2004). Several studies have assessed the impact of the 

rainfall temporal resolution in the behaviour of urban drainage system, but the results are usually 

only relevant for the analysed case. Ochoa-Rodriguez et al., (2015), observed that a coarse 

temporal resolution in the rainfall measurements can result in significant peak discharge errors, 

especially in small catchments. Moreno Ródenas et al., (2016) instead, did not observe significant 

differences in DO estimation using rainfall products with different resolutions in a larger ICM. 

 



11 

 

4  Techniques to produce rainfall estimates at optimal spatial and temporal 

resolutions 

Given the variability of factors affecting the optimal spatial and temporal resolutions, tools are 

needed to combine the different sources of rainfall data in a rainfall product at the desired 

resolution. Geo-statistics offers several tools that can be used to: 

 Merge rain gauge and radar rainfall measurements 

 Change the spatial support of rainfall data 

 Change the temporal resolution by accumulating/downscaling time series 

 Consider the uncertainty in the measurements 

 Estimate the uncertainty at the desired spatio-temporal resolution 

 Propagate the uncertainty in a model 

4.1  Geo-statistical techniques for change of spatial support  

Most of the geostatistical techniques presented here are based on Kriging, an interpolation 

method that allows to estimate the spatial distribution and the associated uncertainty of a given 

variable (e.g. rainfall) given a number of point measurements at specific locations.  The principle is 

to estimate the process in a given point using a weighted average of the available rain gauge 

measurements, taking into consideration the distance from the measurement points and the 

process decorrelation in space to calculate the weights. Based on this principle, several variations 

of the basic (Ordinary) Kriging interpolation algorithms are available to estimate rainfall on areas 

rather than points, to include radar measurements, to consider rain gauge measurement 

uncertainty, and more. No technical detail is reported in this document and for rigorous 

formulations the reader is advised to refer to Cressie (1993), Wackernagel (2003), and Chiles and 

Delfiner (1999). 

When a model requires a distributed input, Kriging can be used to estimate the rainfall at each grid 

node. If radar data is not available, Ordinary Kriging (OK) can be used to interpolate the rain 

gauge data. If instead radar data is available, Kriging with External Drift (KED) is a valid alternative 

to Ordinary Kriging. KED is a variation of OK that does not consider a spatially homogeneous 

mean for the process, but instead considers the mean as a linear function of an external variable 

(drift), in this case the radar data. The advantage of such an approach is that radar data, which 

have a lower accuracy, are not used directly to estimate the process values, but are used instead 

to reproduce the spatial features that the rain gauges are unable to capture. Figure 1 compares a 

radar QPE product that overestimates the rainfall intensities when compared to rain gauge 

measurements, an OK interpolation product that is consistent with rain gauge measurements but 

appears too smooth, and a radar - rain gauge KED merged rainfall product that has a better 

agreement with rain gauges and represents the rainfall spatial features derived from the radar 

QPE. Both OK and KED have the advantage of being able to estimate the rainfall and the 

associated uncertainty on any desired point, therefore grids of the preferred resolution can be 

derived.  
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Figure 1 - Radar rainfall estimate, rain gauge interpolation with ordinary Kriging and merged radar - rain gauge rainfall 

estimate with KED for an example hourly window on 26
th
 March 2009 at 9:00 in a 200 km x 200 km area in the North 

of England. Rain gauge measurements are super-imposed. The units are [mm/h]. 

 

A very useful variation of OK and KED is Block Kriging (BK) that can be used in both, the ordinary 

version, and the version with external drift. Block Kriging allows to obtain the estimation for an 

area of desired shape or size rather than for a point, and to calculate the associated uncertainty. It 

can be used in grid predictions, to acknowledge that we actually use the average rainfall on pixels 

rather than point estimates, or it can be used as rainfall input for lumped models, to estimate the 

average rainfall on a given catchment or sub-catchment. 

4.2  Geo-statistical techniques to modify the temporal resolution 

As mentioned before, accumulations are often used to reduce the impact of random measurement 

errors. Therefore a coarser temporal resolution tends to reduce the uncertainty in the rainfall 

estimate. However, rainfall temporal resolution needs to be fine enough to represent the modelled 

processes correctly. The optimal resolution is thus derived for a specific case study balancing the 

two needs. 

