POSTER TIMETABLE

Day 1 – Wednesday 26th June (Main hall)

<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(paper 70)</td>
<td>Spray zone demarcation in top-spray fluidised bed granulation by droplet detection methods</td>
<td>M. Börner, E. Tsotsas</td>
<td>Otto-von-Guericke University, Magdeburg, Germany</td>
</tr>
<tr>
<td>2</td>
<td>(paper 71)</td>
<td>Transfer of batch fluid bed granulation to a continuous process – Case study</td>
<td>K. Germer<sup>1</sup>, M. Jacob<sup>2</sup>, M. Zenker<sup>2</sup>, G. Eckardt<sup>3</sup>, B. Wolf<sup>4</sup></td>
<td>1 Salutas Pharma GmbH, Germany, Germany, 2 Glatt Ingenieurtechnik GmbH, Germany, 3 Parsum GmbH, Germany, 4 Anhalt University of Applied Sciences, Bernburg, Germany</td>
</tr>
<tr>
<td>3</td>
<td>(paper 72)</td>
<td>Comparison between granules produced by spray drying and dry granulation for the fabrication of ceramic porcelain tiles</td>
<td>F.G. Melchiades<sup>1</sup>, L.R. Santos<sup>1,2</sup>, S. Nastri<sup>1</sup>, A.O. Boschi<sup>1,2</sup></td>
<td>1 Dept. de Eng. de Materiais, Universidade Federal de São Carlos, Brazil, 2 Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Brazil</td>
</tr>
<tr>
<td>4</td>
<td>(paper 73)</td>
<td>Use of reactive wetting as a tool for real-time monitoring of binder distribution during granulation</td>
<td>D. Smrčka, M. Schöngut, F. Štěpánek</td>
<td>Institute of Chemical Technology Prague, Czech Republic</td>
</tr>
<tr>
<td>5</td>
<td>(paper 74)</td>
<td>The rheology of dense granular flows in a disc impeller high shear granulator</td>
<td>M. Khalilitehrani, P.J. Abrahamsson, A. Rasmuson</td>
<td>Chalmers University of Technology, Gothenburg, Sweden</td>
</tr>
<tr>
<td>6</td>
<td>(paper 75)</td>
<td>Upgrading the crush strength of ammonium nitrate prills by coating with limestone or dolomite powder</td>
<td>I. Klimova<sup>1</sup>, V. Mikli<sup>2</sup>, T. Kaljuvee<sup>1</sup></td>
<td>1 Tallinn University of Technology, Laboratory of Inorganic Materials, Estonia, 2 Tallinn University of Technology, Centre of Materials Research, Estonia</td>
</tr>
<tr>
<td>7</td>
<td>(paper 76)</td>
<td>Effect of impeller design on product homogeneity in high shear wet granulation</td>
<td>Z.M. Mirza<sup>1</sup>, C. Mangwandi<sup>1</sup>, G.M. Walker<sup>1,2</sup></td>
<td>1 Queen's University Belfast, Northern Ireland, UK, 2 University of Limerick, Ireland</td>
</tr>
<tr>
<td>8</td>
<td>(paper 77)</td>
<td>Fluidized bed micro-encapsulation of probiotic microorganisms for animal feeding</td>
<td>V. Oehl, S. Wöltje, H. Falck</td>
<td>Neuhaus Neotec GmbH, Ganderkesee, Germany</td>
</tr>
<tr>
<td>9</td>
<td>(paper 78)</td>
<td>Analysis of the effect of impeller type and speed on the rate and quality of mixing in a high shear mixer</td>
<td>D. Barling<sup>1,2</sup>, T. Leadbeater<sup>3</sup>, A. Ingram<sup>4</sup>, D.A.V. Morton<sup>2</sup>, J.P.K. Seville<sup>5</sup>, K. Hapgood<sup>6</sup></td>
<td>1 Monash University, Australia, 2 Monash Institute of Pharmaceutical Sciences, Australia, 3 School of Physics and Astronomy, University of Birmingham, U.K., 4 Department of Chemical Engineering, University of Birmingham, U.K., 5 University of Surrey, U.K.</td>
</tr>
<tr>
<td>10</td>
<td>(paper 79)</td>
<td>Influence of viscous forces on collision dynamics in a fluidised bed granulator: A DEM-CFD study</td>
<td>L. Fries<sup>1</sup>, S. Antonyuk<sup>2</sup>, S. Heinrich<sup>3</sup>, G. Niederreiter<sup>1</sup>, S. Palzer<sup>1</sup></td>
<td>1 Nestlé Research Center Lausanne, Switzerland, 2 Hamburg University of Technology, Germany</td>
</tr>
</tbody>
</table>

Updated on 7 June 2013 at 19:11 GMT
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
</table>
