Programme Specification
A statement of the knowledge, understanding and skills that underpin a taught programme of study leading to an award from The University of Sheffield

<table>
<thead>
<tr>
<th></th>
<th>Programme Title</th>
<th>Medical Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Programme Code</td>
<td>MBBU29 (BSc); MBBU30 (MBiolSci)</td>
</tr>
<tr>
<td>3</td>
<td>JACS Code (if applicable)</td>
<td>C431 (BSc); C433 (MBiolSci)</td>
</tr>
<tr>
<td>4</td>
<td>Level of Study</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>5a</td>
<td>Final Qualification</td>
<td>Bachelor of Science with Honours (BSc Hons); Master of Biological Science (MBiolSci)</td>
</tr>
<tr>
<td>5b</td>
<td>QAA FHEQ Level</td>
<td>Honours (BSc); Masters (MBiolSci)</td>
</tr>
<tr>
<td>6</td>
<td>Intermediate Qualification(s)</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>Teaching Institution (if not Sheffield)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>8</td>
<td>Faculty</td>
<td>Science</td>
</tr>
<tr>
<td>9</td>
<td>Department</td>
<td>Molecular Biology & Biotechnology</td>
</tr>
<tr>
<td>10</td>
<td>Other Department(s) involved in teaching the programme</td>
<td>Biomedical Science</td>
</tr>
<tr>
<td>11</td>
<td>Mode(s) of Attendance</td>
<td>Full time</td>
</tr>
<tr>
<td>12</td>
<td>Duration of the Programme</td>
<td>3 years (BSc); 4 years (MBiolSci)</td>
</tr>
<tr>
<td>13</td>
<td>Accreditating Professional or Statutory Body</td>
<td>Not applicable</td>
</tr>
<tr>
<td>14</td>
<td>Date of production/revision</td>
<td>April 2012</td>
</tr>
</tbody>
</table>

15. Background to the programme and subject area

Genetics is central to the whole of modern biology, and includes many aspects that are of relevance to medicine. These include the human genome project, human genetic disorders, gene testing, gene therapy and cloning. All these applications of genetics depend upon fundamental research, which is often carried out using relatively simple “model” organisms. For example, genetic studies on cell growth in yeast have led to fundamental insights into cell growth and cancer in humans. Our BSc and MBiolSci programmes in Medical Genetics are designed to provide a broad grounding in genetics and the other molecular biosciences, together with a range of advanced modules that emphasises topics of medical relevance.

Students graduating after three years with a BSc in Medical Genetics will be equipped with a wide range of skills, both subject-specific and generic. These will provide a sound basis for a wide variety of careers in the molecular biosciences or for entry to a medical degree. Many of our graduates go on to research careers in medicine or industry, often after obtaining a PhD qualification. Our graduates are also well qualified to enter careers such as teaching or management.

The Department of Molecular Biology and Biotechnology was awarded a maximum score of 24 out of 24 in the national Teaching Quality Audit Subject Review in 1999, and our continuing excellence in teaching was confirmed in 2008 by an outstanding performance in the Independent Evaluation of Teaching carried out by an external panel. We also have an international reputation for research; in 2008, in a joint submission with the other departments in Sheffield’s School of Biological Sciences, we were ranked third in the national Research Assessment Exercise for Biological Sciences. This means that students are exposed to a stimulating learning environment, in which the experience of staff as researchers contributes directly to their ability to teach the latest developments in the field. The Department’s accommodation has recently been completely refurbished to a very high standard at a cost of more than £23M.
16. Programme aims

All degree programmes offered by the Department of Molecular Biology and Biotechnology have the following general aims consonant with the University of Sheffield’s Mission Statement:

1. to provide teaching in the molecular biosciences that is informed and inspired by the research and scholarship of the staff, and is stimulating, useful and enjoyable to students;
2. to provide a broad understanding of the molecular biosciences together with more detailed and critical knowledge in selected areas;
3. to equip graduates with well-developed practical, analytical, communication, IT and problem-solving skills;
4. to provide all students with the opportunity to carry out laboratory-based project work, to develop their practical skills and to allow them to assess their ability and interest in laboratory work;
5. to provide a stimulating educational experience that prepares students for future employment and is orientated towards a professional career in the molecular biosciences;
6. to assess students over a range of skills and identify and encourage academic excellence;
7. to give students the opportunity to obtain feedback on their progress;
8. to provide a supportive environment for students;
9. to provide for diverse and developing student interests and aspirations by offering a choice of modules and project work within programmes and allowing transfers between the various programmes in the molecular biosciences offered by the Department;
10. to engender in students a desire for continuing professional development;
11. to encourage students to become informed citizens and understand the place of the molecular biosciences in society.

