New Punching Shear Reinforcement for Flat Slabs

Professor Kypros Pilakoutas
Professor Peter Waldron, Dr Maurizio Guadagnini
Centre for Cement and Concrete
The University of Sheffield, UK
Andrew Henderson
Director of World Wide Sales, Concrete Reinforcement Products
ERICO
• Problem/Solutions
• Lenton® Shear Fortress
• Experiments
• Results
• Conclusions
Conventional Reinforcement

• Difficult to anchor
• Difficult to install
• Does not facilitate prefabrication
Stud-rail Systems

- Priority over flexural re-bar installation
- Conceptual issues
 - System
 - Anchorage
 - Shear design
Lenton® Steel Fortress

The LSF on top of the upper flexural reinforcement

Leg depth

Leg spacing along the strip

Top rebar layer (T1)

Strip length

Tail anchor

1"

depth
Advantages

- Maximum effective depth
- Easy placement/ Adaptability
- Shear design based on Codes (e.g. ACI 318)
- Excellent anchorage
• 1st Series (PSSA-D)
• 2nd Series (PSSF-H)
• Beam Tests (B1-B10)
• Slabs with holes (PSSH1-5)
• Slabs with FRP reinforcement
• Tests for ICC Certification (California)
• Cyclic tests (California)
Testing Arrangement

6’ 7”

top #5 @ 8”

Column 4#5

8”

bottom #4 @ 8”

links 3#2 @ 20”
FLAT SLAB TESTING

Loading Frame

Reaction Frame

Slab

Loading Ring Frame

Jacks

Column Stub

Reaction Ring Frame

Load Application
Strain gauge location

Displacement Measurements
Control Slab PSSA

<table>
<thead>
<tr>
<th>Slab</th>
<th>Maximum Load</th>
<th>Maximum Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN</td>
<td>Kips</td>
</tr>
<tr>
<td>PSSA</td>
<td>454</td>
<td>102</td>
</tr>
<tr>
<td>Slab</td>
<td>Maximum Load</td>
<td>Maximum Displacement</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>kN</td>
<td>Kips</td>
</tr>
<tr>
<td>PSSA</td>
<td>454</td>
<td>102</td>
</tr>
<tr>
<td>PSSB</td>
<td>560</td>
<td>126</td>
</tr>
<tr>
<td>PSSC</td>
<td>560</td>
<td>126</td>
</tr>
<tr>
<td>PSSD</td>
<td>560</td>
<td>126</td>
</tr>
</tbody>
</table>
PSSB versus PSSC

The diagram shows the load in kN (kips) on the y-axis and microstrains on shear reinforcement on the x-axis. The graph compares the load behavior of PSSB and PSSC, with PSSB represented by black lines and PSSC by gray lines. The load range is from 0 to 600 kN (kips) and the microstrain range is from 0 to 3000.
PSSF and PSSG
Load - Deflection

Graph

- **Load (kN) vs. Displacement (mm) at D850**

Table

<table>
<thead>
<tr>
<th>Slab</th>
<th>Maximum Load</th>
<th>Maximum Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kN</td>
<td>Kips</td>
</tr>
<tr>
<td>PSSA</td>
<td>454</td>
<td>102</td>
</tr>
<tr>
<td>PSSE</td>
<td>573</td>
<td>129</td>
</tr>
<tr>
<td>PSSF</td>
<td>598</td>
<td>134</td>
</tr>
<tr>
<td>PSSG</td>
<td>590</td>
<td>133</td>
</tr>
</tbody>
</table>
Load - Strain

Microstrain in the Shear Reinforcement

Load (kN)

Microstrain in the Shear Reinforcement

PSSE

SS3

SS9

The University Of Sheffield.
Strain normally measured at cross-section without hole to avoid recording stress concentration due to hole.
PSSH Load-Deflection

- PSSH capacity increased by more than 100%
Conclusions

The LSF:

- Prevents brittle punching shear failure and leads to ductile behavior
- Fast and easy fixing; placed on top of main reinforcement for max anchorage
- Can be designed as conventional shear reinforcement
- Evidence of LSF yielding