| 11 (paper 80) | Glass transition temperature effects on the breakage and dissolution of single amorphous food particles | W.R. Mitchell¹, C.I. Haider¹, B. Onasile¹, T.O. Althaus², L. Forny³, G. Niederreiter⁴, S. Palzer⁴, M.J. Hounslow¹, A.D. Salman¹ | ¹University of Sheffield, UK
²Nestlé Product Technology Center York, UK
³Nestlé Research Center, Lausanne Switzerland
⁴Nestlé SA Headquarters, Vevey, Switzerland |
| 12 (paper 81) | Experimental and numerical investigations of a spout fluidized bed with draft plates | V.S. Sutkar¹, N.G. Deen¹, V. Salikov², S. Antonyuk², S. Heinrich², J.A.M. Kuipers¹ | ¹Eindhoven University of Technology, The Netherlands
²Hamburg University of Technology, Germany |
| 13 (paper 82) | Granulation of indomethacin and hydrophilic carrier by fluidized hot melt method: The drug solubility enhancement | T.C. Andrade, R.M. Martins, L.A. P. Freitas | Universidade de São Paulo, Brazil |
| 14 (paper 83) | Continuum modeling of particle flows in high shear granulation | P.J. Abrahamsson¹, M. Khalilitehrani¹, S. Sasie², A. Rasmussen¹ | ¹Department of Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
²Department of Applied Mechanics: Division of Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden |
| 15 (paper 84) | Improvement of enalapril maleate chemical stability by high shear melting granulation | A.P.M. Oliveira¹, T.A. Cunha¹, R.C. Serpa¹, S.F. Taveira¹, E.M. Lima¹, L.A.P. Freitas², R.N. Marreto¹ | ¹Federal University of Goiás, Goiânia, Brazil
²University of São Paulo, Brazil |
| 16 (paper 85) | Effect of type of lactose and microcrystalline cellulose combination on recompaction | J. Langridge, E. Camelot-Nijman, R. Shegokar, H. van Duinen, M. Lindner | DFE Pharma, Goch, Germany |
| 17 (paper 86) | Wettability study of glass beads bed by capillary rise with pressure increase | M. Benali, K. Saleh | Université de Technologie de Compiègne, France |
| 18 (paper 87) | Measuring caking degree in cocoa powders: A material science approach | E. Chávez Montes, V. Girard, J.C. Gumy | Nestlé PTC Orbe, Switzerland |
| 19 (paper 88) | Comparison of the effect of ultrasound and an electronic anti fouling system on the aggregation and scaling behaviour of calcium carbonate by an inline technique | W.N. Al Nasser¹, K. Pitt², F.H. Al Salhi¹, A.M. Al Mofleh¹, M.J. Hounslow², A.D. Salman² | ¹Saudi Aramco, Dhahran, Saudi Arabia
²University of Sheffield, UK |
| 20 (paper 89) | Blade - granule bed stress in a cylindrical high shear granulator: Further characterisation with DEM | E.L. Chan¹, G.K. Reynolds², B. Gururajan³, M.J. Hounslow¹, A.D. Salman¹ | ¹University of Sheffield, UK
²AstraZeneca, Macclesfield, Cheshire, UK
³AstraZeneca R&D, Mölndal, Sweden |
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 (paper 90)</td>
<td>The influence of the pan pelletizer rotational speed and the binder concentration on the agglomeration of alumina oxide granules</td>
<td>Z. Radeva, A. Hameed, P. Müller, J. Tomas</td>
<td>Otto von Guericke University, Magdeburg, Germany</td>
</tr>
<tr>
<td>22 (paper 91)</td>
<td>Improved control of granule properties via “steady state” granulation</td>
<td>R.F.T. Moo, C. Selomulya, K.P. Hapgood</td>
<td>Monash University, Australia</td>
</tr>
<tr>
<td>23 (paper 92)</td>
<td>Study of soy protein isolate agglomeration in a pulsed fluidized bed using gum arabic as binder agent</td>
<td>V.G. Machado, T.A.M. Hirata, F.C. Menegalli</td>
<td>University of Campinas - SP, Brazil</td>
</tr>
<tr>
<td>24 (paper 93)</td>
<td>Optimizing the properties of blend for hard gelatin capsules filling by incorporating roller compaction in manufacturing process</td>
<td>D. Majerová, M. Bartáková, D. Hofmanová, T. Rysl, F. Štěpánek, P. Zámostný</td>
