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ABOUT THE DECISION SUPPORT UNIT 

The Decision Support Unit (DSU) External Assessment Centre is based at the 

University of Sheffield with members at York, Bristol, Leicester and the London School 

of Hygiene and Tropical Medicine.  The DSU is commissioned by The National Institute 

for Health and Care Excellence (NICE) to provide a research and training resource to 

support the Institute's Centre for Health Technology Evaluation Programmes. Please 

see our website for further information www.nicedsu.org.uk. 

The production of this document was funded by the National Institute for Health and 

Care Excellence (NICE) through its Decision Support Unit. The views, and any errors 

or omissions, expressed in this document are of the authors only. NICE may take 

account of part or all of this document if it considers it appropriate, but it is not bound 

to do so. 

NICE describes the methods it follows when carrying out health technology evaluations 

in its process and methods manual.  This provides an overview of the key principles 

and methods of health technology assessment and appraisal for use in NICE 

appraisals. The manual does not provide detailed advice on how to implement and 

apply the methods it describes. The DSU series of Technical Support Documents 

(TSDs) is intended to complement the manual by providing detailed information on how 

to implement specific methods. 

The TSDs provide a review of the current state of the art in selected topic areas. They 

make recommendations on the implementation of methods and reporting standards 

where it is appropriate to do so. They aim to provide assistance to all those involved in 

submitting or critiquing evidence as part of NICE technology evaluations, whether 

companies, assessment groups or any other stakeholder type. 

We recognise that there are areas of uncertainty, controversy and rapid development. 

It is our intention that such areas are indicated in the TSDs. All TSDs are extensively 

peer reviewed prior to publication (the names of peer reviewers appear in the 

acknowledgements for each document). Nevertheless, the responsibility for each TSD 

lies with the authors and we welcome any constructive feedback on the content or 

suggestions for further guides. The TSDs will be amended and updated whenever 

http://www.nicedsu.org.uk/
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appropriate. Where minor updates or corrections are required, the TSD will retain its 

numbering with a note to indicate the date and content change of the last update. More 

substantial updates will be contained in new TSDs that entirely replace existing TSDs. 

Please be aware that whilst the DSU is funded by NICE, these documents do not 

constitute formal NICE guidance or policy. 

Prof Allan Wailoo, Director of DSU and TSD series editor. 
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EXECUTIVE SUMMARY 

This Technical Support Document (TSD) describes methods for meta-analysis of the 

accuracy – as quantified by sensitivity and specificity – of a diagnostic test, for use in 

NICE decision models.  

We first describe methods for meta-analysis of a single estimate of sensitivity and 

specificity from each study. The data from a systematic review will typically take this 

form when a test produces a truly binary result or when the “threshold” used to classify 

results as positive or negative is implicit rather than explicit – usually due to a subjective 

element in reading of test results. Data may also have this structure if the test is 

intended to be operationalised at a particular numerical threshold and all studies have 

evaluated its accuracy at that threshold alone. We describe the binomial bivariate 

meta-analysis model for sensitivity and specificity, the equivalent hierarchical summary 

receiver operating characteristic (HSROC) model, and how results from this model can 

be presented. 

We also consider the situation in which studies in the systematic review report 

accuracy at different explicit threshold values, with some studies reporting sensitivity 

and specificity at more than one threshold. We describe a flexible model to synthesise 

all such data in a unified analysis, producing pooled estimates of sensitivity and 

specificity across a range of threshold values. There may be precision gains from fitting 

this model, even if the decision model only evaluates cost-effectiveness at a single 

developer-recommended threshold. 

This TSD additionally discusses use of meta-analysis of test accuracy results in 

decision models. We discuss accounting for correlation between estimated sensitivity 

and specificity, and the critical role of prevalence. We also discuss use of results from 

the multiple thresholds model in a decision model. For the situation in which the 

decision problem includes choice of threshold at which to operationalise the test in 

practice (which will not always be the case), we demonstrate how results from the 

multiple thresholds model can be used to determine the optimal threshold according 

to some criterion, such as maximum expected net benefit. We additionally demonstrate 

that this “optimal” threshold will depend heavily on assumed prevalence in the decision 

model.  
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As in previous TSDs in the evidence synthesis series, we focus primarily on a Bayesian 

statistical approach to synthesis, and provide examples in WinBUGS. We also discuss 

other software options – in particular, how the binomial bivariate model can be fitted 

within a frequentist framework. Synthesis can be challenging when the number of 

studies is small; we illustrate the advantages of Bayesian methods in this situation.  
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ABBREVIATIONS AND DEFINITIONS                            

AUC Area under curve 

CrI Credible interval 

DIC Deviance information criterion 

DOR Diagnostic odds ratio 

DTA Diagnostic test accuracy 

FN False negative 

FP False positive 

FPF False positive fraction  

HSROC Hierarchical summary receiver operating characteristic 

INB Incremental net benefit 

MCMC Markov chain Monte Carlo  

NB Net benefit 

pD Effective number of model parameters 

QALY Quality-adjusted life year 

ROC Receiver operating characteristic 

SROC Summary ROC 

TN True negative 

TP True positive 

TPF True positive fraction 
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1. INTRODUCTION 

Synthesis of the accuracy of one or more diagnostic tests is often an important 

component of reviews performed for NICE, most notably for the NICE Centre for Health 

Technology Evaluation (CHTE) and NICE Guidelines. For evaluation of the impacts on 

patient outcomes of testing strategies – in combination with treatment strategies – 

NICE has a preference for use of evidence from “test and treat” randomised controlled 

trials where available (1). However, such evidence is rarely available in practice and – 

even where it does exist – is not generalisable to all possible uses of a test, or to 

alternative treatment options or pathways. Therefore, a “linked evidence” approach is 

commonly used instead. Here, a decision model links together evidence on test 

accuracy with assumptions about how test results will be used (e.g. informing 

treatment decisions or use of a subsequent test), and with evidence on treatment 

effectiveness and other parameters (2). The focus of this TSD is on evidence synthesis 

of data on test accuracy for incorporation into these models. 

This TSD describes methods for meta-analysis of the accuracy of a single test, or of 

each test under evaluation separately. We use standard terminology in referring to the 

test(s) under evaluation as the index test(s) and assume that we are interested in the 

ability of the index test to discriminate between those with and those without some 

clearly specified target condition, which is often but not always a disease. For brevity, 

we will sometimes use “disease” in this document in place of “target condition”, but we 

emphasise that the target condition can in practice be many things other than a disease 

(e.g. treatment resistance (3)). The methods described could also be applied to data 

quantifying the ability of a test to predict a future clinical outcome (e.g. pre-term labour 

(4)). However, measures other than sensitivity and specificity (our focus) are often 

used to quantify prognostic or predictive ability.  

We assume that a systematic review has identified a number of studies that have 

compared results on the index test with results on a “reference standard” test.  Methods 

described in this TSD are based on an assumption that the reference standard in each 

study does not itself make errors, i.e. is considered to be a “gold standard” test for the 

target condition. (See Section 7 for a brief discussion of the situation in which this is 

known not to be true.) Note that if different studies used different reference standards, 
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each of these must be considered to be error-free. Each study, typically referred to as 

a Diagnostic Test Accuracy (DTA) study, produces a 2×2 table of cross-classified test 

results.   

We focus in this TSD on methods for meta-analysis of sensitivity and specificity, 

defined as the proportion of individuals for which a test is correct among those with 

and those without the target condition, respectively. Under the assumption of an error-

free reference standard, these are estimated by simple observed proportions using the 

2×2 table. We describe the bivariate random effects model (5, 6) and the 

mathematically equivalent hierarchical summary receiver operating characteristic 

curve (HSROC) model (7), and how results can be summarised in receiver operating 

characteristic (ROC) space using summary regions and/or a summary ROC curve.  

In practice, index tests often produce continuous numerical results, which could be 

dichotomised at different points (referred to as thresholds or cut-offs), producing 

different 2×2 tables. For the situation in which some studies in a systematic review 

report 2×2 tables for multiple thresholds, clearly stating the numerical threshold values 

that these tables correspond to, this TSD also describes a model to synthesise all data 

together (8). This produces pooled estimates of sensitivity and specificity at any 

numerical cut-off, including the test developer’s specified threshold if there is one and 

thresholds not explicitly reported on in any study. If the project scope does not specify 

a clear threshold at which the test must be operationalised, these can be used to 

estimate the threshold at which the test is most cost-effective. 

As in previous TSDs in the evidence synthesis series, we focus primarily on a Bayesian 

statistical approach to synthesis, and provide examples in WinBUGS.  WinBUGS 

implements Bayesian analysis using Markov chain Monte Carlo (MCMC) simulation. 

We describe, however, how the binomial bivariate model is a standard generalised 

linear mixed model which can also be fitted within a frequentist framework, in software 

such as R or Stata. There are several advantages of the Bayesian MCMC approach, 

however. First, this allows us to obtain posterior samples and make statistical inference 

for any quantity of interest that we can write down mathematically. Second, it facilitates 

extensions in a straightforward manner to more complex situations, such as handling 

multiple thresholds (Section 5), and sets the base for extending to flexible models for 
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synthesis of test comparisons or dealing with imperfect reference standards. Moreover, 

the Bayesian approach allows us to introduce information through informative priors, 

enabling us to make use of previous knowledge and/or overcome potential 

computational issues. Finally, use of MCMC simulation allows the export of 

stochastically correlated results into a probabilistic decision model (Section 6), 

avoiding normal approximations. 

WinBUGS code to fit the meta-analysis models is provided in the Appendix. We 

assume knowledge of how to check convergence, ensure that Monte Carlo error is not 

too large, and identify issues such as conflict between priors and data (9). The results 

described in this TSD were produced via R, using R2WinBUGS. The R and WinBUGS 

code to reproduce all results and figures, and datasets used, is available in the 

following GitHub repository: https://github.com/FeniaDerezea/TSD25 

The rest of this document is organised as follows. Section 2 provides a brief 

introduction to commonly used measures of diagnostic test accuracy. The principal 

concepts around meta-analysis of sensitivity and specificity are introduced in 

Section 3. Section 4 focuses on methods for meta-analysis of a single estimate of 

sensitivity and specificity from each study. We describe and demonstrate the bivariate 

random effects model, with discussion of appropriate outputs from this model aided by 

two worked examples. We also discuss possible approaches to fitting this model when 

the number of available studies is small (Section 4.5), and provide a brief overview of 

the many alternative software options for fitting the bivariate model (Section 4.6). 

Section 5, focusing on meta-analysis of data across multiple thresholds, follows a 

similar format. In Section 6, we demonstrate with a simplified decision model how 

outputs from the meta-analysis models described in Sections 4 and 5 can be used to 

evaluate and compare the cost-effectiveness of testing strategies. We demonstrate the 

important role of the prevalence of the target condition in the population being tested, 

and how the “optimal” threshold at which to operationalise the test in a population with 

a particular prevalence can be evaluated. Finally, a brief discussion of topics not 

covered by this TSD is provided in Section 7.  

https://github.com/FeniaDerezea/TSD25/tree/main
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2. MEASURES OF TEST ACCURACY 

In a typical DTA study, both the index test and reference standard are carried out on a 

number of individuals and results compared, producing a 2×2 table of cross-classified 

test results as shown in Table 1. We use T to denote the index test result (positive: 

T=1, negative: T=0), and D to denote true disease state (positive: D=1, negative: D=0). 

As noted in Section 1, we assume that the reference standard correctly represents true 

disease state, D. The true positive (TP) and true negative (TN) cell counts are the 

number of individuals correctly classified by the index test as having or not having the 

target condition, respectively. FP is the number of individuals without the target 

condition who were incorrectly positive on the index test, while FN is the number of 

individuals with the target condition who were incorrectly negative. 

Table 1: 2×2 table of cross-classified results from a diagnostic test accuracy 
study 

  True disease state (D) 

  
Positive 
(D = 1) 

Negative 

Index test 
result (T) 

Positive 
(T = 1) 

True Positive  
(TP) 

False Positive  
(FP) 

Negative 
(T = 0) 

False Negative 
(FN) 

True Negative  
(TN) 

 

We do not provide a comprehensive overview of measures of test accuracy in this 

TSD, but briefly describe some key measures in the following subsections.  

2.1. SENSITIVITY AND SPECIFICITY 

The sensitivity, also referred to as the true positive fraction (TPF), and specificity of the 

index test are defined as the probability of correct classification in those with and those 

without the target condition, respectively. Written mathematically:  

Sensitivity = 𝑃𝑟(𝑇 = 1|𝐷 = 1) 

Specificity = 𝑃𝑟(𝑇 = 0|𝐷 = 0) 
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From a single DTA study, sensitivity and specificity are estimated from Table 1 by 

𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) respectively.        

In this TSD, we will also often refer to the complement of specificity (i.e. 1 – specificity), 

as the False Positive Fraction (FPF): 

FPF = 𝑃𝑟(𝑇 = 1|𝐷 = 0) 

We note that the TPF and FPF are often referred to as true and false positive rates, 

respectively (or TPR and FPR). The terms can be used interchangeably, but we follow 

Pepe (10) in adopting “fraction” since it more accurately reflects that these quantities 

are probabilities, rather than rates.  

2.2. PREDICTIVE VALUES 

The Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are 

generally considered to be more interpretable and clinically relevant than the sensitivity 

and specificity. These are defined as the probability of the disease given a positive test 

result, and the probability of not having the disease given a negative test result, 

respectively, i.e. 

PPV = 𝑃𝑟(𝐷 = 1|𝑇 = 1) 

NPV = 𝑃𝑟(𝐷 = 0|𝑇 = 0) 

The PPV and NPV are mathematically related to sensitivity and specificity through 

Bayes’ rule, which gives: 

PPV =  
𝑃𝑟(𝑇 = 1|𝐷 = 1)𝑃𝑟(𝐷 = 1)

𝑃𝑟(𝑇 = 1)
 

 

=
𝜋 × Sensitivity

[𝜋 × Sensitivity] + [(1 − 𝜋) × (1 − Specificity)]
 

(1) 

and 
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NPV =  
𝑃𝑟(𝑇 = 0|𝐷 = 0)𝑃𝑟(𝐷 = 0)

𝑃𝑟(𝑇 = 0)
 

 

=  
(1 − 𝜋) × Specificity

[(1 − 𝜋) × Specificity] + [𝜋 × (1 − Sensitivity)]
 

(2) 

 

where 𝜋 is the prevalence or pre-test probability of the target condition in the population 

or individual being tested. 