In order to change the spatial resolution of a rainfall estimate, accumulation and disaggregation 

techniques exist. While accumulation is a very simple process, disaggregation is less 

straightforward. Most of the methodologies used in literature to temporally downscale time series 

are based on the use of statistical properties to reproduce the most probable pattern in the 

observed temporal interval (Ferraris et al., 2003; Liu et al., 2007). An alternative to stochastic 

approaches is the use of the pattern observed by one of the finer resolution rainfall data. For 

example, if a rain gauge measures only daily accumulations, each accumulation can be distributed 

in hourly intervals according to the pattern observed by the radar. This approach is particularly 

useful using the radar data to downscale coarser rain gauge data or KED merged rainfall products, 

since the radar estimates are distributed (Cecinati et al., 2017).   

The uncertainty associated to a rainfall product can be upscaled and downscaled as well, using 

three principles (Cecinati et al., 2017):  

1. The variance of a sum is the sum of the covariances between all summed elements. 
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2. The unknown covariances between rainfall estimates at a certain temporal lag can be 

approximated deriving an autocorrelation function from rainfall time series. 

3. The standard deviation is proportional to the rainfall rate. 

The correct equations for upscaling and downscaling can be derived combining the above 

mentioned principles. 

5  Techniques to estimate and propagate rainfall uncertainty  

To identify the optimal rainfall spatio-temporal resolution, the objective is to minimise the ICM 

output uncertainty. In order to estimate what is the rainfall input impact on the model output 

uncertainty, we need to estimate what is the rainfall uncertainty and how it propagates to the 

model output uncertainty. 

5.1  Techniques to estimate rainfall uncertainty 

One of the advantages in using kriging-based methods to estimate rainfall inputs, is that kriging 

allows to produce probabilistic rainfall estimates made of process mean and variance estimates. 

The kriging variance is the starting point to estimate rainfall uncertainty. The kriging variance 

mainly estimates the uncertainty due to the interpolation, but techniques exist to include the 

uncertainty in the measurements as well.  

Rain gauge uncertainty needs to be modelled knowing the used device and its characteristics. The 

simplest method to consider rain gauge uncertainty in the kriging variance is to introduce a nugget 

effect in the geo-statistical model, i.e. to acknowledge that two measurements at an infinitesimal 

distance may not be perfectly identical due to the occurrence of random errors. The nugget effect 

is an estimation of how decorrelated two measurements at an infinitesimal distance are (Clark, 

2010). Nevertheless, the use of a nugget implies an assumption of rain gauge error stationarity in 

space and often in time. The reality is that rain gauges errors are usually proportional to the rainfall 

rate, and therefore highly variable in space and time (Ciach, 2003; Habib et al., 2001). A technique 

called Kriging for Uncertain Data (KUD) helps in modelling a different uncertainty for each rain 

gauge at each time step. KUD modifies the kriging equations at each time step to introduce a 

different variance for each measuring point (Cecinati et al., 2016; Mazzetti and Todini, 2009). 

Although it proved to be a valuable technique when applied to KED, it is not always successful 

when applied to OK. 

Another uncertainty source is due to the non-Gaussianity of rainfall. Kriging methods are based on 

the assumption of process Gaussianity. When applied to rainfall interpolation and radar-rain gauge 

merging, the process Gaussianity is an approximation that may introduce some additional 

uncertainty. Although this effect is usually not significant, Gaussianity of the process may be 

improved using transformations. Erdin et al., (2012) compared transformations in the Box-Cox 

family, while Cecinati et al., (under review) extended the comparison to the Normal Score 

Transformation (NST) and to a Singularity Analysis (SA) technique (Wang et al., 2015). NST and 

the Box-Cox transformations corresponding to a square root and a fourth root resulted optimal for 

KED applications. However, the square and fourth root transformations have the advantage of 

having an analytical transformation and back transformation both for the kriging estimate and for 

the kriging variance, which make the algorithm simpler and more efficient (Sideris et al., 2014).  
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5.2   Techniques to propagate rainfall uncertainty 

The propagation of the input uncertainty in a model is a key element to evaluate how sensitive the 

model is to the rainfall uncertainty and to identify the optimal rainfall resolution. Analytical 

propagation methods are rarely applicable, both because most ICM have a complex structure, and 

because rainfall has a multivariate distribution with statistical characteristics varying in space and 

time. 