<td>1 Institute of Chemical Technology, Prague, Czech Republic 2 Zentiva k.s. (a Sanofi company), Prague, Czech Republic</td>
</tr>
<tr>
<td>25 (paper 94)</td>
<td>Effect of raw material properties on the kinetics of iron ores granulation</td>
<td>R.A. Jaimes, F. Van Loo, J-F Douce, M. Schöngut, M. Evrard, F. Štěpánek, E. Pirard</td>
<td>1 Centre for Research in Metallurgy, Liège, Belgium 2 ArcelorMittal Ironmaking, Global R&D</td>
</tr>
<tr>
<td>26 (paper 95)</td>
<td>Twin screw granulator: Effect of primary particle size</td>
<td>R.B. Al-Asady, M.J. Hounslow, A.D. Salman</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>27 (paper 96)</td>
<td>Evaluating the solid surface free energy of amorphous maltodextrin</td>
<td>M. Balashannugam, C.I. Haider, M.J. Hounslow, A.D. Salman</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>28</td>
<td>A “unit cell” approach for extracting macroscopic coalescence and breakage kernels from DEM simulations</td>
<td>N.J. Davis, C. Wassgren, J. Litster</td>
<td>1 Department of Chemical Engineering, Purdue University, USA 2 Department of Mechanical Engineering, Purdue University, USA 3 Department of Industrial and Physical Pharmacy, Purdue University, USA</td>
</tr>
<tr>
<td>29</td>
<td>Investigation of the effect of Mg silicate addition on the powder physical properties of compacted metformin-HCl</td>
<td>I.S. Rashid, K.A. Alkhamsis, H.A. Hassan, T.H. Altalafha, A.A. Badwan</td>
<td>1 The Jordanian Pharmaceutical Manufacturing Co., Naor, Jordan 2 Jordan University of Science and Technology, Iribid, 22110, Jordan</td>
</tr>
<tr>
<td>30</td>
<td>DEM simulation of contact interactions of micrometer-sized particles</td>
<td>S. Kozhar, S. Antonyuk, S. Heinrich, L. Gilson, U. Bröckel</td>
<td>1 Hamburg University of Technology, Germany 2 Institute for Micro-Process-Engineering and Particle Technology, Birkenfeld, Germany</td>
</tr>
<tr>
<td>31</td>
<td>Envisioning the factory of the future: Case study on continuous granulation and tableting</td>
<td>K. Schoeters</td>
<td>GEA Pharma Systems, Wommelgem, Belgium</td>
</tr>
<tr>
<td>32</td>
<td>One step fluidized bed drying and encapsulation of a herbal extract</td>
<td>L. Benelli, C.R.F. Souza, W.P. Oliveira</td>
<td>University of São Paulo, Brazil</td>
</tr>
<tr>
<td>Poster number</td>
<td>Poster Topic</td>
<td>Presenters</td>
<td>Group</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>Roller compaction/ comparison of ribbon and granule properties using different types of lactose</td>
<td>C.S. Omar¹, J.D. Osborne¹, T. Althaus², S. Palzer³, M.J. Hounslow¹, A.D. Salman¹</td>
<td>¹University of Sheffield, UK ²Nestlé Product Technology Centre York, UK</td>
</tr>
<tr>
<td>34</td>
<td>A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction</td>
<td>N. Souihi¹, M. Dumarey², H. Wikström³, P. Tajarobi², M. Fransson³, O. Svensson³, M. Josefson³, J. Trygg¹</td>
<td>¹Department of Chemistry, Umeå University, Sweden ²Industrial Doctoral School, Umeå University, Sweden ³AstraZeneca R&D Mölndal, Sweden</td>
</tr>
<tr>
<td>35</td>
<td>Powder flow characterisation of pharmaceutical excipients: evaluation of different techniques</td>
<td>N. Sandler¹, B. Gururajan², H. Ehlers³, M. Fransson², L. Johnson², P. Tajarobi²</td>
<td>¹Abo Akademi University, Finland ²AstraZeneca R&D, Mölndal, Sweden</td>
</tr>
<tr>
<td>36</td>
<td>In-line measurement of the agglomerate size distribution in fluidized bed agglomeration</td>
<td>C. Aviles-Aviles¹,²,³, M. Terray⁴, E. Dumoulin¹,²,³, C. Turchiuli¹,²,³</td>
<td>¹AgroParisTech, Massy, France ²INRA, Massy, France ³CNAM, Massy, France ⁴Malvern Instruments SA, France</td>
</tr>
<tr>
<td>37</td>
