Solar banner

MSc Solar Cell Technology

Over the next 20 years, solar photovoltaics will be the largest growing energy technology, creating 1.5 trillion extra watts of power. 

World Energy Outlook 2017, International Energy Association

The move from fossil fuels to renewable energy sources is one of the biggest societal changes since the Industrial Revolution. This shift means that there is a growing demand for scientists with specialist expertise in a key energy technology of the 21st century: solar.

This one-year masters course is designed to train physical science and engineering graduates to develop new photovoltaic devices and test their effectiveness as a global energy resource. The course is based on more than 20 years of solar research at the University of Sheffield, and spans fundamental materials science and real-world PV system development.

Laboratory training in materials science will teach you how to characterise and test solar cell materials, leading to the fabrication and measurement of photovoltaic devices. You will learn how to analyse and assess the performance of photovoltaic systems by working with the team behind Sheffield Solar – they run the UK's largest PV database and our rooftop solar testbed facility. An expert from one of these areas will work with you on a major research project, and with our dedicated enterprise training and links with industry, you'll become equipped for a range of roles in a more sustainable future.

Applying

To apply for this course, complete the University of Sheffield's postgraduate online application form.

Postgraduate online application form

You can find more information about the application process on the University's postgraduate webpages.

How to apply: applying essentials

Contact

Course Director: Dr Alastair Buckley

For general queries contact:

Email: postgradphysics-enquiry@sheffield.ac.uk
Telephone: +44 (0)114 22 23789

You can also visit us throughout the year:
Postgraduate open days, visit afternoons and online chats

About the course

This course includes lots of practical training, alongside lectures designed to teach you the key concepts behind photovoltaic materials and solar energy generation. You will start by gathering important background knowledge and fundamental research skills, which you'll quickly put to use in the labs.

The University of Sheffield is home to one of the UK's best equipped laboratories for developing and testing solar materials and devices. In practical sessions, you will be taught how to characterise materials used in solar cells and build them into devices. You will have access to our rooftop solar testbed, where solar cells can be assessed in real-world conditions. Computer programming classes will teach you how analyse solar energy systems, drawing on expertise from our scientists, who run the largest database of photovoltaic systems in the UK. This combination of facilities and expertise means you can learn how to fabricate and assemble solar technologies, and how to measure their effectiveness, in a range of operating conditions and at various scales.

Our dedicated enterprise module will show you how the solar technology business works in practice, and how companies get devices out of the lab and plugged into the energy network. Guest lectures are delivered by our partners in industry, such as solar consultancy Exawatt and solar testing specialists Ossila.

The biggest part of your degree will be your research project. You'll be able to choose from a range of topics, from solar device fabrication to photovoltaic system analysis. Students are supervised by scientists with world-leading expertise in solar technology, and you'll have access to a unique combination of advanced materials science laboratories, solar testing facilities and photovoltaic systems data.

Students working in a materials science lab

Solar Farm

Labs and facilities

The labs run by our Electronic and Photonic Molecular Materials group, led by Professor David Lidzey, are fully equipped for device fabrication and testing. The Sheffield Solar team, led by Dr Alastair Buckley, run the solar testbed facility on the roof of our building and operate the UK's largest database of energy captured by rooftop solar panels.

Electronic and Photonic
Molecular Materials laboratory

Materials lab 1

Materials lab 2

Materials lab 3

Materials lab 4

Electronic and Photonic Molecular Materials

Sheffield Solar
– rooftop testbed and microgen database




Solar farm 1

Solar farm 2

Solar farm 3

Sheffield Solar

After your degree

We have close links with lots of companies working in the solar industry. These are organisations we've collaborated with on projects, where our students have done placements, and where University of Sheffield physics graduates have gone to work.

Some of these companies will also support your learning on this course by giving guest lectures, designing research projects for you to tackle and providing insights into the jobs that you can be qualified for after graduation.

Our industry partners include:

Solar cell materials

Energy systems

National and regional networks

Photovoltaic technology

Market intelligence and consultancy

Solar testing and measurement

The MSc Solar Cell Technology course is also great preparation for a PhD: PhD opportunities

The University of Sheffield's Careers Service runs workshops on CV and application writing, job hunting and preparing for interviews. They offer events where you can meet employers, and opportunities to get work experience while you study. The Careers Service will even continue to support you for three years after you graduate.

Entry requirements

For this course, we usually ask for a 2:1 honours degree in physics, materials science, physical chemistry, electrical engineering or a related subject. We can also accept qualifications from other countries. You can find out which qualifications we accept from your country on the University's webpages for international students.

Prospective international students: Your country

English Language Requirements

If you have not already studied in a country where English is the majority language, it is likely that you will need to have an English language qualification. We usually ask for:

  • International English Language Testing Service (IELTS): Overall grade of 6.5 with 6.0 in each component

You can find out whether you need to have an english language qualification, and which other English language qualifications we accept, on the University's webpages for international students.

English language requirements

The English Language Teaching Centre offers English language courses for students who are preparing to study at the University of Sheffield.

English Language Teaching Centre

Funding and scholarships

Funding is available, depending on your fee status, where you live and the course you plan to study. You could also qualify for a repayable postgraduate masters loan to help fund your studies.

Funding your postgraduate course

UK/EU scholarships

100+ scholarships image

We're offering 100+ scholarships worth £10,000 each for home students starting a taught postgraduate course in 2019 that can be used towards fees or living expenses.

Find out more

International scholarships

International scholarships image

We're offering 100 International Postgraduate Taught Merit Scholarships, each worth 25% of the original tuition fee for a postgraduate taught programme starting in September 2019.

Find out more

Alumni rewards

Alumni rewards

If you’ve previously graduated from the University and intend to pursue further studies with us then you may be eligible to receive a 10% discount on your tuition fees.