The most popular and effective technique to evaluate rainfall input uncertainty propagation is to 

use an ensemble approach. Similarly to other Monte Carlo techniques, the idea underlying the use 

of ensembles is that we can sample the probability distribution of rainfall in order to generate a 

large number of possible alternative model inputs, use them one by one in the analysed model, 

and observe the distribution of the model outputs. As mentioned, rainfall has a multivariate 

distribution and its sampling and ensemble generation requires to respect the spatial and temporal 

characteristics of the process. A method to generate rainfall ensembles from a kriging product is to 

consider each ensemble member as the sum of the mean and of a variable error component. The 

mean is modelled as the kriging mean. The error components are derived multiplying the kriging 

standard deviation, i.e. the square root of the kriging variance, by a spatially correlated field with 

zero mean and unit variance. A large number of such fields can be generated with unconditional 

simulations, respecting the spatial characteristics of the observed rainfall (Sawicka and Heuvelink, 

2016a, 2016b). Subsequently, autoregressive models with one-step dependency (AR(1)) or two-

step dependency (AR(2)) can be used to reconstruct the temporal auto-correlation of the observed 

rainfall process. The auto-correlation and the parameters of the autoregressive models can be 

derived from the observed time series (Cecinati et al. - under review; Germann et al., 2009). 

Once a large number of possible alternative rainfall time series are generated, they can be used 

as model input, obtaining a large number of outputs. The obtained outputs can be used to 

reconstruct the output probability distribution, and therefore evaluate the uncertainty in the output 

due to the input uncertainty. 

6  Conclusions 

Integrated Catchment Models (ICM) are precious tools for decision making, being able to 

represent the interaction between urban environments and natural river systems, and the 

feedback between water quality and quantity. Due to the complex structure, ICM are affected by a 

variety of uncertainty sources. Rainfall is one of the main ICM inputs and the uncertainty 

associated to the rainfall data is a function of the spatial and temporal resolution selected for its 

representation. Identifying the optimal rainfall spatio-temporal resolution helps in reducing the ICM 

output uncertainty. 

There is no unique answer to what the optimal spatio-temporal resolution of rainfall is as an input 

for ICM. Among the most important factors: 

 The native resolution of rainfall data, either from radar, rain gauges, or a radar-gauge 

merged rainfall product, set a constrain on rainfall spatio-temporal resolution. 

 The reduction of the impact of the random error can be achieved through accumulation. 

 To capture the characteristics of the modelled processes, spatial and temporal resolutions 

need to be sufficiently fine. 
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 Different ICM structures require different types of inputs.  

 Different ICM objectives can be more or less sensitive to rainfall resolution.  

The approach used in this document is to offer an overview of the tools that can be used to 

produce rainfall estimates at the desired spatial and temporal resolution with an associated 

uncertainty estimation, and to propagate the rainfall uncertainty to observe its effect on the model 

output uncertainty. Using the tools presented in this work, a user can compare rainfall products at 

different spatio-temporal resolutions and identify the optimal one for a specific case study 

minimising the ICM output uncertainty. 

Geo-statistical approaches based on Kriging offer the possibility to obtain rainfall estimates at the 

desired resolution, with an associated uncertainty estimation. In such a framework, the use of 

Kriging with External Drift is recommended to optimally merge radar and rain gauge rainfall data, 

while the use of Ordinary Kriging is advisable if radar rainfall data is not available. The presented 

Kriging tools to obtain rainfall on the desired spatial support, to estimate uncertainty, to consider 

measurement uncertainty, or to correct Gaussianity can be flexibly combined to correctly 

reproduce the spatial rainfall distribution and its uncertainty for the study cases.  

Temporal upscaling can be easily achieved with accumulations, while either a stochastic or a data-

driven approach can be used for temporal downscaling. The principles to follow to upscale or 

downscale the uncertainty associated to the rainfall data were also illustrated. 

In order to propagate the rainfall uncertainty in a model, an ensemble approach is recommended. 

Ensemble members can be derived from kriging products, combining the kriging mean with a zero-

mean error component proportional to the kriging standard deviation, using unconditional 

simulations. Autoregressive models are suggested to reproduce the observed temporal auto-

correlation of the rainfall process. Once an ensemble of numerous possible rainfall time series are 

produced, they can be used as input for the studied model to observe the impact of rainfall 

uncertainty on the model output uncertainty. 

The optimal rainfall input can thus be identified comparing rainfall products at different spatio-

temporal resolutions and minimising the ICM output uncertainty. 

In this work, the description of the techniques is discursive and does not include mathematical 

formulations or case studies. The reader is encouraged to refer to the QUICS publications and the 

cited references to have a more technical insight of the specific techniques. 
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