<td>A combined experimental and modelling investigation of the impact of powder properties</td>
<td>C.A. Kastner, G.P.E. Brownbridge, S. Mosbach, M. Kraft</td>
<td>University of Cambridge, United Kingdom</td>
</tr>
<tr>
<td>38</td>
<td>A validated flowsheeting tool for the study of industrial granulation processes</td>
<td>I.M. Cotabarren, D.E. Bertín, V. Bucalá, J. Piña</td>
<td>Universidade Nacional del Sur, Bahía Blanca, Argentina</td>
</tr>
<tr>
<td>39</td>
<td>Discrete Element Modelling of elastic bending of ceramic-polymer beams generated by spouted bed spray granulation</td>
<td>M.F.H. Wolff¹, V. Salikov¹, S. Antonyuk¹, S. Heinrich¹, G.A. Schneider²</td>
<td>¹Institute of Solids Process Engineering and Particle Technology, Hamburg, Germany ²Institute of Advanced Ceramics, Hamburg, Germany</td>
</tr>
<tr>
<td>40</td>
<td>Movement of secondary immiscible liquid into a suspension of hydrophilic particles in a continuous hydrophobic phase</td>
<td>S.F. Islam¹, S. Whitehouse², R. Sundara², T.O. Althaus², S. Palzer³, M.J. Hounslow¹, A.D. Salman¹</td>
<td>¹University of Sheffield, UK ²Nestlé Product Technology Centre, York, UK ³Nestlé SA Headquarters, Vevey, Switzerland</td>
</tr>
<tr>
<td>41</td>
<td>A novel non-intrusive particle tracking measurement technique for dense granular flows</td>
<td>J. Neuwirth¹, S. Heinrich¹, M. Jacob²</td>
<td>¹Hamburg University of Technology, Germany ²Glatt Ingenieurtchnik GmbH, Germany</td>
</tr>
<tr>
<td>42</td>
<td>Textural analysis of the surface of a bed of powder as a tool to investigate agglomeration mechanisms</td>
<td>C. Codemo¹, R. Artoni², N. Realdon¹, E. Franceschinis¹, A.C. Santomaso²</td>
<td>¹Dept. of Pharmaceutical and Pharmacological Sciences, Padova, Italy ²Dept. of Industrial Engineering, Padova, Italy</td>
</tr>
<tr>
<td>Poster number</td>
<td>Poster Topic</td>
<td>Presenters</td>
<td>Group</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>43</td>
<td>A combined experimental and computational analysis of the effect of powder and granule properties on tablet compaction characteristics</td>
<td>S. Oka<sup>1</sup></td>
<td>1 Rutgers, The State University of New Jersey, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O. Kaspar<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. Tokarova<sup>2</sup></td>
<td>2 Institute of Chemical Technology, Prague, Czech Republic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Barrasso<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Chaudhury<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Sowrirajan<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. Stepanek<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Ramachandran<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Development and evaluation of a novel pharmaceutical excipient by co-processing of microcrystalline cellulose and magnesium silicate by roller compaction</td>
<td>O.M. Bouder<sup>1</sup></td>
<td>1 University of Jordan, Amman, Jordan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I.S. Rashid<sup>2</sup></td>
<td>2 The Jordanian Pharmaceutical Manufacturing Co., Naor, Jordan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.M. Al Omari<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.A. Badwan<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H.S. Al Khatib<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Agglomeration of particles in oil-continuous suspensions driven by liquid bridges</td>
<td>A.A. Negreiros<sup>1</sup></td>
<td>1 University of Sheffield, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T.O. Althaus<sup>2</sup></td>
<td>2 Nestlé PTC York, UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Niederreiter<sup>3</sup></td>