Although PPV and NPV can be estimated directly from Table 1, as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and 

𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) respectively, estimates calculated in this way are only relevant to the 

situation where the pre-test probability 𝜋 is equal to the observed prevalence in the 

DTA study. PPV and NPV for other values of 𝜋 can be estimated by first estimating 

sensitivity and specificity and then applying equations (1) and (2).   

2.3. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVES 

As noted in Section 1, many index tests are continuous, and can be operationalised at 

different cut-offs. For example, a test might quantify the level of a biomarker in a 

sample, or produce a score based on a questionnaire, such as the Patient Health 

Questionnaire (PHQ-9), higher scores on which are suggestive of more severe 

depression. Assuming that a higher value of the continuous test result is associated 

with increased probability of disease1, by definition specificity can be increased by 

increasing the cut-off, but at the cost of a reduction in sensitivity. Similarly, sensitivity 

can be increased by lowering the cut-off, but specificity will fall as a result. In addition 

to continuous tests with explicit numerical thresholds, some index tests can be 

considered to have “implicit” thresholds: these are tests that do not produce a 

continuous numerical result but are dependent on interpretation, such as x-rays or 

other imaging technology, or lateral flow devices where readers might vary in their 

 

1 The opposite will hold for some tests, e.g. Cycle Threshold (Ct) values for many Polymerase Chain 
Reaction (PCR) tests, but the logic can be reversed. 
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interpretation of faint lines. In these instances, different interpreters may tend to be 

either more or less stringent in what they consider to be a positive result.  

A receiver operating characteristic (ROC) curve is often used to show the relationship 

between sensitivity and specificity as the threshold is varied. This plots the sensitivity 

against the FPF for all thresholds. Figure 1 shows an empirical ROC curve, using 

individual-level data from a study reporting on the accuracy of α-fetoprotein in detecting 

hepatocellular cancer in people with cirrhosis (11). For illustration purposes we show 

some of the numerical threshold values corresponding to points on the curve. The 

dashed unit line, representing a hypothetical test where Sensitivity = FPF is often 

shown as a reference. More accurate tests will have ROC curves lying further away 

from that dashed line: closer to the top left corner of the plot (i.e. high sensitivity and 

low FPF). 

Figure 1: Example receiver operating characteristic (ROC) curve, plotting 

sensitivity against FPF (1 – specificity) across all thresholds.  
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Where numerical threshold values are shown on the ROC curve, as in Figure 1, the 

sensitivity and specificity corresponding to these values can be extracted from the plots 

using digitising software if not reported directly in the text or tables (8).   

2.4. OTHER MEASURES 

Other commonly reported measures include the Area Under the (ROC) Curve (AUC), 

the diagnostic odds ratio (DOR), and the positive and negative likelihood ratio. Both 

the AUC and DOR are single summary measures of accuracy, reflecting the overall 

ability of the test to distinguish between diseased and disease-free individuals. In 

Figure 1, the AUC is 0.67; a value of 1 would represent perfect discrimination. For 

details regarding its calculation see for example (12, 13). The DOR and likelihood ratios 

can be calculated as functions of sensitivity and specificity.  

A digital interactive primer on evaluating diagnostic test accuracy, covering much of 

what has been outlined in Section 2, is available online (https://apps.crsu.org.uk/DTA-

Primer/) together with an interactive graphic showing how sensitivity, specificity, 

threshold and ROC curves inter-relate (https://apps.crsu.org.uk/RocCurves/). 

3. META-ANALYSIS OF SENSITIVITY AND SPECIFICITY: 
GENERAL PRINCIPLES 

In DTA meta-analysis, it is widely recommended to meta-analyse sensitivity and 

specificity, rather than other measures of accuracy. Meta-analysis of PPV and NPV is 

generally discouraged due to the critical dependence of these measures on prevalence 

(14). Instead, pooled estimates of sensitivity and specificity can be used to estimate 

PPV and NPV at any given pre-test probability, and/or other summary measures that 

may be of interest (such as the DOR or likelihood ratios). Joint uncertainty in sensitivity 

and specificity is easily propagated through these calculations when the synthesis is 

performed using MCMC simulation: an example is provided in Section 4.  

Three key features to consider in meta-analysis of sensitivity and specificity are: 

1) There is often considerable heterogeneity in these measures across DTA 

studies in a meta-analysis. This would arise by definition if threshold varied 
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across studies – even if all studies lay on the same ROC curve. In practice, 

heterogeneity due to other factors is also typical.  

2) Sensitivity and specificity can typically be expected to be negatively correlated 

across studies. 

3) Small or zero cell counts in 2×2 tables (very few FPs or very few FNs in some 

studies) are not uncommon. 

All synthesis methods described in this TSD allow for these three features where 

possible, by: 

1) Incorporating random effects to allow for heterogeneity in sensitivity and 

specificity across studies. 

2) Capturing the anticipated between-study correlation in sensitivity and 

specificity. 

3) Modelling exact binomial likelihoods, rather than relying on normal 

approximations.  

4. META-ANALYSIS OF ONE ESTIMATE OF SENSITIVITY 
AND SPECIFICITY PER STUDY  

In this section we describe methods for meta-analysis of a single estimate of sensitivity 

and specificity per study. This may be the case for a truly binary test, a test with no 

explicit threshold2, or if meta-analysis has been restricted to accuracy at a particular 

explicit threshold value. 

It is now well recognised that the binomial bivariate random effects model for sensitivity 

and specificity (14) is equivalent to another proposed approach, the hierarchical 

summary receiver operating characteristic (HSROC) model (7), in the simple situation 

with no study-level covariates (15, 16). Originally the bivariate model was used to 

produce correlated estimates of “average”3 sensitivity and specificity, typically 

represented by a transformed ellipse in ROC space, while the HSROC model was used 

 

2 See Section 2.3 

3 Mean on the logit scale, alternatively viewed as median sensitivity and specificity on the probability 
scale. We will also sometimes refer to these as “summary estimates” in this TSD. 
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primarily to produce a summary ROC curve, representing the typical trade-off between 

sensitivity and specificity across studies. Due to the equivalence, the HSROC curve 

can be derived from the bivariate model and vice versa. In this TSD, we provide code 

to fit the bivariate model and produce both types of output. 

Note that the bivariate/HSROC model does not incorporate threshold values into the 

analysis. This means that, although a summary ROC curve can be estimated, it is not 

possible to know which point on the curve each threshold relates to. Either 

parameterisation is easily extended to incorporate study-level covariates, which could 

in principle include threshold. However, due to the specific functional form for the 

relationship between sensitivity, specificity and threshold – and because, where 

thresholds are numeric, it is common for accuracy at more than one threshold to be 

reported in some studies – we refer to Section 5 for guidance on how to incorporate 

this information where available.   

The HSROC curve is however an informative summary of the data when thresholds 

are implicit rather than explicit4, as it describes the sensitivity that can be obtained at 

different values of specificity (and vice versa). Focus on a single summary point in 

ROC space will be most appropriate where threshold effects are considered to be 

minimal – for example, if all of the data relate to accuracy at the same explicit threshold 

value, or if the test produces a clear dichotomous result with little chance of reader 

variability.  

Note that the HSROC curve supersedes earlier proposals on how to generate an 

SROC curve, such as the Moses and Littenberg approach (17, 18), which relies on 

normal approximations to binomial likelihoods and is discouraged now that exact 

approaches are available (see Section 3). The bivariate or HSROC model is also more 

general in that it allows for the scenario in which variation in threshold is not the only 

source of heterogeneity in sensitivity and specificity.  

 

4 See Section 2.3 
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4.1. BIVARIATE RANDOM EFFECTS MODEL  

4.1.1. Notation 

We use index 𝑖 = 1, … , 𝐼 to denote study number, and index 𝑗 to denote disease state, 

where  

𝑗 = {
1      diseased (𝐷 = 1)      

2      disease-free (𝐷 = 0)
 

We denote by 𝑟𝑖𝑗 the number of participants who are positive on the index test in group 

𝑗 of study 𝑖. In other words, 𝑟𝑖1 is the number of true positives (TP) and 𝑟𝑖2 the number 

of false positives (FP) in study 𝑖. Further, let 𝑝𝑖𝑗 = 𝑃𝑟(𝑟𝑖𝑗 = 1), such that 𝑝𝑖1 is the 

sensitivity and 𝑝𝑖2 is the FPF in study 𝑖. Finally, we use 𝑁𝑖𝑗 to denote the total number 

of individuals in population 𝑗 of study 𝑖. 

4.1.2. Model specification 

We assume binomial likelihoods for the number of positive test results within each 

disease state, in each study:  

𝑟𝑖𝑗~Binomial(𝑝𝑖𝑗 , 𝑁𝑖𝑗) (3) 

As sensitivity (𝑝𝑖1)  and FPF (𝑝𝑖2) are probabilities (therefore bounded between 0 and 

1), for the between-studies model a transformation (link function) is used to map these 

values into the real line (−∞, +∞), most commonly the logit (log-odds) transformation: 

logit(𝑝𝑖𝑗) = log (
𝑝𝑖𝑗

1−𝑝𝑖𝑗
) . 

Across studies, a bivariate normal distribution is assumed for either logit transformed 

sensitivity and specificity or – equivalently – logit transformed sensitivity and FPF. In 

this TSD we describe the latter version, i.e.: 

(
logit(𝑝𝑖1)

logit(𝑝𝑖2)
) ~ BVN ((

𝑚1

𝑚2
) , Σ) 

where Σ = (
𝜎1

2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ).  
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Here, 𝜎1
2, 𝜎2

2 represent between-study variances of logit-transformed sensitivity and 

FPF respectively and 𝜌 is the between-study correlation between these two measures, 

typically anticipated to be positive.  

Note that a special case occurs when the correlation parameter 𝜌 is one. In this case 

there is no variation in sensitivity at a given value of FPF (or vice versa). This means 

that all studies lie on the same ROC curve.  

Summary estimates of sensitivity and FPF are produced by back-transforming the 

parameters 𝑚1 and 𝑚2, using the inverse-logit function, such that: 

Summary sensitivity =
𝑒𝑚1

1 + 𝑒𝑚1
 

Summary specificity = 1 − 
𝑒𝑚2

1 + 𝑒𝑚2
=

1

1 + 𝑒𝑚2
 

In a Bayesian framework, this back-transformation is done at each iteration of the 

MCMC simulation, to produce posterior distributions for these pooled estimates. These 

summary estimates are correlated and uncertainty around them can be represented 

using a region (transformed ellipse) in ROC space, as we will demonstrate in Section 

4.4. 

Between-study heterogeneity in sensitivity and specificity is directly quantified through 

estimates of 𝜎1 and 𝜎2, similar to 𝜏 which is commonly used to denote the between-

study heterogeneity in standard univariate random effects meta-analysis. These 

parameters represent standard deviations of the logit-transformed measures across 

studies. Similar to prediction intervals in univariate random effects meta-analysis (19), 

it can also be informative to derive and plot a 95% prediction region, to help visualise 

the extent of heterogeneity. This region represents the area in which we predict the 

sensitivity and specificity would lie in a hypothetical new study drawn from the bivariate 

random effects distribution. We can generate predictive distributions for sensitivity and 

FPF in a new study, allowing for their correlation, by simulating additional probabilities 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑒𝑑_𝑝1) and 𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑒𝑑_𝑝2) from the bivariate normal distribution, and inverting 

the logit transformations, within the model code. 
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4.1.3. Prior distributions for hyperparameters 

In fitting the bivariate model in a Bayesian framework, we need to ensure that the 

variance-covariance matrix Σ is positive semi-definite. One way to do so is to assume 

a vague inverse-Wishart prior for Σ. The results in this case however can be sensitive 

to values of hyper-parameters and might not correspond to sensible priors for 𝜌, 𝜎1, 

and 𝜎2 (20). An alternative approach is to specify the bivariate normal distribution in 

the following conditional normal format within the model code (20, 21):  

logit(𝑝𝑖1)~𝑁(𝑚1, 𝜎1
2) 

logit(𝑝𝑖2)~𝑁 (𝑚2 + 𝜌
𝜎2

𝜎1

(logit(𝑝𝑖1) − 𝑚1), (1 − 𝜌2)𝜎2
2) 

Vague prior distributions can then be placed on the parameters 𝜎1, 𝜎2 and 𝜌 directly. 

Although we would typically expect  𝜌 to be non-negative, in order to not force it to be 

estimated as positive we would suggest the fully vague prior 𝜌~Uniform(−1,1) as  

default when there are sufficient studies available to estimate this. Similarly, wide 

Uniform(0,5) prior distributions might be used for 𝜎1 and 𝜎2 in this situation.  

Although Normal prior distributions with a large variance may seem the natural “vague” 

choice for 𝑚1 and 𝑚2, these place most of the weight on values of sensitivity and 

specificity close to zero or one. Uniform prior distributions on logit(−1)(𝑚1) and 

logit(−1)(𝑚2) are more attractive but can potentially slow down model fitting. As default 

fully vague priors for this model, we suggest use of Logistic(0,1) priors for 𝑚1 and 𝑚2, 

which are equivalent to Uniform(0,1) priors on the probability scale (i.e. for summary 

sensitivity and specificity).  

See Section 4.5 for discussion of choice of priors when the number of studies is small.  
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4.2. PRODUCING HSROC PARAMETERS AND CURVES FROM THE BIVARIATE 

MODEL 

As noted above, the HSROC model is mathematically equivalent to the bivariate 

model5, but it is parameterised differently and is conceptualised in terms of each study 

having its own ROC curve. In this section, we describe the HSROC model and how its 

parameters – and the HSROC curve – can be estimated from the bivariate model.  

The HSROC model assumes the following parametric form for the logit-transformed 

probabilities in each study (as defined by equation (3)): 

logit(𝑝𝑖𝑗) = 𝑒−𝛽𝑋𝑗(𝜃𝑖 + 𝑋𝑗𝛼𝑖) 

 

where 𝑋1 = 1/2 and 𝑋2 = −1/2 (7). Here, 𝜃𝑖, 𝛼𝑖 and 𝛽 are referred to as the cutpoint, 

accuracy and scale parameters respectively. The cutpoint parameter represents the 

point on the study’s ROC curve corresponding to the reported data: as 𝜃𝑖 increases, 

both the sensitivity and the FPF increase. The scale parameter 𝛽 defines the degree 

of asymmetry in each study’s ROC curve around the diagonal line (representing 

Sensitivity = FPF). If 𝛽 = 0 then the curve is symmetrical around this line. 