The specific aim of the BSc and MBiolSci programmes in Medical Genetics is:
12. to provide a broad understanding of genetics together with more detailed and critical knowledge in areas of the subject relevant to medicine.

The MBiolSci extends and enhances the BSc, aiming to:
13. provide an extended laboratory-based research project in a university or industrial environment;
14. provide additional training in research skills.

17. Programme learning outcomes

Knowledge and understanding: by the end of the programme, students will have acquired

K1 a broad-based core knowledge and understanding of the molecular biosciences, including biochemistry, genetics, microbiology, molecular biology and cell biology;
K2 detailed and critical knowledge, including knowledge of the most recent advances, in areas of genetics relevant to medicine;
K3 practical understanding of the nature of scientific knowledge, and of techniques and tools for searching the scientific literature;
K4 competence in the use of laboratory equipment and methods relevant to the molecular biosciences, including knowledge of safe working practices;
K5 knowledge of numerical, graphical, statistical and other methods for analysing experimental data;
K6 competence in the use of a range of presentation techniques;
K7 an understanding of whether or not they have the ability, motivation and interest to pursue postgraduate training.

In addition, students achieving the award of MBiolSci will have acquired
additional knowledge of recent research developments through attendance at the departmental research seminar programme

Skills and other attributes: by the end of the programme, students will have acquired

S1 the ability to plan and manage their own learning, including time management skills and the ability to learn effectively from a range of resources, including lectures, textbooks, websites and the scientific literature;

S2 competence in the use of relevant laboratory equipment and the ability to master, with appropriate training, new experimental techniques;

S3 the ability to analyse and critically evaluate experimental data;

S4 the ability to formulate hypotheses and design experiments to test these hypotheses effectively, including the design of appropriate controls;

S5 skills in oral, written, numerical, graphical and visual presentations, such that essential aspects of genetics can be effectively conveyed;

S6 skills in searching for primary and secondary scientific literature relevant to a specific topic;

S7 the ability to read and critically understand primary and secondary scientific literature relevant to genetics;

S8 the ability to work effectively as a member of a team.

In addition, students achieving the award of MBiolSci will have acquired

S9 the ability to organise and manage an extended, laboratory-based research project and an extended literary project to a professional standard.

18. Teaching, learning and assessment

Development of the learning outcomes is promoted through the following teaching and learning methods:

1. Lectures

Students in the molecular biosciences must acquire and critically understand a substantial body of knowledge (K1, K2). Much of this is conveyed through lectures, with lecture-based modules of 10 or 20 credits usually comprising 18 or 44 formal lectures, respectively, associated with 1-2 data analysis sessions (see ‘Practical classes’ below). Level 1 lectures are focussed on the development of a broad knowledge of the molecular biosciences (K1). This continues at Level 2, but students also acquire progressively more detailed and critical knowledge during Levels 2 and 3 (K2). MBiolSci students acquire additional advanced, research-led knowledge at Level 4 through attending departmental research seminars and a ‘journal club’ (K8). Students at all levels are expected to supplement each lecture with directed independent study (S1; see below). All lecture-based modules include optional questions designed to allow students to assess the development of their knowledge and understanding (programme aim 7).

2. Practical classes

At Levels 1 and 2, students take practical modules to the value of 30 or 20 credits, respectively, each year. These involve two 3-hour laboratory sessions each week. In addition, a 3-hour data analysis session each week is associated either with a practical module or with one of the lecture-based modules. The laboratory sessions develop students’ knowledge of equipment and methods (K4, K5, K6), and their skills in laboratory work (S2), data analysis (S3), experimental design (S4) and the preparation of reports (S5). Laboratory work is typically carried out in pairs or small groups (S8). The data analysis sessions associated with practical and lecture-based modules provide further development of skills through a combination of instruction, discussion and practice (K5, S3; also S7 at Level 2). Laboratory and data analysis sessions are assessed, and feedback is provided on each session (programme aim 7).