<td>3 Nestlé SA, Vevey, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Palzer<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.J. Hounslow<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.D. Salman<sup>1</sup></td>
<td></td>
</tr>
</tbody>
</table>
POSTER TIMETABLE

Day 2 – Thursday 27th June (Main hall)

<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Implementation of small scale continuous wet granulation in the pharmaceutical industry</td>
<td>J. Robertson</td>
<td>GlaxoSmithKline R+D, Harlow, UK</td>
</tr>
</tbody>
</table>
| 47 | Lipid microspheres manufactured by prilling process: From raw materials properties to the final product | F. Séquier \(^1,2\)
V. Faiivre \(^1\)
G. Daste \(^2\)
M. Renouard \(^2\)
S. Lesieur \(^1\)
1 University Paris-Sud, Châtenay Malabry, France
2 Sanofi, Carbon Blanc Cedex, France | Otto-von-Guericke University
Magdeburg, Germany |
| 48 | Experimental and numerical investigation on the compression behaviour of tetrahedral agglomerates | P. Mueller
H. Glöckner
J. Tomas | Otto-von-Guericke University
Magdeburg, Germany |
| 49 | Stochastic Modelling of fluidised bed spray agglomeration tracking particle structure | M. Dernedde \(^1\)
M. Peglow \(^2\)
E. Tsotsas \(^3\)
1 Otto-von-Guericke University, NaWiTec, Magdeburg, Germany
2 IPT Pergande GmbH, Germany
3 Otto-von-Guericke University, Magdeburg, Germany | Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany |
| 50 | Influence of internal structure parameters and additives on the mechanical properties of spray dried granules | S. Eckhard
M. Fries | Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany |
| 51 | Granulation of ultra-fine powders: tracking changes in granular microstructure using XRCT | N.B. Davis \(^1\)
S.A. Dale \(^2\)
K. Waibel \(^1\)
J.D. Litster \(^1,2\)
1 Department of Chemical Engineering, Purdue University, USA
2 Department of Industrial and Physical Pharmacy, Purdue University, USA
3 School of Mechanical Engineering, Purdue University, USA | Otto-von-Guericke University, NaWiTec, Magdeburg, Germany |
| 52 | Evaluation of compacted preparations comprising binary mixtures of starch and magnesium silicate with model low strength water soluble drugs | F.T. Al- Akayleh \(^1\)
Z.K. Al-Qaysi \(^1\)
M.S. Shubair \(^1\)
I.S. Rashid \(^2\)
A.A. Badwan \(^3\)
1 Petra University, Jordan
2 The Jordanian Pharmaceutical Manufacturing Co. Naor, Jordan
3 Retsch Technology GmbH, Germany | Otto-von-Guericke University, NaWiTec, Magdeburg, Germany |
| 53 | Dynamic image analysis offers new applications in production and quality control | G. Beckmann \(^1\)
J. Ayar \(^2\)
1 Retsch Technology GmbH, Germany
2 Retsch UK Ltd, Castleford, UK | Johannes Gutenberg-University of Mainz, Germany
2 Hüttlin GmbH – A Bosch Packing Technology Company, Schopfheim, Germany |
| 54 | Effect of process parameters during high-shear granulation on the content uniformity of resulting low dose tablets | S. Kindgen \(^1\)
M. Knoll \(^2\)
U. Schmidt \(^3\)
J. Müller \(^2\)
P. Langguth \(^1\)
1 Johannes Gutenberg-University of Mainz, Germany
2 Hüttlin GmbH – A Bosch Packing Technology Company, Schopfheim, Germany | Johannes Gutenberg-University of Mainz, Germany
2 Hüttlin GmbH – A Bosch Packing Technology Company, Schopfheim, Germany |
| 55 | The application of a materials science-based approach for drug product design and understanding | P.A. Trusty | GlaxoSmithKline, Global Manufacturing & Supply, Ware, UK |
| 56 | Investigation of the particle surface in fluidized bed spray granulation | T. Hoffmann
A. Bück
E. Tsotsas | NaWiTec, Otto von Guericke University Magdeburg, Germany |

Updated on 7 June 2013 at 19:11 GMT
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
