MSc(Res) Particle Physics modules

On this page you can find out about the modules on our MSc(Res) Particle Physics course.

To learn more about the course, visit the University of Sheffield's online prospectus.

MSc(Res) Particle Physics

Advanced Electrodynamics (10 credits)

Module leader: Professor Pieter Kok

In this course, our starting point is Maxwell's equations, after a brief recap of vector calculus. We describe the electric and magnetic fields in terms of potentials, and present two general classes of solving Maxwell's equations. We treat fields in macroscopic media, waveguides and cavities, and we end with the relativistic formulation of electrodynamics.

Dark Matter and the Universe (10 credits)

Module leader: Professor Neil Spooner

The aims of this optional course are to review galactic dynamics relevant to the origin of the dark matter problem, evidence for dark matter from galaxy rotation curves and gravitational lensing, the abundance of dark matter from cosmic microwave background observations, an introduction to cold, warm and hot dark matter candidates, WIMPs and axions as dark matter candidates and finally dark energy and the fate of the Universe. Searches for dark matter particles are covered with some lectures given by world-leading experts in the field.

Further Quantum Mechanics (10 credits)

Module leader: Professor David Whittaker

This module builds on quantum mechanics, developing the Heisenberg matrix formulation of the theory from the Schrodinger wave picture. Methods are developed for solving time dependent problems, treating problems involving magnetic fields and spin, and introducing many particle wave functions for fermions and bosons.

The Development of Particle Physics (10 credits)

Module leader: Professor Vitaly Kudryavtsev

The module describes the development of several crucial concepts in particle physics, emphasising the role and significance of experiments. Students are encouraged to work from the original literature. The module focuses not only on the particle physics issues involved, but also on research methodology, the design of experiments, the critical interpretation of data, the role of theory, etc. Topics covered include the discoveries of the neutron, the positron and the neutrino, experimental evidence for quarks and gluons, the neutral kaon system and CP violation, neutrino mass and oscillations, etc.

Physics Research Skills (30 credits)

Module leader: Dr Matt Mears

This module is designed to allow students to explicitly reflect on various aspects of the research process and its communication. Students will be required to keep a diary of their project and reflect on their progress; write a literature review of the project area reflecting on how and why they chose their sources; reflect on the process of learning a new skill for their project; communicate what their research is about and why it is important to a general audience; consider how to teach what they are researching at undergraduate level.

Research Project in Physics (90 credits)

Module leader: TBC

This module will give students the opportunity to develop skills relevant to a career in physics research. It will consist of a laboratory or analytical based research project in one of the Department’s research groups. Each student will work under the supervision of a member of academic staff and will formulate the hypotheses and questions to be addressed and plan and carry out experiments or simulations to test these hypotheses. The outcome of the project will be summarised in a dissertation and the student will keep a notebook of the research, deliver an oral presentation of their work, and prepare a poster of their findings.

Optional modules – students take two:

Advanced Particle Physics (10 credits)

Module leader: Professor Dan Tovey

The module provides students with a comprehensive understanding of modern particle physics. Focussing on the standard model it provides a theoretical underpinning of this model and discusses its predictions. Recent developments including the discovery of the Higgs Boson and neutrino oscillation studies are covered. A description of the experiments used to probe the standard model is provided. Finally the module looks at possible physics beyond the standard model.

Advanced Quantum Mechanics (10 credits)

Module leader: Professor Pieter Kok

In this course, we will build quantum mechanics from the ground up, starting with linear vector spaces and Hilbert space. We introduce the postulates of quantum mechanics and explore important topics in modern quantum mechanics such as mixed states, decoherence, entanglement, and quantum teleportation. We also give a thorough treatment of spin and orbital angular momentum. In the second part, we look at many body problems in quantum mechanics. We explore the physics of identical particles, and apply this theory to many-electron atoms, spin waves in solids, and atoms in an optical cavity. Finally, we will briefly introduce the basic principles behind quantum field theory.

An Introduction to General Relativity (10 credits)

Module leader: Professor Ed Daw

This module introduces coordinate systems and transformations in Euclidean space. The principles of special relativity are reviewed, with emphasis on the coordinate transformations between systems moving at constant velocities. Our discussion of general relativity begins with an introduction to the principle of equivalence. We introduce the Christoffel symbols and the curvature tensors. We study examples of phenomena affected by general relativity, the rate of clocks and the redshift and bending of light in a gravitational field. Finally, we examine space time in the vicinity of the event horizon, the geometry of a non-spinning black hole, and the geometry of wormholes.

Particle Astrophysics (10 credits)

Module leader: Dr Susan Cartwright

The Large Hadron Collider accelerates protons to kinetic energies of up to 7000 times their rest mass: a huge technological achievement. Yet, every second, over 500 million particles with energies greater than this collide with the Earth. Where do these particles come from, and how are they accelerated to these astonishing energies? These are, in fact, still open questions in astrophysics. In this module, we will look at the observational evidence for particle acceleration in astrophysical objects, the mechanisms available to accelerate particles, and some of the likely sources, including supernovae and supernova remnants, neutron stars, and active galaxies.

Physics in an Enterprise Culture (10 credits)

Module leader: Professor David Lidzey

This is a seminar and workshop based course with a high level of student centred learning. The unit will introduce students to the need for innovation and creativity in thinking, together with practical ways to develop, present, and critique, ideas. The course is based around the development of new innovative business or sustainable ventures. Students are tasked with developing ideas for a new business venture that they will modify and improve throughout the course as a result of critical feedback from a number of sources. As part of the course, students will have to pitch their ideas to a panel of experts, and also help ‘road-map’ the development of a new business venture. This course is designed to encourage entrepreneurship, creativity and critical thinking, and will help students in understanding the mechanics of starting a business venture.

Semiconductor Physics and Technology (10 credits)

Module leader: Professor Luke Wilson

This module builds on the core solid state physics modules to provide an introduction to semiconductor electronic and optoelectronic devices and modern developments in crystal growth to produce low dimensional semiconductor structures (quantum wells, wires and dots). Band structure engineering, the main physical properties and a number of applications of low dimensional semiconductor structures are covered.

Statistical Physics (10 credits)

Module leader: Dr Buddhapriya Chakrabarti

Statistical physics is the derivation of the thermal properties of matter using the underlying microscopic Hamiltonians. The aims of this course are to introduce the techniques of statistical mechanics, and to use them to describe a wide variety of phenomena from physics, chemistry and astronomy.

The content of our courses is reviewed annually to make sure it is up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research, funding changes, professional accreditation requirements, student or employer feedback, outcomes of reviews, and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

Information last updated: 12 February 2021

Postgraduate taught scholarships

Explore scholarships for postgraduate taught courses starting in 2021, including:

  • 100+ scholarships worth £10,000 each for home fee paying students
  • 150 scholarships worth 25 per cent of the tuition fee for international students