Find out more

Up-to-date fees can be found on the University of Sheffield's webpages for postgraduate students:

Tuition fees

Alex Barrows

University of Sheffield physics graduate Alex Barrows is a research analyst for Exawatt, a consulting and market intelligence firm for the photovoltaics industry.

My physics degree from the University of Sheffield provided me with a solid technical understanding of the physics involved in solar cell operation, as well as the manufacturing processes employed along the value chain.

Alex Barrows – READ MORE

Yiwei Zhang

Yiwei studied photovoltaics at the University of Sheffield as a PhD student supervised by Professor David Lidzey, and now works a researcher at a top university.

When I was deciding which university to go to, my project supervisor, Professor David Lidzey, was the reason I decided to come to Sheffield. He is a distinguished researcher in my field, organic solar cells.

Yiwei Zhang – READ MORE

FEATURE

Spray-on perovskite cells can cut solar energy costs

Perovskite solar cell

Professor David Lidzey has created a spray-on method of producing solar cells made of perovskite, a cheaper alternative to silicon.

Learn more

IN THE NEWS

Solar pioneers win UK's highest business accolade

Ossila

Ossila Limited, a company led by University of Sheffield physicists, runs a ground-breaking solar cell prototyping platform.

Full story

EXPERT COMMENT

A new dawn for solar energy farms?

Solar panels

Dr Alastair Buckley writes for The Conversation about Cleve Hill solar farm, the largest solar power plant ever proposed in the UK.

Read more

Current modules

The modules listed below are examples from the current academic year. There may be some changes before you start your course.

Compulsory modules:

Introduction to Photovoltaics (30 credits)

Module leader: Professor David Lidzey

This course introduces photovoltaic technology and its role in future energy systems.

It starts with a recap of the fundamentals of semiconductor physics along with an introduction to the broader context of the role of photovoltaics within future energy systems.

It then covers many of the key concepts that are required to understand the operation of a solar cell. In the first half of the course, we outline with a basic description of a solar cell in terms of an equivalent circuit model and then use this to understand the origin of key device metrics. We then describe different techniques to characterise the efficiency of solar cells and discuss the fundamental processes that limit to solar-cell efficiency, including recombination. The course also includes a review of some of the underlying concepts in semiconductor physics that are used to describe the operation of solar-cell devices.

In the second half of the course, we move on to a discussion of the main technologies used in modern solar-cells and models that describe how they perform in the real world. This includes a description of  emerging trends in the development of new semiconductor and the development of new device architectures.

Photovoltaic Systems (15 credits)

Module leader: Dr Alastair Buckley

This course introduces the technology of photovoltaic systems along with approaches for measuring the performance of individual systems under real operating conditions. The module gives a broad overview of the different approaches used in system level modelling, before teaching different tools to perform real analyses.

Cell, module and system performance are covered. The implications of latitude, shading, temperature, and system geometry are considered along with models for diffuse vs direct sunlight. Physical and statistical approaches to system modelling are introduced and data from real PV systems used to compare the different approaches.

The statistics of performance of the GB fleet will be analysed using real data available through Sheffield Solar's Microgen Database: www.microgen-database.org.uk.

Solar Cell Laboratory (15 credits)

Module leader: Dr Alastair Buckley

This course will provide students with the skills required to measure and characterise solar cell performance and solar cell materials using standard research laboratory techniques.

Laboratory techniques include measuring solar cell efficiency, characterisation of degradation rates, measuring irradiance and light spectrum, and using a cryostat to determine operating characteristics at low temperatures.

The module also includes learning to fabricate a thin film solar cells and the characterisation of  photovoltaic materials using photoluminescence and absorption spectroscopy. Students will also learn to assemble a silicon photovoltaic module and then measure its performance in outdoor conditions using our roof top laboratory.

Innovation in Solar Energy (15 credits)

Module leader: Professor David Lidzey

This course will develop a deep understanding of, and opportunities to practice applying the innovation process. The course covers the history of innovation in solar photovoltaics up to modern day markets and systems before embarking on student led innovation to create a new business proposal.

The proposal will be reviewed and critiqued by peers and academic supervisors along with external industry experts before being refined and finally pitched to a mock investment panel. The module will develop skills in business idea development along with strong written and oral communication skills.

Low Carbon Energy, Science and Technology (15 credits)

Module leader: Dr Alan Dunbar

Low carbon technologies are an essential requirement if the world's energy needs are to be met without causing irreversible changes to the planet's climate. This module will cover the need for various different technologies that can help to meet the world's energy needs without releasing large amounts of CO2 into the atmosphere.

Various different technologies that aim to meet this need will be introduced and then a select number will be studied in more detail. The aim of the module is to enable the student to make a reasoned comparison between the different low carbon technologies backed by sound scientific understanding of their limitations and advantages.

Physics Research Skills (30 credits)

Module leader: Dr Matt Mears

This module develops core skills in using the scientific literature, technical writing, data analysis and presentation, programming, oral presentation skills and group work skills. These skills feed directly into dissertation and project work in other modules.

Dissertation Project (60 credits)

Module leader: Professor Mark Geoghegan

This is a project based module that gives students an opportunity to apply their background scientific knowledge to a range of real research problems.

Along with the application of knowledge, students will gain experience of managing their own scientific research project and developing skills in time management, project planning, scientific record keeping, information retrieval and analysis from scientific and other technical information sources. Through data analysis and information synthesis new knowledge will be created, summarised and presented.

A range of projects will be offered for students to choose from. There will be a mix of both academic and industrial problems and projects ranging from laboratory experimentation to simulation based.

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research, funding changes, professional accreditation requirements, student or employer feedback, outcomes of reviews, and variations in staff or student numbers.