To allow for heterogeneity across studies, parameters 𝜃𝑖 and 𝛼𝑖 are assumed to be 

random effects as follows:  

𝜃𝑖~𝑁(𝛩, 𝜏𝜃
2) 

𝛼𝑖~𝑁(𝛬, 𝜏𝛼
2) 

where 𝛩, 𝛬 are the means of the cutpoint and accuracy parameters respectively and 

𝜏𝜃
2, 𝜏𝛼

2 their respective variances. Note that because each study only provides a single 

point on its ROC curve, it is not feasible to allow also for varying scale parameter 

across studies: 𝛽 is therefore assumed to be shared across all studies. This 

corresponds to all study-level ROC curves being parallel when plotted on the logit 

scale. 

 

5 In the absence of study-level covariates. 
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The HSROC curve is then defined by the equation: 

Sensitivity = logit−1(𝑒−𝛽logit(FPF) + 𝑒−𝛽/2𝛬) 

evaluated across the observed range of FPF values across studies.  

The parameters of the HSROC model can be written as the following functions of 

parameters of the bivariate model (15): 

𝛽 = log (𝜎2/𝜎1) 

𝛩 =
1

2
(√𝜎2/𝜎1 𝑚1 + √𝜎1/𝜎2 𝑚2) 

𝛬 = √𝜎2/𝜎1 𝑚1 −  √𝜎1/𝜎2 𝑚2 

𝜎𝛼
2 = 2𝜎1𝜎2(1 − 𝜌) 

𝜎𝜃
2 =

1

2
𝜎1𝜎2(1 + 𝜌) 

Note that the HSROC curve is symmetrical around the diagonal (𝛽 = 0) if 𝜎1 = 𝜎2. 

Further, if sensitivity and FPF are 100% correlated across studies (𝜌 = 1) then 𝜎𝛼 = 0, 

i.e. there is no variability in “accuracy” across studies. This corresponds to there being 

only one single ROC curve, shared across all studies, so that the true sensitivities and 

FPFs all lie on the same curve. 

We note that the Rutter and Gatsonis HSROC curve is only one of several possible 

SROC curves that is compatible with the bivariate model (16)  but it is the most 

commonly used in practice and has the desirable feature of treating sensitivity and 

specificity equally.  

4.3. RELATIONSHIP BETWEEN SENSITIVITY, SPECIFICITY AND PREVALENCE 

Sensitivity and specificity are sometimes modelled jointly with prevalence, with some 

authors proposing trivariate models (22, 23) . We do not advocate this approach in 

general. Prevalence can be extremely variable across studies, particularly if some 

studies in the meta-analysis are of a diagnostic case-control or “two gate” design (24), 

in which case a pooled estimate of prevalence is meaningless. We would therefore 
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avoid making unnecessary assumptions about the distribution of prevalence across 

studies.     

We can see two main ways in which prevalence can be related to sensitivity and/or 

specificity. First, in cases where there is no explicit threshold, if there is an increase in 

the a priori probability of disease, a rational human observer would shift their threshold 

for detection, simultaneously increasing the probability of both true positives and false 

positives. This phenomenon has been widely studied in signal detection theory (25, 

26) and would lead to a correlation between implicit threshold/cutpoint and prevalence.  

A quite different situation is where higher disease prevalence is associated with the 

detectability of the disease itself, perhaps because a higher proportion of the tested 

population have the disease in a more advanced form. This could arise if, for example, 

studies with higher prevalence of cancer tended to have proportionally more cases of 

advanced cancer, which may be more likely to be detected. This would lead to a 

correlation between sensitivity and prevalence, but no correlation between specificity 

and prevalence. 

If either form of systematic relationship with prevalence is suspected, we suggest this 

could be dealt with by including prevalence as a covariate, acting on the relevant model 

parameters. As with baseline risk in meta-analysis of interventions (27), we would 

recommend formulating this such that the covariate is “true” prevalence (after 

accounting for sampling variation) rather than the observed proportion. Further 

discussion is beyond the scope of this TSD. 

4.4. CODE AND WORKED EXAMPLES 

WinBUGS model code for the bivariate random effects model is provided in Appendix 

A1. Τhis includes calculation of the HSROC parameters, facilitating plotting of the 

HSROC curve when appropriate. Additionally, the model code can be used to produce 

estimates of the PPV and NPV at any specified value of pre-test probability or 

prevalence, based on estimates of sensitivity and specificity from the bivariate model. 

Evaluating equations (1) and (2) at each iteration of the MCMC facilitates production 

of 95% CrIs around estimates that allow for uncertainty in both sensitivity and 

specificity and the correlation between the two. Note that consideration should be given 
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to the extent to which these summary estimates are meaningful (i.e. whether significant 

threshold effects are anticipated) before using them in this way. 

Two types of figure are commonly used to show results from meta-analysis of test 

accuracy: coupled forest plots of sensitivity and specificity, and plots in ROC space, 

often referred to as summary ROC or SROC plots. SROC plots show study-level 

estimates of sensitivity and specificity in ROC space, and should include either or both 

of the following:  

• Estimates of summary or “average” estimates, with a 95% credible region 

representing joint uncertainty in these and (often) a 95% prediction region 

• An HSROC curve, which can also be plotted with 95% credible intervals and 

prediction intervals. Note that we would recommend against extrapolating this 

curve beyond the range of the observed data. 

Where summary estimates with 95% regions are shown, the credible region is usually 

based on a bivariate normal approximation to the posterior distribution of 𝑚1 and 𝑚2. 

An ellipse on the logit scale is estimated from this assumption, which is transformed to 

the probability scale for plotting. Similarly, the shape of the prediction region is usually 

based on a bivariate normal approximation to the joint posterior of logit(𝑝𝑟𝑒𝑑_𝑝1) and 

logit(𝑝𝑟𝑒𝑑_𝑝2). Note that the correlation parameters for these bivariate distributions are 

not equal to 𝜌 (which represents the correlation between the logits of sensitivity and 

FPF from the same study) but must instead by obtained as the correlation between 

posterior samples for 𝑚1 and 𝑚2, and the correlation between posterior samples for 

logit(𝑝𝑟𝑒𝑑_𝑝1) and logit(𝑝𝑟𝑒𝑑_𝑝2) respectively.6   

If the bivariate normal approximation to the joint posterior appears poor – which may 

be the case if either summary sensitivity or specificity is very close to one – analysts 

might consider other approaches to summarising the joint posterior for these plots, 

such as kernel based approximations.  

 

6 When running WinBUGS in the “point and click” way rather than through R2WinBUGS, these values 
are obtained after fitting the model by clicking “Inference” then “Correlations” and specifying the two 
parameters of interest.  
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We now describe two worked examples which differ in terms of which outputs may be 

considered most informative. R code to fit the bivariate model via R2WinBUGS and 

produce the figures shown is available at the GitHub repository.  

For analysts less familiar with producing plots in R, we note the availability of R 

package  DTAplots (28), which can also be used to produce coupled forest plots and 

SROC plots using posterior outputs from a Bayesian bivariate meta-analysis (functions 

Forest and SROC_rjags respectively). Example code to produce slightly simplified 

versions of the coupled forest and SROC plots for Example 1 is also provided in the 

GitHub repository.   

4.4.1. Example 1: Accuracy of B-type natriuretic peptide (at a threshold of 100ng/L) 

for diagnosis of acute heart failure 

We first consider data from a systematic review of the accuracy of B-type natriuretic 

peptide (BNP) in diagnosis of acute heart failure, carried out to inform NICE guidelines 

(29). To demonstrate the bivariate model, we consider only 2×2 tables corresponding 

to a cut-off of approximately 100ng/L: 19 studies reported such data. Data are shown 

on Figure 2. Note that, in practice, data were also available at other thresholds for this 

example (8, 29), and we would therefore recommend using the model described in 

Section 5 for the main synthesis, with the bivariate model fitted as a sensitivity analysis 

if the threshold of 100ng/L is of particular interest for the decision model (see Section 

5.2.3).  

From the bivariate model, we obtain pooled estimates of sensitivity = 0.95 (95% 

credible interval, CrI, 0.93, 0.97) and specificity = 0.63 (95% CrI 0.50, 0.75). The 

between-study standard deviation parameters for logit(sensitivity) and logit(FPF) are 

estimated as 0.62 (95% CrI 0.33, 1.13) and 1.09 (95% CrI 0.74, 1.67) respectively, 

while the between-study correlation, 𝜌, is estimated as 0.49 (95% CrI −0.15, 0.85). 

Figure 2 shows coupled forest plots, showing both study-level and pooled estimates. 
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Figure 2: Coupled forest plots for the B-type natriuretic peptide (100ng/L) 

example 

 

 

Figure 3 (left panel) shows the SROC plot. Here, the grey circles represent the 

observed sensitivity and specificity in each study, with studies with larger sample sizes 

depicted by larger circles. The red triangle shows the estimated average sensitivity and 

specificity, while the red dashed line depicts a 95% credible region, representing joint 

uncertainty in these estimates. The 95% prediction region (blue dashed line) 

represents joint bounds on the expected true sensitivity and specificity in a future 

hypothetical study, drawn from the same bivariate random effects distribution. For this 

data set, we see that the prediction region is very wide in the x-axis direction, indicating 

a large amount of heterogeneity in specificity across studies. As the threshold is the 

same (100ng/L) for all data included, we did not include an HSROC curve on this plot.  

In the right panel of Figure 3, we show the SROC plot on the logit scale: we see the 

estimated positive correlation, and how the joint uncertainty in summary measures and 

the joint predictive distribution are represented by ellipses on this scale. 

Using the summary estimates, we also calculated the PPV and NPV with 

corresponding 95% CrIs (allowing for joint uncertainty in sensitivity and specificity), for 

all possible prevalence or pre-test probability values. “Leaf plots” (30) can be used to 

visualise how a positive or negative test result impacts probability of disease: an 

example is shown in Figure 4 (red = PPV, blue = 1 – NPV). 
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Figure 3: SROC plot for the B-type natriuretic peptide (100 ng/L) example: on 

the probability scale (left) and logit scale (right)  

 

 

Figure 4: Leaf plot: Post-test probability given a positive or negative test result, 
for each pre-test probability or prevalence. Estimates based on 
summary sensitivity and specificity from bivariate random effects 
model, fitted to the B-type natriuretic peptide (100ng/L) example. 
Shaded areas are 95% CrIs 
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4.4.2. Example 2: Accuracy of radiography for detection of enamel caries 

Example 2 consists of data from 45 studies reporting on the accuracy of analogue or 

digital radiography for detection of enamel caries, among asymptomatic patients (31). 

Thresholds are implicit, since the index test does not produce a numerical value, but – 

as is typical with imaging tests – there is some degree of subjectivity in interpretation 

of images as positive or negative.  

We fitted the bivariate random effects model using the code provided. As some implicit 

threshold effects are anticipated for this test, we also calculated the HSROC 

parameters. Both sets of parameter estimates are shown in Table 2.  

Table 2: Bivariate and HSROC model parameter estimates for the enamel 
caries example 

 Parameter Interpretation Estimate (95% CrI) 

Bivariate 
model 
parameters 

𝑚1 Mean logit-sensitivity − .02 (−0.41, 0.37) 

𝑚2 Mean logit-FPF −2.17 (−2.78, − .61) 

𝜎1 
Standard deviation of logit-
sensitivity 

1.27 (1.02, 1.63) 

𝜎2 Standard deviation of logit-FPF 1.72 (1.28, 2.39) 

𝜌 
Correlation between logit-
sensitivity and logit-FPF 

0.52 (0.20, 0.75) 

HSROC 
parameters 

𝛬 Mean accuracy parameter 1.85 (1.29, 2.42) 

Θ Mean cutpoint parameter − .95 (− .37, − .53) 

𝛽 
Scale parameter (assumed 
constant across studies) 

0.30 (− .05, 0.66) 

𝜎𝛼 
Standard deviation of accuracy 
parameters 

1.44 (1.07, 1.96) 

𝜎𝜃 
Standard deviation of cutpoint 
parameters 

1.28 (1.01, 1.68) 

 

Figure 5 (left panel) shows the SROC plot, this time also including (unlike Figure 3) the 

HSROC curve. The darker and lighter shaded areas represent the 95% CrI and 

predictive intervals around the HSROC curve respectively. The HSROC curve is 

asymmetrical, as indicated by the point estimate of the scale parameter 𝛽 not being 

equal to zero. A positive 𝛽 indicates a larger spread of test results in the disease-free 

compared with diseased populations, although we note that in this example the CrI is 

wide and also contains zero. When plotted on the logit scale (Figure 5, right panel), we 



 31 

see how the HSROC line is linear on this scale, with slope 𝑒−�̂� = 0.74, a little less than 

the 1 (represented by the dotted black diagonal line).  

For this example, we observe a very large degree of heterogeneity in both sensitivity 

and specificity: this is clear from the extremely wide 95% prediction region and large 

estimated standard deviations for sensitivity and specificity on the logit scale across 

studies (Figure 5 and Table 2). Note that – theoretically – these large standard 

deviations could be consistent with a common true ROC curve across all studies. This 

would suggest that variation in threshold alone explained all of the heterogeneity in 

sensitivity and specificity. This is clearly not the case in this example, however. The 

CrI for the estimated correlation ρ is far from   (0.52, 95% CrI 0.20 to 0.75), such that 

we observe a large estimated standard deviation of 1.44 (95% CrI 1.07 to 1.96) in 

accuracy parameters across studies. This estimated spread of ROC curves across 

studies is also represented by the wide prediction intervals around the HSROC curve. 

Figure 5: SROC plot for the radiography for enamel caries detection dataset 

 

 

4.5. FITTING THE BIVARIATE MODEL WHEN THE NUMBER OF STUDIES IS 
SMALL 

This section considers the situation in which only a small number of studies is available, 

but synthesis is still required in order to provide the best representation of the available 

evidence to inform the cost-effectiveness analysis.  
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As noted in Section 3, there is often considerable between-study heterogeneity in  DTA 

meta-analyses and – as we saw from Example 2 – heterogeneity can be present on 

both parameter scales (logit-transformed sensitivity and specificity, or the HSROC 

parameters). The bivariate random effects model requires estimates of two between-

study standard deviation parameters and the correlation parameter, 𝜌, in addition to 

the two means (𝑚1 and 𝑚2).  