At Level 3, students take a 10-credit data handling module, which develops data interpretation skills using a format similar to that of the data analysis sessions at Levels 1 and 2 (K5, S3, S7).

3. Laboratory project work

At Level 3, each student carries out a 20-credit practical project supervised by a member of staff. Students select their preferred options from a list of potential topics, and are then allocated one of their choices. A wide range of projects is offered, reflecting diverse career options, and including: laboratory work in one of the
research groups in the Department or the School of Medicine; analysis of complex data sets gathered from large-scale research projects; development and delivery of science lessons in a local school; setting up and running a ‘virtual’ biotechnology enterprise; or development of computer-based teaching materials (K4-7, S1-8).

Students following the MBiolSci programme carry out a more extensive, laboratory-based research project at Level 4, either in one of the research groups in the Department or in industry. Both types of project allow more advanced and extensive understanding of research work (K7, K9) and development of the relevant skills (S9).

4. Literature reviews

At Level 3, each student takes a 10-credit module involving a search for scientific literature relevant to a specified topic (K3, S6) and the preparation of a critical review (K6, S5, S7). Students select several topics from a list of titles offered by potential supervisors, and are then allocated one of their choices. This exercise builds on skills in literature searching introduced in tutorials at Levels 1 and 2, and skills in the reading and understanding of scientific literature introduced in a practical module at Level 2 and particularly in the Level 3 data handling module.

Students following the MBiolSci programme use the same skills at Level 4 in the preparation of an advanced literature review relevant to the topic of the extended research project.

5. Tutorials

Small-group tutorials at Levels 1 and 2 develop students’ ability to seek out subject-related information and present it orally or in handwritten or word-processed reports (K3, K6, S5, S6). Oral and written feedback is provided by tutors. Work prepared for some tutorials is assessed and contributes to the marks for practical modules (programme aim 7).

6. Independent study

In all modules and at all levels, students are expected to carry out substantial amounts of independent study (S1). This includes directed reading, problem solving, and the completion of self-assessment questions (K1, K2, K3, K5, K6, S1, S3, S6, S7).

Opportunities to demonstrate achievement of the learning outcomes are provided through the following assessment methods:

1. Formal examinations

Lecture-based modules are assessed by formal examinations (2 hours for 20-credit modules at Level 1, 1.5 hours or 2 hours for 10-credit modules at Levels 2 and 3, respectively). Formal examinations at all levels provide effective tests of knowledge (K1, K2, S1, S5; also S7 at levels 2 and 3) and problem-solving skills (S3, S4, S5). Examination papers at Levels 2 and 3 test students’ critical understanding by challenging them to evaluate their knowledge and synthesise answers that reflect the specific ways in which questions have been framed (K2). Multiple-choice examinations are used at Level 1. Level 2 examinations combine compulsory, short-answer questions with a choice of essays, and Level 3 examinations provide a choice of essays.

Formal examinations are also used in the assessment of practical modules at Levels 1 and 2, where they provide 40-50% of the overall assessment. A 1.5-hour multiple-choice examination is set for the 30-credit practical module at Level 1, and a 1.5-hour short-answer examination for each 10-credit practical module at Level 2.

The data handling module is assessed by a combination of formal examinations and coursework questions. Feedback is provided on the coursework.

2. Continuous assessment

50-60% of the overall assessment of each practical module is based upon laboratory records, answers to questions, formal laboratory reports, and written tutorial work (K5, K6, S3, S4, S5, S8). Up to 50% (but typically 0-20%) of the overall assessment in each lecture-based module comes from data analysis sessions and other coursework. Laboratory and data analysis sessions are assessed, and feedback is given (programme aim 7).

3. Project assessment

Assessment of projects is based upon the student’s performance in the practical work and upon oral and written reports (K4, K5, K6, S1, S2, S3, S4, S5). Literature reviews are assessed entirely on the basis of the report (K3, K6, S6, S7).

4. Level 4 research skills assessment
For students following the MBiolSci programme, attainment of the learning outcomes of the extended laboratory project and literature review at Level 4 is assessed according to criteria similar to those used for the Level 3 laboratory project and literature review (S9). Assessment of the advanced, research-led knowledge acquired from departmental research seminars and ‘journal club’ sessions is based upon a series of short reports and abstracts (K8).