</table>
| 57 | Characterization of particles' motions of a granular bed in a low shear mixing device | S. Mandato¹
B. Cuq¹
T. Ruiz² | 1 U.M.R. IATE – Montpellier
France
2 U.M.R. IATE – Université Montpellier France |
| 58 | Development of a growth regime map for a novel reverse-phase wet granulation process | J.B. Wade^{1,2}
G.P. Martin¹
D.F. Long² | 1 King's College London, UK
2 Eli Lilly and Company, Indianapolis, USA |
| 59 | Quantify the influence of interparticle cohesive force on fluidization | J. Ma
D. Liu
X. Chen | Southeast University, Nanjing, P.R.China |
| 60 | Continuous melt granulation: Influence of process and formulation parameters on granule attributes | T. Monteyne¹
J.P. Remon²
C. Vervaet²
T. De Beer¹ | 1 Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
2 Laboratory of Pharmaceutical Technology, Ghent University, Belgium |
| 61 | One dimensional model for the prediction of residence time distribution granulation in a twin-screw granulator | A. Kumar^{1,2}
K.V. Gernaey³
T. De Beer²
I. Nopens¹ | 1 Dept. of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Belgium
2 Dept. of Pharmaceutical Analysis, Ghent University, Belgium
3 Technical University of Denmark, Kongens Lyngby, Denmark |
| 62 | A comparison of granule properties between impeller slash in high shear mixer and screw rotation in twin screw extruder | Z. Wang
M.J. Hounslow
A.D. Salman | University of Sheffield, UK |
| 63 | Designing fix-bed reactor for esterification using ion-exchange resin as catalyst | S. Ralebhat,
S. Boite
S.B. Shinde | Sir Parasurambhau College, Pune, India |
| 64 | Adsorption of nanoparticles on sugars using fluid bed drying | R. Shegokar^{1,2}
K.K. Singh¹ | 1 Freie Universität Berlin, Germany
2 C.U. Shah College of Pharmacy, SNDT University, Mumbai, India |
| 65 | Agglomeration of wet granular material during dense flow | N. Berger^{1,2}
E. Azema¹
F. Radjai¹
J-F. Douce² | 1 Laboratoire de Université Montpellier II, France
2 ArcelorMittal Maizières Research, Maizières-lès-Metz, France |
| 66 | Drug form kinetics as a function of high shear wet granulation captured using online Raman spectroscopy | J.R. Brown
X. Dai
A.B. Dennis
J.W. Jones
P.J. Reddy
W.E. Sinclair
P. Timmins | Bristol Myers Squibb Research & Development, Moreton, UK |
| 67 | Comparison of two different fiber optic probes for the in-line NIR based granule moisture assessment in the drying unit of a continuous pharmaceutical tabletting process | M. Fonteyne¹
J. Arruabarrena²
J. Vercruysse³
C. Vervaet³
J.P. Remon³
T. De Beer¹ | 1 Laboratory of Pharmaceutical PAT, Ghent University, Belgium
2 Universitat Autònoma de Barcelona, Spain
3 Laboratory of Pharmaceutical Technology, Ghent University, Belgium |
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
</table>
| 68 | Novel approach for interpreting powder flow behaviour using powder adhesion and cohesion plots | B. Gururajan¹
N. Sewell²
G. Reynolds² | 1<sup>AstraZeneca R&D, Mölndal, Sweden
2^{AstraZeneca R&D, Macclesfield, United Kingdom} |
| 69 | Continuous wet granulation - A robust granulation technique for challenging active pharmaceutical ingredients | I. Yadav
J. Crooks
R. Patel
J. Robertson
M. Ghirardi | GlaxoSmithKline R&D, Harlow, UK, |
| 70 | Hot-melt coating of hydrosensitive products | C. Pacheco¹
A. Khoufech¹
J. Piña²
K. Saleh¹ | 1<sup>Université de Technologie de Compiègne, France
2^{PLAPIQUI (UNS – CONICET, Bahía Blanca, Argentina} |
| 71 | Dimensional analysis of milk concentrates spraying | J. Petit^{1,4,5}
S. Méjean²
L. Galet³
P. Accart³
P. Schuck³
G. Delaplace⁴
R. Jeantet⁵ | 1<sup>Université de Lorraine, France
2<sup>Bionov, France
3<sup>Université de Toulouse, France.