When only a small number of studies is available for synthesis, fitting the bivariate 

model with fully vague prior distributions as described in Section 4.1.3 can lead to poor 

or non-identifiability of some parameters. Even if all parameters are at least weakly 

identified, posterior distributions may be extremely wide, with little change from their 

vague prior distributions. As is also the case with meta-analysis of intervention 

effectiveness, the posterior distributions for between-study standard deviation 

parameters might include values which are, on reflection, infeasible (32). 

In these circumstances, some simplification of the model to remove one or more 

parameters might be considered. If implicit threshold effects are expected, thinking in 

terms of the HSROC parameterisation can assist in model simplification. If data are 

insufficient to estimate an asymmetric HSROC curve, estimation of a symmetric curve 

may be a reasonable approximation (33). In the bivariate parameterisation, this 

corresponds to setting 𝜎1 = 𝜎2. The WinBUGS code provided can be easily modified 

to set this constraint. A further potential simplification might be to assume that all 

heterogeneity is explained by varying threshold, such that all studies lie on the same 

ROC curve. This corresponds to setting 𝜌 = 1. Note that a single symmetric ROC curve 

(𝜌 = 1, 𝜎1 = 𝜎2) can be estimated from even a single 2×2 table.  

Use of informative or weakly informative prior distributions, principally for standard 

deviation and correlation parameters, is another option within a Bayesian framework. 

Guidance is available for using external evidence to inform prior distributions for 

variance components in meta-analysis of intervention effectiveness (34-36), and the 

same general principles apply in DTA: prior distributions could be based on “similar” 

meta-analyses (e.g. alternative tests under consideration for the same decision 

problem, that operate similarly and produce results in the same units), or elicited from 

experts. It can be helpful to consider how large 𝜎1 or 𝜎2 could really be in practice. As 
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described by Spiegelhalter et al. (37), if 𝛿𝑖~𝑁(𝑚, 𝜎2) across studies, then the 2.5th and 

97.5th percentile of exp(𝛿)s across studies lie exp(3.92𝜎) apart, which might be 

considered the “range” of odds across studies. For example, if the median sensitivity 

across studies is 0.60, then 𝜎1 = 1 would mean that the true sensitivity lies between 

0.17 and 0.91 in 95% of studies. See Table 3 for additional examples. We see that, 

unless median sensitivity or specificity is very close to 1, even an upper limit of 2 for 

standard deviation parameters would allow for the possibility of sensitivity or specificity 

varying across practically the entire [0,1] range.  

Where only a small number of studies are available for synthesis, analysts should 

consider what the maximum realistic value of these standard deviation parameters 

could be, based on consideration of how diverse sensitivity and/or specificity could 

realistically be across studies (Table 3) and formulate appropriate prior distributions, 

e.g. Half-Normal, with consideration to this (37). For example, Half-Normal(0, 0.512), 

Half-Normal(0,1.022) and Half-Normal(0,1.532) place just 5% of probability on the 

standard deviation being greater than 1, 2 or 3, respectively.  

Table 3: Interpretation of between-study standard deviation parameters in the 
bivariate model 

𝝈 
“Range” of 

odds across 
studies 

Implied range on the probability scale 

p = 0.6 p = 0.9 p = 0.995 

0.2 2.19 0.50 and 0.69 0.86 and 0.93 0.99 to 1.00 

0.5 7.10 0.36 and 0.80 0.77 and 0.96 0.99 to 1.00 

1.0 50.40 0.17 and 0.91 0.56 and 0.98 0.97 to 1.00 

2.0 2539.84 0.03 and 0.99 0.15 and 1.00 0.80 to 1.00 

3.0 127999.79 0.00 and 1.00 0.02 and 1.00 0.36 to 1.00 

 

The prior distributions described for 𝜌, 𝑚1 and 𝑚2 in Section 4.1.3 are also extremely 

vague and could be tightened up for specific applications based on prior knowledge. 

For example, we would usually expect 𝜌 to be non-negative, and would anticipate 

values of 𝜌 close to one for tests with obvious threshold effects. As such, a prior such 

as  𝜌~Uniform(0.5, 1) could be reasonable when reader variability is clearly 

anticipated.  Where threshold effects are not expected, other factors that vary across 

studies can also lead to a positive correlation, such as differences in setting (e.g. 
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laboratory or community), study quality issues (e.g. imperfect reference standard in 

some studies) or population differences. For example, recall that in Example 1, where 

all studies used the same explicit threshold, the posterior estimate of 𝜌 was ~0.5. A 

prior distribution for 𝜌 can be centred around an initial “guess” �̂� by setting the prior on 

Fisher’s Z transformation of 𝜌: 

𝑧~𝑁 (
1

2
log (

�̂� + 1

�̂� − 1
) , 𝑣2) 

where 𝑣 is selected to represent reasonable uncertainty on the 𝜌 scale. This 

transformation can be undone within the model code as: 

𝜌 =
𝑒2𝑧 − 1

𝑒2𝑧 + 1
 

For example, z~ N(0.55, 0.22) produces a prior distribution for 𝜌 that is centred around 

0.5, with 95% prior interval from 0.16 to 0.74.  

Standard model fit tools can be used to explore different options for a given data set. 

Comparing posterior mean residual deviance in restricted and unrestricted parameter 

models can help show where any restrictions are in conflict with the data  (21). See 

Section 5.3 for an example.  

4.6. OTHER SOFTWARE OPTIONS  

Alternative options to the WinBUGS code provided with this report to fit the 

bivariate/HSROC model exist in most popular statistical analysis packages. Several 

options are described below for R (including online app interfaces), Stata and specialist 

Bayesian programs. A more in-depth coverage of this topic, including code for SAS, is 

available elsewhere (33).  

Using the R software, packages (38, 39) to fit the bivariate model using frequentist 

methods are available. However, these use a normal approximation to the Binomial 

likelihoods and thus we do not recommend their use. The alternative is to use the 

glmer function within the general linear mixed effects package lme4 (40). Details of 

how to use this for DTA meta-analysis are available elsewhere (33). An online app – 
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MetaDTA (41) - exists for facilitating the bivariate/HSROC analyses of DTA meta-

analysis data, using the lme4 package behind a non-technical “point and click” user 

interface (42). When using lme4, the user should be aware that parameter estimation 

is not conducted via a simulation method, therefore in order to be able to incorporate 

the anticipated between-study correlation in sensitivity and specificity in a decision 

model, the user has two options: a) assume bivariate normality of the parameter 

estimates for (logit) sensitivity and specificity; or b) estimate uncertainty in the 

parameter estimates via bootstrapping (e.g. using the bootMer command in the lme4 

package). The advantage of the latter is that, as noted in Section 4.4, the normal 

approximation can be poor when sensitivity or specificity is close to 1, and 

bootstrapping provides a way of providing correlated stochastic samples to inform a 

decision model (see later) (N.B the bootstrap analysis cannot be produced in MetaDTA 

currently).   

Similar frequentist model fitting options also exist for Stata software. Bivariate models 

can be fitted in Stata using a generalised linear mixed methods approach implemented 

by the user-written programs metandi (43), midas (44) and  metadta (45, 46). In a 

similar manner to that described above for lme4 in R, in order to avoid normal 

approximations to parameter estimates, the bootstrap command is required to 

provide correlated samples for stochastic decision models.  

Alternative approaches to fitting the bivariate/HSROC model via Bayesian methods 

also exist. The JAGS software (47) provides an alternative Bayesian MCMC 

computation “engine” to WinBUGS and uses very similar coding syntax; specific code 

is available elsewhere (33). Stan (48) is another Bayesian model estimation program 

(although it uses different algorithms from WinBUGS and JAGS). The online app 

MetaBayesDTA (49) provides a “point & click” interface to this program for fitting the 

bivariate meta-analysis DTA model. Additionally, two packages in R bamdit (50) and 

meta4diag (51) fit the bivariate model using Bayesian methods. The former uses 

JAGS as the computational engine, while the latter uses a further R package, INLA 

(52), which is non-simulation based so doesn't automatically provide the necessary 

stochastic parameter samples required for informing a decision model. 
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4.6.1. Software options when the number of studies is small 

When analysing small numbers of studies, model convergence problems exist using 

frequentist approaches, and practical experience suggests these can often be 

overcome using Bayesian methods, even with relatively vague prior distributions. It will 

often not be possible to fit the versions of the model with simplified structure or 

informative prior distributions (described in Section 4.5) when using the Bayesian or 

frequentist packages for R and Stata, nor for the online apps cited. Finally, bootstrap 

sampling is not recommended generally for datasets with very small sample sizes. 

Therefore, when the number of studies is small, working directly with WinBUGS, JAGS 

(or STAN etc) code is recommended. 

5. META-ANALYSIS OF THE ACCURACY OF CONTINUOUS 
TESTS ACROSS EXPLICIT THRESHOLDS  

Where index tests provide a numerical value, it is common to find that some studies in 

a systematic review report on the accuracy at more than one threshold. A number of 

models have been proposed to synthesise data of this type and produce pooled 

estimates of the sensitivity and specificity at each explicit threshold (8, 53, 54). In this 

section we describe the model proposed by Jones et al. (8) as this is fitted in WinBUGS 

or JAGS and produces probabilistic results, facilitating use in a decision model. A brief 

discussion of other models for data of this type is included in Section 5.4. 

We emphasise that the NICE decision problem may not include choice of threshold. 

Where there is a clear test developer specified threshold, a focus on cost-effectiveness 

at that threshold will typically be agreed in the scope. However, even if the decision 

model requires only estimates of the sensitivity and specificity at one pre-specified 

threshold, we would recommend fitting a model incorporating data at all available 

thresholds, as we would typically expect to obtain more precise estimates of accuracy 

at this critical threshold from a unified analysis. The bivariate model (Section 4.1) can 

be fitted to the data relating to the manufacturer-recommended threshold as a 

sensitivity analysis, allowing identification and exploration of any inconsistencies 

(Section 5.2.3).  
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5.1. MULTIPLE THRESHOLDS MODEL 

5.1.1. Notation and data format 

As previously, we use index 𝑖 = 1, … , 𝐼 to denote study number, and index 𝑗 to denote 

disease state. Now, say that each study 𝑖 reports estimates of test accuracy at explicit 

threshold values 𝐶𝑖𝑡, where 𝑡 = 1, … , 𝑇𝑖. Note that both the threshold values themselves 

and the number of thresholds reported on can vary across studies, and 𝑇𝑖 may equal 

1 in some studies. As previously, let 𝑁𝑖𝑗 denote the total number of individuals in 

population 𝑗 of study 𝑖. 

We denote with 𝑦𝑖𝑗𝑙  the result of the continuous index test for the 𝑙th individual in 

disease group 𝑗 of study 𝑖. We assume that higher values of this continuous measure 

are associated with an increased probability of disease. Let 𝑝𝑖𝑗𝑡 = 𝑃(𝑦𝑖𝑗𝑙 ≥ 𝐶𝑖𝑡), such 

that 𝑝𝑖1𝑡  is the sensitivity and 𝑝𝑖2𝑡 the FPF at threshold 𝐶𝑖𝑡 in study 𝑖. Let 𝑥𝑖1𝑡 and 𝑥𝑖2𝑡 

denote the number of TPs and FPs respectively at threshold 𝐶𝑖𝑡 in study 𝑖. Data from 

study 𝑖 at multiple thresholds can then be written in the format shown in Table 4. Note 

that each study can contribute data at a different set of thresholds. If individual 

participant data are available from a study, this can be reformatted to Table 4 format, 

considering each unique value of continuous test result as an additional threshold. This 

allows the full individual level data to contribute to the synthesis.  

Table 4: Format of data required from each study, indexed i, to fit the multiple 
thresholds model 

 Number of individuals with index test result > 𝑪𝒊𝒕 

Threshold value 𝑪𝒊𝟏 𝑪𝒊𝟐 … 𝑪𝒊𝑻𝒊
 

True Disease 
status 

D=1 𝑥𝑖11 𝑥𝑖12 … 𝑥𝑖1𝑡𝑖
 

D=2 𝑥𝑖21 𝑥𝑖22 … 𝑥𝑖2𝑡𝑖
 

 

Note that by definition counts 𝑥𝑖1𝑡 and 𝑥𝑖2𝑡 must decrease with increasing 𝐶𝑖𝑡 (although 

may stay constant between thresholds that are close together, particularly in small 

studies).  
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5.1.2. Model specification 

The likelihood can be specified as the following series of conditional independent 

binomial distributions (8):  

𝑥𝑖𝑗1~Binomial(𝑝𝑖𝑗1, 𝑁𝑖𝑗) 

𝑥𝑖𝑗𝑡|𝑥𝑖𝑗,𝑡−1~Binomial (
𝑝𝑖𝑗𝑡

𝑝𝑖𝑗,𝑡−1
, 𝑥𝑖𝑗,𝑡−1),      𝑡 = 2, … , 𝑇𝑖 

We further assume that there exists a monotonic transformation 𝑔() of the index test’s 

results to a symmetrical distribution (i.e. removing skew) such that: 

𝑔(𝑦𝑖𝑗𝑙 )~Logistic(𝜇𝑖𝑗 , 𝜎𝑖𝑗) 

Under this assumption, the following parametric relationship between sensitivity, FPF 

and threshold holds: 

logit(𝑝𝑖𝑗𝑡) =
𝜇𝑖𝑗 − 𝑔(𝐶𝑖𝑗)

𝜎𝑖𝑗
 

The transformation 𝑔() may be pre-specified based on knowledge of the distribution of 

the continuous test’s result in the diseased and disease-free populations. For tests 

producing right skewed measures, e.g. biomarkers, 𝑔() = 𝑙𝑜𝑔() may often be a 

reasonable approximation (8).  

Jones et al. (8) additionally describe a more flexible version of the model, in which 𝑔() 

is defined by a Box–Cox transformation: 

𝑔(𝐶𝑖𝑡) = { 
(𝐶𝑖𝑡

𝜆 − 1)

𝜆
,    𝑖𝑓 𝜆 ≠ 0

log(𝐶𝑖𝑡),    𝑖𝑓 𝜆 = 0

 

Here, 𝜆 is an additional parameter to be estimated from the data. Note that this model 

simplifies to the 𝑔() = 𝑙𝑜𝑔() version when 𝜆 = 0. As such, we recommend fitting the 

“full” version where feasible with the data available.  

