Indispensable new composite books from Woodhead Publishing

Multi-scale modelling of composite material systems

The art of predictive damage modelling
Edited by C Soutis, Sheffield University, and P W R Beaumont, Cambridge University, UK

- extensive coverage of this important and exciting area of composites research
- understand how composites behave in different circumstances
- compiled by an expert panel of authors and editors

Nanolithography and patterning techniques in microelectronics

Edited by D Bucknall, Oxford University, UK

- looks at alternative approaches
- concentrates on state of the art nonlithographic methods
- written by a distinguished international team of contributors

www.woodheadpublishing.com
Multi-scale modelling of composite material systems

The art of predictive damage modelling
Edited by C Soutis, Sheffield University, and P W R Beaumont, Cambridge University, UK

One of the most important and exciting areas of composites research is the development of modelling techniques to predict the response of composite materials to different types of stress. Predictive modelling provides the opportunity both to understand better how composites behave in different conditions and to develop materials with enhanced performance for particular industrial applications. Multi-scale modelling of composite material systems summarises the key research in this area and its implications for industry.

The book covers modelling approaches ranging from the micron to the metre in scale, and from the single fibre to complete composite structures. Individual chapters discuss a variety of material types from laminates and fibre-reinforced composites to monolithic and sandwich composites. They also analyse a range of types of stress and stress response from fracture and impact to wear and fatigue. Authors also discuss the strengths and weaknesses of particular models.

With its distinguished editors and international team of contributors, Multi-scale modelling of composite material systems will be a standard reference for both academics and manufacturers in such areas as aerospace, automotive and civil engineering.

Contents

Molecular modelling of composite matrix properties
F Jones, University of Sheffield, UK
Group interaction modelling for the prediction of polymer properties. Applying group interaction modelling to polymer matrix composites.

Interfacial damage modelling of composites
C Galiotis, Institute of Chemical Engineering and High Temperature Chemical Processes, Greece and A Papetis

Multi-scale predictive modelling of cracking in laminate composites
L N McCartney, National Physical Laboratory, UK

Modelling the strength of fibre-reinforced composites
B Fiedler, Technical University of Hamburg-Harburg, Germany, S Ochiai, Kyoto University, Japan and K Schulte, Technical University of Hamburg-Harburg, Germany

Cracking models
P Beaumont, University of Cambridge, UK and H Sekine, Tohoku University, Japan

Multi-scale modelling of cracking in cross-ply laminates
V Silberschmidt, Loughborough University, UK

Modelling damage in laminate composites
M Kashialyan, University of Aberdeen and C Soutis, The University of Sheffield, UK
Stress analysis. Predicting stiffness degradation due to intra- and interlaminar damage. Predicting onset and growth of intra- and interlaminar damage.

Progressive multi-scale modelling of composite laminates
C Wang, Defence Science and Technology Organization, Australia

Predicting fracture of laminate composites
I Guz, University of Aberdeen and C Soutis, University of Sheffield, UK

Modelling the compressive response behaviour of monolithic and sandwich composite structures
C Souts, University of Sheffield, S Spearing, University of Southampton and P Curtis, DSTL Integrated Systems, UK
Modelling techniques. Predicting compressive response.

Modelling composite reinforcement by stitching and z-pinning
X Sun, H-Y Liu, W Yan, L Tong and Y-W Mai, University of Sydney, Australia
Micro-scale models for stitching and z-pinning. Assessment of macro-scale delamination toughness of reinforced composites.

Finite element modelling of brittle matrix composites
V Cannillo, University of Modena and Reggio Emilia, Italy, and A Boccaccini, Imperial College London, UK

Wear modelling of polymer composites
K Friedrich, University of Kaiserslautern, Germany, K Varadi, Budapest University of Technology and Economics, Hungary, and Z Zhang, University of Kaiserslautern, Germany

Modelling impact damage in composite structural elements
A Johnson, German Aerospace Center (DLR), Germany

Modelling structural damage using elastic wave-based techniques
Z Su and L Ye, The University of Sydney, Australia

Modelling the fatigue behaviour of bonded joints in composite materials
M Quaresimin, University of Padova, Italy
Experimental investigation. Finite element analysis of SIF and SERR. Fatigue life modelling.

About the editors

Professor Costas Soutis is Head of Aerospace Engineering at The University of Sheffield.

Dr Peter Beaumont is Reader in Engineering at the University of Cambridge. Both have international reputations for their research on composites behaviour.

528 pages 234 x 156mm hardback 2005
ISBN 1 85573 936 4
£150.00/US$270.00/€220.00

Order Multi-scale modelling of composite material systems and Nanolithography and patterning techniques in microelectronics online by visiting www.woodheadpublishing.com
Nanolithography and patterning techniques in microelectronics
Edited by D Bucknall, Oxford University, UK

Techniques such as surface patterning have facilitated the emergence of advanced polymers with applications in areas such as microelectronics. Surface patterning of polymers has conventionally been undertaken by optical lithography. However, a new generation of nanolithographic and patterning techniques has made it possible to develop complex patterns at the nanoscale. Non-conventional lithography and patterning summarises this new range of techniques and their industrial applications.

A number of chapters look at ways of forming and modifying surfaces for patterning. These are complemented by chapters on particular patterning techniques such as soft lithography, ion beam patterning, the use of nanostencils, photolithography and inkjet printing. The book also discusses prototyping and the manufacture of particular devices.

With its distinguished international team of contributors, Non-conventional lithography and patterning will be a standard reference for both those researching and using advanced polymers in such areas as microelectronics and biomedical devices.