19. Reference points

The learning outcomes have been developed to reflect the following points of reference:

- The learning and teaching strategy of the University of Sheffield (2011-2016): http://www.shef.ac.uk/lets/staff/lts

20. Programme structure and regulations

The programmes are modular and offered as full-time study only. Students register for modules to a total of 120 credits in each year of study.

Level 1
Modules to the value of 110 credits are core (compulsory), comprising four 20-credit lecture-based modules and one 30-credit practical module. In addition, students may choose between a 10-credit integrated science module and any other 10-credit module offered within the University. At the end of Level 1, students are free to transfer to any other undergraduate degree programme within the Department.

Level 2
All modules are core (compulsory), comprising ten 10-credit lecture-based modules and two 10-credit practical modules.

Level 3
Core modules comprise the 20-credit project, 10-credit literature review, 10-credit data handling module, and six 10-credit lecture-based modules. Two approved, 10-credit, lecture-based modules must be chosen from a degree-specific list.

Level 4 (MBiolSci programme only)
Core modules comprise an 80-credit laboratory project, a 20-credit literature review and two 10-credit modules in research-related skills. Students may carry out the laboratory project in industry if they are successful in the competitive application procedure for one of the participating companies.

For the BSc, final degree classifications are based on aggregate marks of 33% for Level 2 and 67% for Level 3. For the MBiolSci, final degree classifications are based on aggregate marks of 20% for Level 2, 40% for Level 3 and 40% for Level 4.

Progression to Levels 3 and 4 of the MBiolSci programme is normally subject to a minimum overall mean grade of 60 at Level 2 and 65 in the Autumn of Level 3. MBiolSci students who fail to achieve these scores will normally transfer to the BSc programme.

Detailed information about the structure of programmes, regulations concerning assessment and progression and descriptions of individual modules are published in the University Calendar available on-line at http://www.shef.ac.uk/govern/calendar/regs.html.
21. Student development over the course of study

Level 1
This level is designed to provide a broad theoretical and practical grounding in the molecular biosciences. By the end of this year, students will have:
- knowledge of relevant concepts, principles, equipment and methodologies;
- the ability to evaluate and interpret relevant data, both qualitative and quantitative;
- the ability to use a variety of methods to communicate relevant information cogently and analytically;
- the study skills to undertake further training at Level 2.

Level 2
This level is designed to allow students to develop a more advanced appreciation of specific areas of the molecular biosciences. By the end of this year, students will have:
- deeper and more critical knowledge and understanding in specific areas;
- more advanced laboratory skills and knowledge of complex research equipment;
- the ability to identify and use primary and secondary literature relevant to a specific topic;
- more advanced skills in data interpretation and analysis;
- more advanced communication skills;
- the study skills to undertake further training at Level 3.

Level 3
This level is designed to allow students to carry out critical, in depth study of selected areas of genetics relevant to medicine, and to carry out practical project work, usually as a member of a group. By the end of this year, students will have:
- deep and critical knowledge and understanding of the latest developments in selected areas;
- skills in the planning, execution, evaluation and reporting of a practical project;
- well-developed skills in interpreting, evaluating and explaining relevant primary literature;
- well-developed communication skills;
- the study skills to undertake further training and life-long learning.

Level 4 (MBiolSci only)
This level is designed to provide further training specifically for students who intend to pursue a career in research. By the end of this year, students will have:
- understanding of some of the latest developments through research seminars and participation in a ‘journal club’;
- experience of an extended, individual laboratory project as a member of an active research group;
- a comprehensive understanding of the literature, approaches and techniques relevant to the project;
- a practical understanding of the role of creativity, originality and judgement in the execution of laboratory research;
- the skills necessary to undertake a career in research.

22. Criteria for admission to the programme

Detailed information regarding admission to the programme is available at http://www.shef.ac.uk/prospective/

23. Additional information

Further information about the Department, our staff, programmes and admissions may be found on the web at: http://www.shef.ac.uk/mbb/index.html

This specification represents a concise statement about the main features of the programme and should be considered alongside other sources of information provided by the teaching department(s) and the University. In addition to programme specific information, further information about studying at The University of Sheffield can
be accessed via our Student Services web site at http://www.shef.ac.uk/ssid.