The means (𝜇𝑖1 and 𝜇𝑖2) and scale parameters (𝜎𝑖1 and 𝜎𝑖2) of the underlying logistic 

distributions are assumed to vary across studies as follows: 
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(

𝜇𝑖1

𝜇𝑖2

log(𝜎𝑖1)

log(𝜎𝑖2)

) ~N ([

𝑚𝜇1

𝑚𝜇2

𝑚𝜎1

𝑚𝜎2

] , 𝑆) 

where 𝑆 is a 4×4 covariance matrix. Jones et al. (8) discuss different structures for 𝑆, 

with the most general case being an unstructured symmetrical matrix. Here we focus 

on a restricted structure for 𝑆, where correlations are assumed to be caused only by 

dependencies between (𝜇𝑖1, 𝜇𝑖2), (log(𝜎𝑖1), 𝜇𝑖1) and (log(𝜎𝑖2), 𝜇𝑖2). Under this 

assumption we can re-write the random effects as the following series of univariate 

conditional normal distributions: 

𝜇𝑖1~N(𝑚𝜇1, 𝜏𝜇1
2 ) 

𝜇𝑖2|𝜇𝑖1~N (𝑚𝜇2 + 𝜌𝜇

𝜏𝜇2

𝜏𝜇1

(𝜇𝑖1 − 𝑚𝜇1), (1 − 𝜌𝜇
2)𝜏𝜇2

2 ) 

log(𝜎𝑖𝑗)|𝜇𝑖𝑗~N (𝑚𝜎𝑗 + 𝜌𝜇𝜎

𝜏𝜎𝑗

𝜏𝜇𝑗

(𝜇𝑖𝑗 − 𝑚𝜇𝑗), (1 − 𝜌𝜇𝜎
2 )𝜏𝜎𝑗

2 ) , 𝑗 = 1,2 

We can obtain summary estimates of sensitivity and FPF for any threshold (𝐶) of 

interest within the observed range as: 

Summary Sensitivity = logit−1 (
𝑚𝜇1 − 𝑔(𝐶)

𝑚𝜎1
) 

Summary FPF = logit−1 (
𝑚𝜇2 − 𝑔(𝐶)

𝑚𝜎2
) 

To enable production of prediction intervals, we additionally draw predictive values 

from the four random effects distributions, similar to Section 4.1.2: 

𝑝𝑟𝑒𝑑_𝜇1~N(𝑚𝜇1, 𝜏𝜇1
2 ) 

𝑝𝑟𝑒𝑑_𝜇2~N (𝑚𝜇2 + 𝜌𝜇

𝜏𝜇2

𝜏𝜇1

(𝑝𝑟𝑒𝑑_𝜇1 − 𝑚𝜇1), (1 − 𝜌𝜇
2)𝜏𝜇2

2 ) 

𝑝𝑟𝑒𝑑_𝑙𝑜𝑔(𝜎𝑗)~N (𝑚𝜎𝑗 + 𝜌𝜇𝜎

𝜏𝜎𝑗

𝜏𝜇𝑗

(𝑝𝑟𝑒𝑑_𝜇𝑗 − 𝑚𝜇𝑗), (1 − 𝜌𝜇𝜎
2 )𝜏𝜎𝑗

2 ) , 𝑗 = 1,2 
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5.1.3. Prior distributions for hyperparameters 

Very vague options for prior distributions are7:  

𝑚𝜇𝑗~N(0,1000), 𝑚𝜎𝑗~N(0,1000) 

𝜏𝜇𝑗~Uniform(0,5), 𝜏𝜎𝑗~Uniform(0,5) 

𝜌𝜇~Uniform(−1,1), 𝜌𝜇𝜎~Uniform(−1,1) 

𝜆~Uniform(−3,3) 

 

See Section 5.3 for discussion of choice of priors when the number of studies is small. 

5.2. CODE AND WORKED EXAMPLE 

We demonstrate the use of the multiple thresholds model with the following worked 

example. WinBUGS code to fit the multiple thresholds model with unknown Box–Cox 

transformation parameter and restricted covariance structure is shown in Appendix A2. 

Code to bring the data into the appropriate format for the model in R, call WinBUGS to 

run all versions of the model, and produce the figures is available from the GitHub 

repository.  

5.2.1. Example 3: Accuracy of OC-Sensor in detecting colorectal cancer 

We use a data set from DG56 (55), which assessed the potential use of faecal 

immunochemical tests (FIT) to guide colorectal cancer pathway referrals, among 

symptomatic patients presenting in primary care. While FIT testing (at a threshold of 

10µg/g) was already recommended as a triage tool for further investigations in patients 

with low risk symptoms, this appraisal assessed the potential use of FIT in patients 

with medium and high risk symptoms. Several FIT testing strategies were explored, 

including varying the threshold used to denote a positive result. Data on the accuracy 

 

7 Note that, unlike in Section 4.1.3, we do not suggest logistic distributions for the ‘m’ parameters. This 
is because these are not logit-transformed probabilities in this model: they represent means and 
log(𝑆𝐷) of continuous measure on the 𝑔() scale. 
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of the OC-Sensor test were available from 11 studies, reporting 2×2 tables relating to 

between 1 and 10 different thresholds, with 14 different threshold values reported on 

in total (between 4 and 200 µg/g). 

Preliminary data investigation suggests that that logit transformed TPFs and FPFs are 

approximately linear with log transformed threshold (Figure 6). As the key assumption 

of the multiple thresholds model is that the relationship between these logit 

transformed probabilities and 𝑔(𝐶) is linear within each study, this may suggest that 

𝑔() = 𝑙𝑜𝑔() is a reasonable approximation for this data set.  

Figure 6: Checking the linearity of the OC-Sensor data given the log 
transformation 

 

 

Table 5 shows the fit of the full multiple thresholds model as shown in Section 5.1.2, 

and of an alternative in which we pre-define 𝜆 = 0 (i.e. set 𝑔() = 𝑙𝑜𝑔()). For the full 

Box–Cox version of the model, we also explored two alternative structures for the 

between-studies correlation matrix, 𝑆:  independence, (i.e. 𝑆 is a diagonal matrix) and 

full, unstructured, as described by Jones et al (8). We see that the Box–Cox version 
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has substantially better model fit than the “log” version for this data set. The Box–Cox 

transformation parameter is estimated as 𝜆= − .   (95% CrI − . 9, − . 5 , suggesting 

that the continuous distributions of OC-Sensor test results are slightly more right 

skewed than Log-Logistic (𝜆= 0). There is no meaningful improvement in fit through 

allowing for between study correlations in random effects in this example, however.  

Table 5: Comparison of model fit for the OC-Sensor data set. DIC = residual 
deviance + pD, where pD is the effective number of parameters. 

Transformation 
of threshold 

 Covariance 
matrix 

structure 

Residual 
deviance 

pD8 DIC 

Log Restricted  999.6 28.6 1028.2 

Box–Cox 

Restricted  658.7 29.1 687.7 

Independence  658.0 29.9 687.9 

Unrestricted 657.2 29.8 687.0 

 

Notably, despite the large difference in model fit for the Box–Cox versus “log” model, 

summary estimates of sensitivity and FPF are seen to be very robust to this choice 

across the observed range of thresholds: Figure 7. For example, at a threshold of 10 

μg/g the summary sensitivity is the same for both versions (0.90, 95% CrI 0.86 to 0.93), 

while summary specificity is also the same but with marginally different CrI (0.88, Box–

Cox 95% CrI 0.66, 0.89 compared with “log” CrI 0.65, 0.89). Note that estimates might 

not agree so closely if the estimate of 𝜆 lies further from 0, and also summary estimates 

between the two models would differ more if we extrapolated beyond the range of the 

observed data. As with the HSROC curve, we recommend against extrapolating in this 

way.  

 

8 pD was calculated outside of WinBUGS based on the deviance at the mean of the fitted values, which 
is generally more stable than the version reported within WinBUGS: see TSD 2 (31). 
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Figure 7: Sensitivity and FPF across all thresholds for the OC-Sensor data set: 

study-level estimates, summary estimates with 95% CrIs (darker 
shaded regions) and 95% prediction intervals (paler shaded regions). 
Larger circles depict greater sample size. Estimates shown are from 
models with independent random effects. 

 

5.2.2. Model critique 

Analyses of datasets such as the OC-Sensor example should be accompanied by 

appropriate model critique, including consideration of global model fit and plots of 

observed versus fitted curves. The very poor global fit of even the Box–Cox version of 

the model for this data set (the posterior mean residual deviance 658.0 from 84 data 

points) would deserve further examination. 

An example model critique is illustrated in Appendix B1. This establishes that the 

majority of the poor fit arises from the specificity data in studies with exceptionally large 

disease-free sample sizes. The difference between observed and fitted specificity in 

these studies is, however, found to be relatively small. For this reason, the fitted 

sensitivity and FPF curves can be expected to represent a robust summary of the 

evidence, despite the poor global model fit.  

5.2.3. Estimates at a pre-specified threshold 

As discussed above, if the decision model requires estimates of sensitivity and 

specificity only at a particular (test developer-recommended) threshold, we would 

recommend fitting the bivariate model (Section 4.1) to data relating to that threshold 

only, as a sensitivity analysis, to check that there are no important discrepancies. This 
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may be particularly important for examples such as this one, where the residual 

deviance of the multiple thresholds model is large.  

More formally, we can use node splitting, originally suggested for detecting conflict 

between different sources of information in Bayesian hierarchical models by O’Hagan 

(56), and commonly used to assess inconsistency between direct and indirect 

evidence in network meta-analysis (57). Here, we re-fit the multiple thresholds model 

after excluding data relating to the critical threshold, then compare estimates for the 

critical threshold with those from the bivariate model.  Let 𝜉𝐼𝑛𝑑 denote the parameter of 

interest (e.g. sensitivity) estimated from the “indirect” evidence (i.e. multiple thresholds 

model excluding data for the critical threshold) and 𝜉𝐷𝑖𝑟  denote the parameter 

estimated from the direct evidence (i.e. bivariate model). Then a Bayesian p-value can 

be calculated as 2 ∗ min (Pr (𝜉𝐷𝑖𝑟 >  𝜉𝐼𝑛𝑑), Pr (𝜉𝐷𝑖𝑟 <  𝜉𝐼𝑛𝑑)). A small p-value suggests 

evidence of inconsistency.  

If inconsistency is identified, it will be important to explore reasons for this. It is possible 

– especially if data are sparse – that the multiple thresholds model may be failing to 

adequately model the underlying distributions of continuous test results, although the 

risk of this should be minimised if sufficient data are available to use the full version of 

the model. Checks on the validity of the model might include plots similar to Figure 6, 

but with the Box–Cox transformed threshold as the x-axis, to identify possible non-

linearity. It may be more likely, however, that any such inconsistencies arise due to 

heterogeneity in the underlying evidence, and we should be careful to understand 

differences in study design and characteristics that underlie such results. Following 

careful evaluation, it may be appropriate to meta-analyse only data corresponding to 

the threshold of interest; however, we do not recommend that this approach is taken 

without first exploring modelling of all available data. 

For the OC-Sensor example, Table 6 provides a comparison of summary results for 

two thresholds, including the 10µg/g threshold recommended for use with low risk 

patients. To check for potential inconsistencies, we compared summary sensitivity and 

specificity estimates between the multiple thresholds model fitted to data excluding the 

threshold of interest with estimates from the bivariate model fitted to data for only that 
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threshold. We see that estimates are very similar, and the node split p-values are large, 

suggesting no cause for concern.  

Table 6: Comparison of summary sensitivity and specificity at two thresholds: 
multiple thresholds model fitted to data excluding the threshold of 
hypothetical interest and bivariate model fitted to the data at that 
threshold alone. OC-Sensor example.  

Threshold  

Multiple thresholds 
model (Box–Cox 

version): excluding the 
relevant threshold data 

Bivariate model 
fitted to relevant 
threshold data 

alone 

Node 
split  

p-value 

10µg/g 
Sensitivity  0.89 (0.84, 0.93) 0.89 (0.85, 0.93) 0.95 

Specificity  0.75 (0.64, 0.84) 0.77 (0.65, 0.55) 0.77 

100µg/g 
Sensitivity  0.66 (0.60, 0.71) 0.65 (0.53, 0.74) 0.78 

Specificity  0.95 (0.88, 0.98) 0.94 (0.79, 0.98) 0.83 

5.3. FITTING THE MULTIPLE THRESHOLDS MODEL WITH FEW DATA POINTS 

As discussed in Section 4.5 for the bivariate model, synthesis can be challenging when 

the number of studies is small, but may still be required to inform the cost-effectiveness 

analysis. For the multiple thresholds model, similar challenges can arise when only a 

small number of studies report data at more than one threshold, or where the total 

number of thresholds reported across in the data set is small. In any of these situations, 

the full model with the vague priors outlined in Section 4 is unlikely to be appropriate.  

As in the bivariate model case, a number of simplifications to the full model might be 

considered. Possible simplifications, which might be explored based on knowledge of 

the test and data set and use of standard model fit tools, might include (but are not 

limited to):   

• The parameter 𝜆 might be set to a particular value, based on prior understanding 

of the distribution of continuous test results in the diseased and disease-free 

populations, or its range could be narrowed. This might be based on individual 

participant data from one study, histograms presented in a study publication, 

analysis of similar datasets, and/or exploration via plots like Figure 6.  
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• The structure of covariance matrix 𝑆, representing the relationships between the 

four sets of random effects, could be simplified to an independence structure 

(as in Table 5).  

• We note that setting 𝜎𝑖2 = 𝑐 × 𝜎𝑖1, for some constant 𝑐 would correspond to an 

assumption that the degree of asymmetry of the ROC curve is constant across 

studies (producing parallel lines in logit space), which may often be a 

reasonable approximation. 

• A common slopes model (i.e. 𝜏𝜎𝑗 = 0, 𝑗 = 1,2) might also be considered, 

particularly if only one or two studies report data at more than one threshold 

value (allowing within-study slope parameters to be estimated).  

As discussed in Section 4.5, informative or weakly informative prior distributions might 

also be formulated based on external data or expert opinion.  

5.3.1. Example 4: Accuracy of FOB Gold in detecting colorectal cancer  

To demonstrate the use of the multiple thresholds model with few data points, we 

consider an additional data set from DG56 (55). The appraisal considered eight 

different FIT tests including OC-Sensor (described in Section 5.2) and FOB Gold. 