Contents

Block copolymer nanolithography
M Trawick, University of Richmond, D Angelescu, Schlumberger-Doll Research, P I Chaikin and R Register, Princeton Institute for the Science and Technology of Materials, USA

Surface-induced structure formation of polymer blends
R Composto and H-J Chung, University of Pennsylvania, USA

Rapid prototyping of functional microfabricated devices by soft lithography
D Wolfe and G Whitesides, Harvard University, USA

Chemomechanical surface modification of materials for patterning
M Linford, R Davis, S Magleby, L Howell, G Jiang and C Thulin, Brigham Young University, USA

Patterning of confined polymer thin films
P Yoo, K Suh, Y Kim, D-Y Kang and H Lee, Seoul National University, Korea

Ion beam patterning
G Grime, University of Surrey, UK

Nanofabrication by shadow deposition through nanostencils
J Brugger, Swiss Federal Institute of Technology, Switzerland and G Kim, Kyungpook National University, Korea

Photolithography beyond the diffraction limit
G Leggett, University of Sheffield, UK

Inkjet printing as a tool in manufacture and instrumentation
D Wallace and D Hayes, MicroFab Technologies, Inc, USA

Actuators and patterns for microfluidic control
A Ajdari and P Tabeling, Ecole Supérieure de Physique et de Chimie Industrielles, France

Manipulation of biomolecules and reactions
T Thorsen, Massachusetts Institute of Technology, USA

Nonlithographic patterning: application of inkjet printing in organic-based devices
Y Yoshiooka and G Jabbour, Arizona State University, USA

High-resolution printing techniques for plastic electronics
G Blanchet, DuPont Central Research and J Rogers, University of Illinois and Beckman Institute, USA

About the editor
Dr David Bucknall is an Associate Professor at the Georgia Institute of Technology. He holds a joint appointment in the School of Polymers, Textiles and Fiber Engineering and the School of Materials Science and Engineering.

424 pages 234 x 156mm hardback September 2005 ISBN 1 85573 931 3 £140.00/US$250.00/€205.00

If you would like to receive advance information on all new Materials Engineering books, simply join our e-mail mailing list at www.woodheadpublishing.com
Ceramic-matrix composites
Microstructure/property relationship
Edited by J Low, Curtin University of Technology, Australia

It is well recognised that the mechanical performance of materials is dependant upon the composition of their microstructures. By judiciously adjusting the composition new properties can be developed. The aim of this comprehensive new book is to evaluate the microstructure-property relationships of various ceramic-matrix composites.

CONTENTS: Part 1 Fibre, whisker and particulate-reinforced ceramic composites: Fibrous monolithic ceramics; Whisker reinforced silicon nitride ceramics; Fibre reinforced glass/ceramic-matrix composites; Particulate composites. Part 2 Ceramic-matrix composites: Sialons; Carbon-ceramic alloys; Silicon nitride and silicon carbide-based ceramics; Oxynitride glasses-glass ceramics; Functionally graded ceramics.

550 pages 234 x 156mm
hardback January 2006 ISBN 1 85573 942 9
Pre-publication Price. £170.00/US$305.00/€245.00

Also of interest

Nanolithography and patterning techniques in microelectronics
ISBN 1 85573 931 3 @ £140.00/US$250.00/€205.00

Multi-scale modelling of composite material systems
ISBN 1 85573 936 4 @ £150.00/US$270.00/€220.00

Ceramic-matrix composites
ISBN 1 85573 942 9 @ Pre-publication Price. £170.00/US$305.00/€245.00

Order Form
Alternatively order online at www.woodheadpublishing.com

Please return to: Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, UK
Tel: +44 (0) 1223 891358 Fax: +44 (0) 1223 893694 Email: sales@woodhead-publishing.com
VAT Registration Number: GB 538-2109-53

Please send me

Multi-scale modelling of composite material systems
ISBN 1 85573 936 4 @ £150.00/US$270.00/€220.00

Nanolithography and patterning techniques in microelectronics
ISBN 1 85573 931 3 @ £140.00/US$250.00/€205.00

Ceramic-matrix composites
ISBN 1 85573 942 9 @ Pre-publication Price. £170.00/US$305.00/€245.00

Books: 1st class within the UK. Orders outside the UK are dispatched by Airmail or Courier. To help ensure secure and prompt delivery please give your full postal address including street name and number. Please allow up to 21 days for delivery.

Post & Packing
UK Elsewhere in Europe Rest of World
First Book £4.75 £8/US$14/€12 £18/US$32/€26
For each additional book £1.75 £5/US$9/€7 £10/US$18/€15

Post & packing ..
Sub Total ..
Grand Total ..

How to Pay and Payment Details
☑ By bank transfer into our account:
HSBC Bank Plc: Sort Code 40 16 08; Account No. 82209020;
Account name – Woodhead Publishing Ltd.
☑ In sterling with a cheque drawn against a UK bank
☑ By Euro with a cheque drawn against a European bank
☑ In US dollars with a cheque drawn against a US bank
☑ By MasterCard/Visa/Amex credit card
☑ By Maestro/Delta debit cards

If paying by credit card, please include the card billing address and delivery address if they differ.

Payment Details
☑ Cheque enclosed for £/US$/€

Charge my:
☑ MasterCard ☑ Visa ☑ Amex ☑ Maestro (Issue No.) ☑ Delta

Card Number

Signature:

Your Details (PLEASE PRINT)
Name: ..
Position: ..
Company/Organisation:
Address: ..
...
...
Tel: ...
Fax: ...
Email: ..
Date: / /
EU Customer’s VAT Registration Number
...
EU Customers: Please state your VAT Reg. No. to avoid incurring VAT charges and delay despatching your order
☑ Tick here for a copy of our latest Materials Engineering catalogue
☑ Tick here to join our email mailing list