However, only three studies reported data on the accuracy of FOB Gold. These three 

studies reported data at between one and four thresholds, with the full dataset 

providing a total of 8 pairs of sensitivity and specificity, relating to thresholds between 

2 and 150µg Hb/g. In total across the three studies, there were 51 and 4,084 individuals 

with and without colorectal cancer, respectively – therefore there are very limited data 

available from which to estimate sensitivity. 

Due to the sparsity of the data, we pre-specified the transformation 𝑔() = log() prior to 

synthesis: i.e. 𝜆 = 0.  Based on the limited data available, there were no obvious 

deviations from linearity on this scale (Figure 8). Further, OC-Sensor and FOB Gold 

are similar tests: both are quantitative FIT tests using immunoturbidimetric methods to 

measure haemoglobin concentrations. As estimates from the OC-Sensor analysis 

were robust to setting 𝜆 = 0, this approximation seemed reasonable. To further slightly 

reduce the number of parameters to be estimated, an independence structure was 

assumed for the covariance matrix 𝑆 of the four sets of random effects. 
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Figure 8: Checking the linearity of the FOB Gold data given the log 

transformation9   

 

 

The multiple thresholds model with vague prior distributions as specified in Section 

5.1.3 for all other hyperparameters produced summary estimates of sensitivity and 

FPF, but with very wide CrIs, as shown in Figure 9 (left panel). Inspecting the posterior 

density plots for the four between-study standard deviation parameters 

(𝜏𝜇𝑗 , 𝜏𝜎𝑗 , 𝑗 =  1,2: Figure 10, red lines), we observe that these have not been sufficiently 

updated from the prior distributions, particularly the two parameters relating to the 

diseased population. There is not enough information to estimate the between-study 

heterogeneity from the data alone. 

The right panel of Figure 9 shows results from fitting a fixed effect model, i.e. setting 

𝜏𝜇𝑗 =  𝜏𝜎𝑗  =  0, 𝑗 =  1,2. In contrast to the left panel, the 95% CrIs around estimated 

sensitivity and FPF here are unrealistically narrow, particularly for FPF. Use of these 

 

9 Two datapoints are missing from this plot because observed TPF=1, such that logit(TPF) is undefined. 
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results would suggest greater certainty in the results for FOB Gold than for OC Sensor 

(shown in Section 5.2), for which more data were available. 

Figure 9: Sensitivity and FPF across all thresholds for the FOB Gold data set: 
study-level estimates, summary estimates with 95% CrIs (darker 
shaded regions) and 95% prediction intervals (paler shaded regions). 
Larger circles depict greater sample size. Left panel: with U(0,5) 
priors for standard deviations; right panel: fixed effect model  

 

 

As an alternative between these two extremes, we used weakly informative Half-

Normal(0,1) prior distributions for the four between-study standard deviation 

parameters. From comparison with posterior distributions for these parameters from 

the OC Sensor analysis, these appeared sufficiently wide. Results from an analysis 

using these prior distributions are shown in Figure 11. A comparison of summary 

estimates from the three analyses at two example thresholds is also shown in Table 7.  
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Figure 10: Posterior densities for standard deviations of random effects, for the 

multiple thresholds model fitted to the FOB Gold dataset: comparison 
of results with vague U(0,5) priors and weakly informative HN(0, 1) 
priors. HN(0,1) prior densities are shown as grey shaded regions, for 
comparison.  
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Figure 11: Sensitivity and FPF across all thresholds for the FOB Gold data set, 

with HN(0,1) prior distributions for between-study standard 
deviations: study-level estimates, summary estimates with 95% CrIs 
(darker shaded regions) and 95% prediction intervals (paler shaded 
regions). Larger circles depict greater sample size. 

 

  

There are some differences in point estimates across the three analyses (e.g. at a 

threshold of 10µg/g, estimates of sensitivity range from 0.74 to 0.88). The widths of the 

CrIs from the model with weakly informative priors for standard deviations lie between 

those from the other two models. The residual deviance for the fixed effect model is 

much larger than the number of data points (=16), suggesting poor model fit. In 

contrast, the residual deviance for the analysis with vague priors is less than 16, which 

may indicate overfitting. As we would anticipate, the residual deviance for the analysis 

with weakly informative priors lies between the two.  We would select this analysis on 

the basis that it provides more precise estimates by ruling out unrealistic posterior 

values, while still being consistent with the evidence. 
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Table 7: Summary estimates of sensitivity and specificity (with 95% CrIs) at 

thresholds of 10µg/g and 100µg/g, comparing different options for the 
between study heterogeneity parameters. FOB Gold dataset. 

Threshold  
Random effects 

model 
with vague priors  

Fixed-effect 
model 

Random effects 
model with 

HN(0,1) 
priors for 

between-study 
standard 

deviations 
 

10µg/g 
Sensitivity  0.74 (0.50, 1.00) 0.88 (0.78, 0.95) 0.84 (0.55, 1.00) 

Specificity  0.89 (0.63, 1.00) 0.88 (0.87, 0.89) 0.88 (0.76, 0.97) 

100µg/g 
Sensitivity  0.61 (0.23, 1.00) 0.82 (0.67, 0.91) 0.69 (0.49, 0.98) 

Specificity  0.96 (0.73, 1.00) 0.96 (0.95, 0.96) 0.96 (0.86, 1.00) 

Model fit 

Residual 
deviance 

13.3 35.0 15.2 

pD 3.5 2.8 6.7 

DIC 16.8 37.8 21.9 

Priors 

𝜏𝜇1 Uniform(0,5) Set to zero HN(0,1) 

𝜏𝜇2 Uniform(0,5) Set to zero HN(0,1) 

𝜏𝜎1 Uniform(0,5) Set to zero HN(0,1) 

𝜏𝜎2 Uniform(0,5) Set to zero HN(0,1) 

 

Sensitivity analyses in which we used HN(0,0.52) and HN(0,22) priors produced similar 

summary estimates but with posterior mean residual deviance slightly further from the 

number of data points (see Appendix B2), suggesting the HN(0,1) choice is 

reasonable.   

5.4. OTHER MODELS AND SOFTWARE 

We have focused in this section on the multiple thresholds model proposed by Jones 

et al. (8), but note that several alternative models have also been proposed for data of 

this structure. Zapf et al. describe four approaches and compare estimates in a case 

study (58). The model proposed by Steinhauser et al. (53) is similar to that described 

in Section 5.1 and can be implemented using the R package diagmeta (59). Key 

differences relative to the Jones model include use of normal approximations to the 

likelihoods and a requirement to pre-specify the transformation 𝑔(). The parametric 

form also differs, such that the random effects have different interpretations. In some 

circumstances involving little within-study information about the relationship with 
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threshold (i.e. very few studies reporting at multiple thresholds) and the observed 

relationship across studies being counterintuitive, the Steinhauser model can estimate 

this relationship in the “wrong” direction: e.g. estimating sensitivity to increase with 

threshold for a test in which we know higher values represent increased probability of 

disease. Since the model of Jones et al. is the only one using simulation to estimate 

parameter distributions, this is the only one that can directly supply (i.e. without 

requiring bootstrapping) correlated samples from the estimated test accuracy 

parameter distributions, avoiding the need for normality assumptions to be made.  

6. USING THE SYNTHESIS OUTPUTS IN A DECISION 
MODEL 

In this section, we describe how results from a DTA meta-analysis can be used in a 

decision model, and provide a simplified example to illustrate some key considerations 

that are likely to arise in practice. 

6.1. INTEGRATING DIAGNOSTIC SYNTHESES IN A DECISION MODEL 

Probabilistic decision modelling (60) is recommended for all NICE programmes (1). 

This has the effect of propagating the uncertainty in our estimates of sensitivity and 

specificity appropriately throughout the decision model, integrating this with our 

uncertainty relating to long-term consequences of each of the four outcomes (TP, FN, 

TN, FP). As discussed earlier, posterior estimates of sensitivity and specificity from the 

evidence synthesis models described in Section 4 and 5 are likely to be correlated. A 

deterministic approach, in which posterior estimates of sensitivity and FPF are plugged 

into the model, will fail to propagate this correlation, and will, in any case, produce 

incorrect results if the decision model in non-linear in sensitivity or FPF.  

One advantage of a fully Bayesian approach to synthesis, for example using 

WinBUGS, is that we can conveniently embed the posterior simulation outputs of these 

quantities in the decision model, thereby preserving underlying parameter uncertainty, 

correlation, and uncertainty in correlation (61, 62).  

While in principle the decision model can be incorporated into the Bayesian MCMC 

model code, estimating cost effectiveness jointly alongside the synthesis, this will be 



 53 

unnecessarily computationally expensive for all but the simplest decision models. A 

practical alternative is to take posterior samples from the Bayesian MCMC (“coda”  

and export these to software of choice for the decision model. For example, modellers 

may import the posterior samples to an Excel workbook and use a randomly selected 

row in each iteration of their probabilistic analysis. In the sections that follow, we use 

R2WinBUGS functionality by exporting posterior samples into R for the decision model.  

We note that an alternative, compact, approach to using posterior samples from the 

bivariate model would be to approximate the joint posterior distribution of logit-

transformed sensitivity and FPF with a bivariate normal distribution: this is the same 

approximation as typically used to create credible or prediction regions on SROC plots. 

However, as noted in Section 4.4, this approximation can be poor, especially when 

estimated sensitivity or specificity is very close to one; therefore, we do not recommend 

this approach unless the analyst is confident that joint normality holds. 

In Sections 4.6 and 5.4, where we discussed software choices for the synthesis model, 

we briefly outlined how to embed evidence synthesis results in probabilistic decision 

models, including options for using results from frequentist syntheses. For a more 

comprehensive discussion of this topic see TSD 6 (63). 

6.2. CHOOSING THE EVIDENCE SYNTHESIS OUTPUT FOR USE IN DECISION 
MODELLING 

In Section 6.1 we described use of a joint posterior distribution for sensitivity and FPF 

in a decision model. It is important to recognise, however, that – as with any random 

effects model – the synthesis models described in Sections 4 and 5 produce multiple 

outputs, each of which could be used in the decision model. The “summary” estimates 

(i.e. sensitivity and FPF at the means of the random effects distribution) and predictive 

distributions are two of the options available, but there are others.  

To select the appropriate output, it is necessary to consider the relationship between 

the decision-maker’s target population and use scenario and the populations and use 

scenarios sampled in the synthesised studies. This problem is discussed in depth 

elsewhere: for random effects meta-analysis of relative treatment effects (27, 64-67) 

and also for test accuracy synthesis (61, 68). Here we list the main options.  
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Random effect means. This is the meta-analysis output most commonly used in 

decision models. However, its appropriateness is contingent on an assumption that the 

sensitivity and specificity of the test in the decision scenario is located at the means of 

the random effects distributions. It is difficult to envisage a scenario where this is truly 

realistic in practice.   

Predictive distribution. The joint predictive distribution for sensitivity and specificity in a 

“new” study is a natural alternative, allowing for the heterogeneity observed in the 

meta-analysis. This relies only on an assumption that the accuracy of the test in the 

target scenario is exchangeable with those in the meta-analysis. However, as we have 

seen in the worked examples, prediction intervals can be extremely wide in test 

accuracy syntheses. If we are able to understand at least some of the reasons for 

heterogeneity, these intervals likely over-state the true variation in sensitivity and 

specificity that might be expected in practice. 

Predictions from a synthesis with covariates. Where synthesis has suggested a 

relationship between one or more study-level covariates and sensitivity and specificity, 

model-based predictions most closely relating to the decision question can be used. 

For example, we discussed the potential for a relationship between sensitivity, 

specificity and prevalence in Section 4.3: if this is observed and modelled, then 

predictive distributions corresponding to the assumed prevalence in the decision 

population can be used. 

Study-specific estimate. If the target population/scenario is well represented by one of 

the studies in the synthesis, then the joint posterior distribution for sensitivity and FPF 

for that study would be an appropriate input for the decision model. These model-based 

or shrinkage estimates should not be confused with the observed values of sensitivity 

and FPF in the study in question. The assumption here, implicit in the fitting of a 

random effects model, is that all the studies included in the synthesis are similar, such 
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that the posterior estimates are appropriately drawn in to some degree towards the 

random effects means, borrowing strength from the other study estimates10.  

Random effects distribution. If the between-studies variation observed in the included 

studies is believed to represent the between-centre variation that would be observed 

if the diagnostic test was “rolled out” for routine use, then it would be appropriate to 

integrate the decision function over the entire random effect distribution. This approach 

results in a per capita net benefit (66). However, this is based on an assumption that 

all heterogeneity in the meta-analysis will remain inevitable in routine practice. In the 

context of NICE decision-making, it may be hoped that effective national guidance may 

attenuate some sources of variation.    

In the following subsections we will demonstrate use of random effects means and 

predictive distributions. However, in any real example the analyst should carefully 

consider the potential sources of heterogeneity and choose the output considered most 

appropriate for the specific decision problem.  

6.3. A SIMPLIFIED DECISION MODEL 

To demonstrate use of synthesis results in a decision model, we introduce a simplified 

hypothetical decision model to evaluate the cost effectiveness of introducing a 

screening test for a chronic condition. This simple model consists of a decision tree 

only, as shown in Figure 12.  For ease of exposition, let us assume we already know 

– with certainty – the payoffs associated with each possible outcome from the 2×2 

table, relative to the baseline outcome of no disease and no screening test. We 

emphasise that this is a simplified hypothetical example: modelling of the downstream 

consequences of each outcome will usually be required (see Discussion). We express 

these as hypothetical net benefits (NB), representing the joint impact of costs and 

effects, when the two are put on a common scale assuming some monetary value for 

 

10 If, on the other hand, it was felt that the relevant study was completely different from the other studies, 
a synthesis should not have been conducted; under this circumstance the analyst can discard the 
irrelevant data and directly use the observed data from the study instead. 
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each unit of effect (for example, a cost-effectiveness norm such as £20,000 per QALY 

gained). These are as follows: 

• True positive (TP) test result: early detected and treated. NB = EDT − C 

• False negative (FN): late detected and treated. NB = LDT − C 

• False positive (FP): unnecessary further investigations. NB = UFI − C 

• True negative (TN). NB = −C 

where C is the cost of the screening test. 

The corresponding outcomes without screening are assumed to be: 

• Diseased: late detected and treated. NB = LDT  

• No disease (baseline). NB = 0  

Figure 12: Simplified hypothetical decision tree evaluating introduction of a 

screening test 

 

 

The overall net benefit of screening is then equal to: 

 

TP: Early Detected & 
Treated  
NB = EDT - C 

FN: Late Detected & 
Treated  
NB = LDT - C 

FP: Unnecessary Further 
Investigations  
NB = UFI - C 

TN: All OK  
NB = -C 

Late Detected & Treated 
NB = LDT 

All OK 
NB = 0 (baseline) 

Screen 

Disease 

No disease 

Test negative 

Test positive 

Test negative 

Test positive 

No 
Screen 

Disease 

No disease 
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𝑁𝐵𝑠𝑐𝑟𝑒𝑒𝑛 = 𝜋[𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝐸𝐷𝑇 + (1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)𝐿𝐷𝑇] 

+(1 − 𝜋)[(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)𝑈𝐹𝐼 + (𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 × 0)] −  𝐶 

where 𝜋 is the disease prevalence, while the net benefit of not screening is calculated 

as: 

𝑁𝐵𝑛𝑜_𝑠𝑐𝑟𝑒𝑒𝑛 = 𝜋 × 𝐿𝐷𝑇 + (1 − 𝜋) × 0 

= 𝜋 × 𝐿𝐷𝑇 

such that the incremental net benefit (INB) of screening versus not screening is:  

𝐼𝑁𝐵 =  𝑁𝐵𝑠𝑐𝑟𝑒𝑒𝑛  −  𝑁𝐵𝑛𝑜_𝑠𝑐𝑟𝑒𝑒𝑛  

= 𝜋(𝐸𝐷𝑇 − 𝐿𝐷𝑇)𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + (1 − 𝜋)𝑈𝐹𝐼(1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) −  𝐶 (4) 

For the examples to follow we assume hypothetical known values of EDT = − 00, 

LDT = −200, UFI = −50 and C = 10. 

Note that, in this example, the “no screening” approach is equivalent to a screening 

strategy with sensitivity of 0.00 and specificity of 1.00 (that is, no TPs and no FPs) and 

no up-front costs. This equivalence can simplify coding, rather than having separate 

pathways for each simulated approach. In similar decision problems, it can also be 

helpful to include an arm representing “refer everyone” with sensitivity of 1.00 and 

specificity of 0.00 (i.e. no FNs and no TNs), in order to explore whether there are any 

circumstances under which the optimal approach would be to assume everyone at risk 

has the target condition (69) . 

6.4. THE ROLE OF PREVALENCE 

As is clear from equation (4), one of several parameters that the INB depends on is 

the prevalence of the disease in the population in which the test is being considered 

for use. To demonstrate the critical role of prevalence, we first consider the situation 

of a truly dichotomous screening test, or a test for which all accuracy data correspond 

to the same threshold. 

We fitted the bivariate model to (artificial) data from 10 studies. Summary sensitivity 

and specificity estimates were 0.76 (95% CrI 0.64 to 0.86) and 0.77 (95% CrI 0.60 to 
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0.87) respectively, with posterior correlation between these estimates on the logit scale 

of -0.60. After accounting for the estimated between-study heterogeneity in sensitivity 

and specificity, 95% prediction intervals for a new study were 0.31 to 0.96 (sensitivity) 

and 0.18 to 0.98 (specificity) respectively.  

We exported correlated posterior samples of sensitivity and specificity, and of the 

predictions for sensitivity and specificity in a new study, to R using R2WinBUGS. We 

evaluated the INB (equation (4)) at each possible value of prevalence between 0% and 

100%, using each of these two sets of synthesised results. Figure 13 shows the INB 

for each value of prevalence. Shaded areas represent 95% intervals when the 

“summary” estimates of sensitivity and specificity were used (darker shading  and 

when the predictive distributions were used (lighter shading).  

Figure 13: Relationship between incremental net benefit (INB) and prevalence: 

results from a simplified hypothetical decision model 
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We see that the cost-effectiveness of the hypothetical screening depends heavily on 

prevalence, with increased net benefit of screening in a population with higher 

prevalence.   

We can also obtain an estimate of the prevalence above which screening becomes 

cost-effective (𝜋𝑐𝑒), by solving equation (4) with respect to prevalence and setting 

INB=0, i.e.  

𝜋𝑐𝑒 =
𝐶 − UFI(1 − Specificity)

(EDT − LDT)Sensitivity − UFI(1 − Specificity)
 

By evaluating 𝜋𝑐𝑒 at each posterior sample, we obtain an estimate with uncertainty: 

screening is estimated to be cost effective if the prevalence is above 0.25 (95% CrI 

0.20 to 0.31). 

6.5. DETERMINING THE OPTIMAL THRESHOLD  

6.5.1. In the absence of a numerical threshold 

As discussed in Sections 4.2 and 4.4.2, when implicit thresholds are known to be 

present, an HSROC curve is typically considered to be a more appropriate summary 

of the meta-analysis results. The decision model can be evaluated at all points on the 

HSROC curve, producing (for example) an INB for each point. Sutton et al. (61) 

demonstrate how the point on the HSROC curve that maximises the INB, at a given 

prevalence, can be identified using this approach. The difficulty, however, is that – 

since there is no numerical threshold value to map that point on the HSROC curve to 

– it is not possible to choose to operationalise the test at that threshold in practice (61).   

6.5.2. Determining the optimal numerical threshold 

Where thresholds are explicit numerical values, and choice of threshold is to be 

explored in the decision model, full results from the multiple thresholds model 

(Section 5) can be used. The INB, or any other criteria of interest, may vary 

substantially across thresholds. In this section, we demonstrate how to find the optimal 

threshold at a given prevalence based on the INB, and the role of prevalence in 

determining this value.   
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For demonstration, we fitted the multiple thresholds model to artificial data from 20 

studies, with data for up to 10 thresholds per study. In this demonstration we set λ = 0, 

but the approach can be easily extended to also accommodate uncertainty in λ. Figure 

14 shows summary estimates of sensitivity and FPF across thresholds, with 95% CrIs 

and 95% prediction intervals.    

Figure 14: Summary sensitivity and FPF estimates across thresholds: results 
from analysis of artificial data set 

 

 

In a similar manner as described in Section 6.4, we can process use posterior samples 

of the parameters from the multiple thresholds model in R, to obtain estimates of any 

quantity of interest with uncertainty. The parameters required are means and scale 

parameters of the assumed logistic distributions in the diseased and disease-free 

populations, and 𝜆 if the full Box–Cox version is used. For example, if the “summary” 

estimates from the model are to be used, then we require only the posterior samples 
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of the parameters 𝑚𝜇1, 𝑚𝜇2, 𝑚𝜎1, 𝑚𝜎2 and 𝜆.11 Test sensitivity and specificity at all 

thresholds are calculated from these, with uncertainty, within the R code. 

For a simplified demonstration, we used the same decision model as above (Figure 

12) and assumed a known disease prevalence of 28%12. Figure 15 (left panel) shows 

the estimated INB for each threshold, with shaded areas representing 95% intervals 

when the “summary” estimates of sensitivity and specificity were used (darker shading  

and when the predictive distributions were used (lighter shading). For this example, 

the threshold with the highest point estimate of INB is 27. This is represented by a 

black diamond in Figure 15 (left panel). 

Figure 15: Finding the optimal threshold based on INB for a specific prevalence: 

artificial example 

 

 

We can see, however, that other threshold values produce a similar INB, with 

considerable overlap in 95% CrIs across a range of thresholds. To allow for this, we 

can produce a 95% CrI around this estimate of the threshold that maximises the INB. 

 

11 If, instead, predictive distributions were to be used in the decision model (for example), then we would 
require posterior samples for 𝑝𝑟𝑒𝑑_𝜇1, 𝑝𝑟𝑒𝑑_𝜇2, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑔(𝜎1) and 𝑝𝑟𝑒𝑑_𝑙𝑜𝑔(𝜎2). 

12 For simplicity, we assume a known fixed value for prevalence in this worked example. However, this 
can be replaced with a distribution to allow for uncertainty in prevalence among the decision 
population. 
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To obtain this interval, we find the threshold that maximises the INB at each iteration 

of the posterior samples, and then summarise across iterations using the 2.5 th and 

97.5th  uantiles. For this example, we estimate the “optimal” threshold is 2 , with 95% 

CrI 18 to 45. It is straightforward also to calculate the probability that each threshold 

produces the maximum INB. This is shown in the right panel of Figure 15. The 

threshold with the highest probability of maximising the INB is 25 in this example.  

Importantly, regardless of the criterion chosen for optimising the threshold13, the 

estimated optimal threshold will depend on the disease prevalence. The “optimal” 

threshold identified above is only valid for the assumed disease prevalence of 28%. In 

Figure 16 we show how the threshold that maximises the expected net benefit varies 

with prevalence, with the shaded area showing the corresponding 95% CrI around 

optimal threshold. As prevalence increases, it is more cost-effective to use a lower 

threshold. This is clear from equation (4): with higher prevalence, the more weight in 

the INB is given to the (positive) contribution of sensitivity relative to the (negative) 

contribution of the FPF. For example, at a higher prevalence of 50%, the optimal 

threshold reduces to 10 (95% CrI 6 to 15) whereas, at a lower prevalence of 15%, the 

optimal threshold increases to 64 (95% CrI 36 to 140).  

Note that we performed these calculations only across the range of thresholds 

observed in the data (in this case: 5–140). The flat areas of Figure 16 at the extremes 

are a consequence of this restriction.   

 

13 We have focused throughout this section on maximising the INB but – even without a cost-
effectiveness model – the same approach could be used to identify the threshold that maximises some 
other measure, such as the Youden index or proportion of people correctly diagnosed. 
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Figure 16: Estimate of the threshold that maximises the INB, with 95% CrI, for 

each prevalence 

 

7. DISCUSSION 

This is the first TSD on evidence synthesis of diagnostic test accuracy. We have 

focused on methods to synthesise data on the accuracy of a single diagnostic test that 

has been evaluated against a “gold standard” reference test in all studies being pooled 

across. We also demonstrated how synthesised estimates from these models can be 

used within a decision-making framework.   

We note that there exist other sources of guidance with overlapping content to this 

TSD (70, 71). The methodological approaches we follow in this document are broadly 

in agreement with these. Here however, we have focused on performing all analyses 

in a Bayesian framework. One advantage of this is the ability to obtain meaningful 
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estimates of the accuracy of tests reported on in very few studies, by using weakly 

informative or informative prior distributions for hyperparameters, and/or by careful 

reduction of the number of parameters to be estimated, guided by standard tools for 

model critique and comparison. Another key advantage of the Bayesian approach is 

the ease of full propagation of parameter uncertainty. This makes it straightforward to 

calculate both credible and predictive intervals around any function of parameters – 

whether HSROC curves, PPV and NPV at any assumed prevalence, or outputs of the 

decision model such as INB. We additionally demonstrated how the “optimal” 

diagnostic threshold based on some criterion can be selected, again with uncertainty.   

This TSD sets the base for meta-analysis of diagnostic test accuracy data, and does 

not cover many issues that have arisen in applied evaluations of diagnostic tests. In 

particular, this document is not intended as a guide on how to evaluate the cost 

effectiveness of one or more diagnostic tests. We have illustrated the use of test 

accuracy synthesis in decision making using a simplified hypothetical model, in which 

all the outcomes downstream of the diagnostic test have been rolled up into net benefit 

contributions, which we further assumed were known with certainty. In practice these 

values are of course uncertain, and will typically need to be estimated by modelling the 

clinical pathways downstream of the test; the main focus may in fact be on modelling 

the treatment options. Simulating the consequences of FN findings additionally 

requires modelling of the natural history of undiagnosed disease. Soares et al provide 

a comprehensive overview of challenges encountered in assessing the value of 

diagnostic tests (69). 

Besides this necessary simplification of the decision context, important issues in 

synthesis of DTA not covered in this document include:  

1) Exploring between-study heterogeneity 

Although we placed special focus on modelling how test accuracy varies with 

threshold, we did not cover incorporation of other – study-level – covariates in meta-

analysis models. Taking account of study characteristics that might affect test accuracy 

can both reduce the amount of unexplained heterogeneity and increase precision of 

estimates. Study-level covariates can be incorporated in extensions of either the 
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bivariate or HSROC model parameterisations (7, 15)14. Jones et al. also demonstrate 

how the multiple thresholds model can be extended to include study-level covariates, 

acting on the mean and/or scale parameters of underlying logistic distributions for 

(transformed) continuous test results (8). If there is evidence for test accuracy varying 

by patient characteristics, this may also be important for the decision analysis.  

2) Comparing the accuracy of tests, network meta-analysis of DTA, and estimating 

the accuracy of test sequences 

We additionally have not described methods for comparing the accuracy of two or more 

tests, network meta-analysis of test accuracy, or methods to estimate the net accuracy 

of a test applied sequentially, or of two or more tests in sequence or together (which 

may be required for many decision models, given how tests are used in practice). This 

methodology is an evolving field, with the presence of within-study, as well as between-

study, correlations being a key challenge. A number of parameterisations to account 

for between-study correlations have been proposed, some arm-based (72-76) and 

others contrast-based (77). Most are based on extensions to the bivariate 

parameterisation, while others extend the HSROC parametrisation (78). A small 

number of proposed approaches also account for within-study correlations that arise 

from head-to-head comparisons of tests in a  single study population (79, 80), and are 

also critical to the accuracy of tests applied in sequence (81). These different 

approaches have not been formally compared and further guidance is needed on the 

synthesis of such data (82). 

3) Multiple disease states 

Throughout this document we focused on the accuracy of tests for diagnosing a 

dichotomous target condition where there are either only two true disease states (i.e. 

an individual either has or does not have the target condition), or only two states are 

relevant from a clinical or a decision-making point of view. We acknowledge that 

diagnostic testing often leads to a classification into multiple disease states, for 

 

14 Note that the equivalence between these two models no longer holds with the inclusion of covariates. 
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example: disease-free, early stage, advanced stage, etc (83). Such classifications may 

be based on ordinal data, or on a continuous score with multiple cutpoints. Several 

methods exist for estimating the accuracy of a diagnostic test for multiple target 

condition states from a single study (12, 13), but the topic has received less attention 

in the meta-analysis literature. In some cases it is necessary to synthesise studies that 

have used different numbers of categories or different cut-points (84). 

4) Accounting for lack of, or incomplete use of, a gold standard 

Another key methodological challenge for test accuracy synthesis, not covered in this 

TS , is how to relax the “gold standard” assumption. Often a true gold standard test 

either does not exist or has not been applied in most studies: for example, this may be 

the case for a highly invasive test that comes with associated risks. A number of “latent 

class” meta-analysis models have been proposed, in which disease prevalence is 

estimated jointly alongside sensitivity and specificity (85, 86). In some circumstances, 

it may be the case that the reference test used in studies has been evaluated against 

a gold standard in another study. In this special instance, estimates of sensitivity and 

specificity of the index test can be adjusted for bias prior to synthesis (87, 88). 

However, results depend on assumptions made about disease prevalence, and the 

extent of correlation between the index and reference test in the diseased and non-

diseased populations. A related issue is verification bias, which occurs when only a 

subset of study participants are tested with the gold standard, conditional on results of 

one or more index tests. Some methods to adjust for verification bias have been 

proposed (10, 87). Finally, we note that synthesis of individual participant data on DTA 

has received relatively little attention to date. Modelling of individual participant data 

facilitates exploration of how accuracy may vary by individual level characteristics, 

while also directly informing within-study correlation parameters. As such, individual 

participant data meta-analysis – well known to have a number of advantages over 

modelling of aggregate data in general – may prove to be the best way of tackling the 

methodological challenges described above (89).  
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APPENDIX A WINBUGS CODE 

A1 PROGRAM 1: BINOMIAL BIVARIATE RANDOM EFFECTS MODEL  

model{   #program starts 

 

for (i in 1:ns) { #loop through all studies 

  r[i,1] ~ dbin(p[i,1],N[i,1]) #Binomial likelihood for TP 

  r[i,2] ~ dbin(p[i,2],N[i,2]) #Binomial likelihood for FP 

  logit(p[i,1]) <- delta[i,1] # model for linear predictor of TPF 

  logit(p[i,2]) <- delta[i,2] # model for linear predictor of FPF 

  delta[i,1] ~ dnorm(theta[1],prec[1]) # random effects on TPF 

  delta[i,2] ~ dnorm(condmean[i],condprec) # random effects on TPF 

  condmean[i] <-theta[2] +rho*(sd[2]/sd[1])*(delta[i,1]-theta[1])             

  #calculate conditional mean 

}#loop through studies ends 

 

theta[1] ~ dlogis(0,1) # Prior for mean logit(TPF) 

theta[2] ~ dlogis(0,1) # Prior for mean logit(FPF) 

sd[1] ~ dunif(0,5) # Prior for between-studies SD in logit(FPF) 

sd[2] ~ dunif(0,5) # Prior for between-studies SD in logit(FPF) 

rho ~ dunif(-1,1) # Prior for between-studies correlation  

prec[1] <- pow(sd[1],-2) # define logit(TPF) precision 

prec[2] <- pow(sd[2],-2) # define logit(FPF) precision 

condprec <- 1/((1-pow(rho,2))*pow(sd[2],2))# conditional precision 

sumtpf <- exp(theta[1])/(1+exp(theta[1])) # summary TPF 

sumfpf <- exp(theta[2])/(1+exp(theta[2])) # summary FPF 

spec <- 1-sumfpf # summary specificity 

beta <- log(sd[2]/sd[1])# beta parameter for HSROC model 

 

# THETA threshold parameter for HSROC model: 

Theta <- ((sqrt(sd[2]/sd[1]) )*theta[1] 

+(sqrt(sd[1]/sd[2]) )*theta[2])*(1/2) 

 

# LAMBDA accuracy parameter for HSROC model: 

Lambda <- (sqrt(sd[2]/sd[1]) )*theta[1]-(sqrt(sd[1]/sd[2]) )*theta[2] 

 

vartheta <- (1/2)*sd[1]*(sd[2]+sd[2]*rho)#variance of theta HSROC 

varalpha <- 2*sd[1]*(sd[2]-sd[2]*rho) #variance of alpha HSROC 
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sdtheta <- sqrt(vartheta)# standard deviation of theta HSROC parameter 

sdalpha <- sqrt(varalpha)# standard deviation of alpha HSROC parameter 

 

# Predictive distributions: 

predtpr ~  dnorm(theta[1],prec[1]) # logit sensitivity predictive value 

predfpf ~  dnorm(condmeanpred,condprec) # logit FPF predictive value 

condmeanpred <- theta[2]+rho*(sd[2]/sd[1])*(predtpr-theta[1]) 

#predictive cond mean 

logit(pred_tpr) <- predtpr # predictive sensitivity 

logit(pred_fpf) <- predfpf   # predictive fpf 

predspec <- 1-pred_fpf  # predictive specificity 

predlambda<-(sqrt(sd[2]/sd[1]))*predtpr-(sqrt(sd[1]/sd[2]))*predfpf  

# predictive Lambda 

 

}# program ends 

 

A2 PROGRAM 2: MULTIPLE THRESHOLDS MODEL (RESTRICTED 
COVARIANCE STRUCTURE)  

Note that because of the inclusion of likelihoods x[i,j,t] ~ Binomial(x[i,j,t-1], p[i,j,t]), the 

code will not run if there are consecutive x[i,j,] counts equal to zero. If there is a 

sequence of zero counts in the data within a study, all zero counts after the first should 

be removed prior to reading the data into WinBUGS. For example, if for a particular 

study i the corresponding counts for the jth patient group x[i,j,] are equal to 

(13,7,7,1,0,0,0,0), then they should be replaced as follows, to avoid computational 

errors: (13,7,7,1,0,NA,NA,NA). Note that, due to this requirement, “Tc” (number of 

thresholds) values within a study may be different between the diseased and disease-

free populations. R code for replacing these consecutive zero counts is provided in the 

GitHub repository.  

model{#program begins 

for(i in 1:ns){ #loop over studies 

  for(j in 1:2){ #loop over disease status 

    n[i,j,1] <- N[i,j] #no of participants for the 1st thres 

    p[i,j,1] <- pr[i,j,1]#probability of a positive test for 1st thres 

    for(t in 2:Tc[i,j]){ #loop over thresholds       

      n[i,j,t] <- x[i,j,t-1] #no of participants at t thres 

      p[i,j,t] <-  pr[i,j,t] / pr[i,j,t-1]  

      #probability of a positive test at threshold t   

    } #end threshold loop    

  }#end disease status loop 

  for(t in 1:Tc[i,2]){  #loop over thresholds 

    q[i,t] <-((pow(C[i,t],lambda)-1)/lambda)*(1-equals(lambda,0)) + 

    log(C[i,t])*equals(lambda, 0) #Box–Cox transformation 

  }#end threshold loop 

  for(j in 1:2){ #loop over disease status 

    for(t in 1:Tc[i,j]){#loop over thresholds 

      x[i,j,t] ~ dbin(p[i,j,t], n[i,j,t]) # Likelihood 
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      #logit probability of a positive test  

      d[i,j,t] <- (mu[i,j] - q[i,t] ) / s[i,j]  

      logit(pr[i,j,t]) <- min(10, max(-10, d[i,j,t])) 

      xhat[i,j,t] <- p[i,j,t]*n[i,j,t] # Fitted values 

      dev[i,j,t]<-2*(x[i,j,t]*(log(x[i,j,t])-log(xhat[i,j,t])) 

      +(n[i,j,t]-x[i,j,t])*(log(n[i,j,t]-x[i,j,t]) 

      - log(n[i,j,t] - xhat[i,j,t])))   

      # Residual deviance contribution 

    }#end threshold loop 

  }#end disease status loop 

 

  # Distributions of correlated random effects: 

  mu[i,1] ~ dnorm(mean[1], prec[1]) 

  mu[i,2] ~ dnorm(cond.mean.mu[i], cond.prec.mu) 

  cond.mean.mu[i] <- mean[2] + (rho_mu*sd[2]/sd[1])*(mu[i,1] - mean[1]) 

  for(j in 1:2){ 

    cond.mean.s[i,j] <- mean[j+2]+(rho_mu_sigma*sd[j+2]/sd[j]) 

                        *(mu[i,j]-mean[j]) 

    logs[i,j] ~ dnorm(cond.mean.s[i,j], cond.prec.s[j])I(-5,) 

    s[i,j] <- exp(logs[i,j]) 

  } 

  rd[i]<-sum(dev[i,1,1:Tc[i,1]])+sum(dev[i,2,1:Tc[i,2]]) 

  #Residual deviance study i 

} 

 

# Predictive distributions for random effects: 

mupred[1] ~ dnorm(mean[1], prec[1]) 

cond.mean.mu.pred <- mean[2] + (rho_mu*sd[2]/sd[1])*(mupred[1] - mean[1]) 

mupred[2] ~ dnorm(cond.mean.mu.pred, cond.prec.mu) 

for(j in 1:2){  

  cond.mean.s.pred[j] <- mean[j+2] +(rho_mu_sigma*sd[j+2]/sd[j]) 

                         *(mupred[1] - mean[1]) 

  logspred[j] ~ dnorm(cond.mean.s.pred[j], cond.prec.s[j]) 

} 

 

# Priors: 

lambda ~ dunif(-3,3) 

for(r in 1:4){ 

  mean[r] ~ dnorm(0, 0.001) 

  sd[r] ~ dunif(0,5) 

  prec[r] <- pow(sd[r], -2) 

}  

rho_mu ~ dunif(-1,1) 

rho_mu_sigma ~ dunif(-1,1) 

 

# define conditional precisions   

cond.var.mu <-  (1- pow(rho_mu,2))*pow(sd[2], 2) 

cond.prec.mu <- 1/cond.var.mu 

for(j in 1:2){ 

  cond.var.s[j]<-  (1- pow(rho_mu_sigma,2))*pow(sd[j + 2], 2) 

  cond.prec.s[j] <- 1/cond.var.s[j] 

} 

resdev <- sum(rd[])    # Total residual deviance 

}#Program ends 
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APPENDIX B SUPPLEMENTARY ANALYSES FOR 
EXAMPLES 3 AND 4 

B1 MODEL CRITIQUE FOR THE OC-SENSOR EXAMPLE 

In Section 5.2.1, we observed that the posterior mean residual deviance (658.0) was 

very high relative to the number of data points (84) for the OC-Sensor example.  

Examination of residual deviance contributions by study and disease group (Table 8)  

shows that model fit is good overall for sensitivity but poor for specificity in several 

studies. The large residual deviance contributions are from studies with large disease-

free populations and reporting data at three or more thresholds. 

Table 8: Residual deviance contributions from all studies according to the 
Box–Cox (independence structure) version: OC-Sensor data 

Study 

Diseased population Disease-free population 

Number of 
individuals 

Data 
points 

Residual 
deviance 

Residual 
deviance 
per data 

point 
Number of 
individuals 

Data 
points 

Residual 
deviance 

Residual 
deviance 
per data 

point 

1 11 3 3.3 1.1 155 3 3.8 1.3 

2 17 7 5.2 0.7 2,875 7 22.7 3.2 

3 74 3 3.3 1.1 5,267 3 14.9 5.0 

4 38 4 2.0 0.5 694 4 21.2 5.3 

5 514 5 4.8 1.0 33,180 5 108.6 21.7 

6 61 3 2.3 0.8 4,126 3 354.9 118.3 

7 54 1 1.1 1.1 3,408 1 1.0 1.0 

8 90 10 10.2 1.0 3,506 10 79.2 7.9 

9 12 2 5.5 2.8 346 2 1.9 1.0 

10 28 2 4.1 2.0 722 2 2.1 1.1 

11 73 2 4.0 2.0 4,470 2 2.1 1.0 

 

In Figure 17 we compare observed versus fitted study-specific FPFs (i.e. 𝑝𝑖2𝑡) for the 

four studies with the greatest residual deviance contributions. We see that the study-

specific estimates are very precise, driven by large sample sizes. As a result, 

differences in observed versus fitted values that are small in magnitude are leading to 

large residual deviance contributions. In the most striking case of this (Study 5), the 

maximum absolute difference between observed and fitted FPF is 0.01 but the five 

data points contribute total residual deviance of 108.6. The differences are slightly 

larger (maximum of 0.06), but still not substantial, in Study 6.  
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Noting that the model assumes a linear relationship between λ-transformed threshold 

and logit FPF, it is perhaps not surprising that studies contributing large denominators 

and three or more thresholds may demonstrate some deviations from this. Given the 

overall good visual fit of the summary estimates and robustness of these to choice of 

transformation (Figure 7), the model seems to be providing a reasonable synthesis of 

the data. It is also worth mentioning that sample sizes in practice will rarely be this 

large, making this a perhaps unusual example. 

Figure 17: Observed vs Fitted FPF for the four studies with the highest residual 

deviance contribution: OC-Sensor data. Shaded regions depict 95% 
CrIs around fitted values 
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B2 SENSITIVITY ANALYSIS TO PRIOR CHOICE FOR THE FOB-GOLD EXAMPLE 

For the FOB-Gold example (Section 5.3.1) we performed additional analyses to assess 

sensitivity to choice of HN(0,1) as a weakly informative prior for the four between-study 

standard deviation parameters, exploring results when these were made either more 

(HN(0,0.52)) or less (HN(0,22)) precise. Table 9 shows results.   

Table 9: Sensitivity analysis around choice of prior distribution for between-
studies standard deviation parameters: FOB-Gold example 

Prior 
distribution 

for 
between- 
study SDs 

Threshold 
Model fit 

10µg/g 100µg/g 

Sensitivity Specificity Sensitivity Specificity 
Residual 
deviance 

pD DIC 

Uniform(0,5) 
0.74 

(0.50,1.00) 
0.89 

(0.63,1.00) 
0.61 

(0.23,1.00) 
0.96 

(0.73,1.00) 
13.3 3.5 16.8 

Set to zero 
(fixed effect 
model) 

0.88 
(0.78,0.95) 

0.88 
(0.75,0.97) 

0.82 
(0.56,0.93) 

0.96 
(0.86,1.00) 

35.0 2.8 37.8 

HN(0, 1) 
0.84 

(0.55,1.00) 
0.88 

(0.76,0.97) 
0.69 

(0.49,0.98) 
0.96 

(0.87,1.00) 
15.2 6.7 21.9 

HN(0, 0.52) 
0.86 

(0.64,0.99) 
0.88 

(0.80,0.95) 
0.75 

(0.55,0.94) 
0.96 

(0.90,0.99) 
18.3 7.0 25.3 

HN(0, 22) 
0.79 

(0.51,1.00) 
0.88 

(0.71,0.99) 
0.64 

(0.38,1.00) 
0.96 

(0.82,1.00) 
13.8 5.7 19.5 

 