4<sup>INRA, UR638, PIHM, France
5^{Agrocampus Ouest, INRA, UMR1253, STLO, Rennes, France} |
| 72 | Development of appropriate granulation techniques for a novel agrochemical granule formulation with built-in adjuvant | A. Batra
H. Dave
M. Logan
D. Linscott
D. Williams
R. Boucher
L. Liu
L. Aulisa | Dow AgroSciences, Indianapolis, USA |
| 73 | Study on the influence of granulation process parameters on tablet properties using transmission and backscattering Raman and transmission NIR | E. Peeters¹
M. Toiviainen²
J. Van Renterghem³
A.F. Silva³
M. Fonteyne³
T. De Beer³
C. Vervaet¹
J.P. Remon¹ | 1<sup>Laboratory of Pharmaceutical Technology, Ghent University, Belgium
2<sup>VTT Technical Research Centre of Finland, Kuopio/Oulu, Finland
3^{Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium} |
| 74 | Investigation into the granulation of nanoparticles using scanning electron microscopy and focussed ion beam techniques | S.J. Dempsey¹
L. Bowen²
M. Szablewski¹
D. Atkinson¹ | 1<sup>Department of Physics, Durham University, UK
2^{Durham Microscopy Facility, Durham University, UK} |
| 75 | Electrostatics effect on bed pressure fluctuation during fluidization of pharmaceutical particles | L. Benelli
C.R.F. Souza
W.P. Oliveira | University of São Paulo, Brazil |
| 76 | Optimisation of granule size in pulsed spray fluidised bed granulation using the box-behnken experimental design | H. Liu
K. Wang
W. Schindwein
M. Li | De Montfort University, Leicester, UK |
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster Topic</th>
<th>Presenters</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Study of powder extrusion on a small-scale experimental set-up: Influence of formulation</td>
<td>F. Cavaillès, F. Sardou, S. Hoppe, V. Falk</td>
<td>Université de Lorraine, Nancy, France</td>
</tr>
<tr>
<td>78</td>
<td>Using DEM as a tool for the development of population balance kernels</td>
<td>R.M. Smith</td>
<td>The University of Sheffield, UK</td>
</tr>
<tr>
<td>79</td>
<td>Scaling up of Na$_2$WO$_4$-Mn/SiO$_2$ catalyst synthesis</td>
<td>U. Simon1, M. Wiedemann1, S. Sadjadi2, S. Arndt3, O. Görke1</td>
<td>1 Institute for Material Science and Technologies, Technische Universität Berlin, Germany 2 Chair of Process Dynamics and Operation, Technische Universität Berlin, Germany 3 Department of Chemistry, Technische Universität Berlin, Germany</td>
</tr>
<tr>
<td>80</td>
<td>Foam as a new binder for powder granulation: Rheology approach, granules properties and effect of gelling products</td>
<td>G. Lefebvre, D. Oulahna, A. de Ryck, A. Michrafy</td>
<td>Université de Toulouse, France</td>
</tr>
<tr>
<td>81</td>
<td>Melt granulation: Effects of operating variables on particles growth mechanisms</td>
<td>S. Veliz, I. Cotabarren, D. Bertín, J. Piña, M. Pedernera, V. Bucalá</td>
<td>PLAPIQUI, Universidad Nacional del Sur, Bahía Blanca, Argentina</td>
</tr>
<tr>
<td>82</td>
<td>Process parameters selection for end-use products and scale-up of fluid bed wet granulation and drying</td>
<td>S. Martin1, C. Gabaude-Renou2, M. Berger3, J-R. Authelin4</td>
<td>1 SCoPT consulting, Trevoux, France 2 Sanofi, Pharmaceutical Sciences Department, Montpellier, France 3 Sanofi, Clinical & Scientific Operations, Montpellier, France 4 Sanofi, Pharmaceutical Sciences Department, Vitry-sur-Seine, France</td>
</tr>
<tr>
<td>83</td>
<td>Design space estimation of the roller compaction process</td>
<td>N. Souihi1,2, M. Josefson3, P. Tajarobi3, B. Gururajan3, J. Trygg4</td>
<td>1 Department of Chemistry, Umeå University, Sweden 2 Industrial Doctoral School, Umeå University, Sweden 3 Pharmaceutical Development, AstraZeneca R&D Malmö, Sweden</td>
</tr>
<tr>
<td>84</td>
<td>Architecture of the multiscale simulation environment for modelling of fluidized bed granulation</td>
<td>M. Dosta, S. Heinrich</td>
<td>Hamburg University of Technology, Germany</td>
</tr>
<tr>
<td>85</td>
<td>The development of a controlled release preparation comprising metronidazole and compacted hydrophilic binary polymer matrix of chitosan and xanthan gum</td>
<td>I.S. Rashid1, K.A. Alkhamis2, T.H. Altalafha1, H.A. Hassan1, A.A. Badwan1</td>
<td>1 The Jordanian Pharmaceutical Manufacturing Co., Naor, Jordan 2 Jordan University of Science and Technology, Irbid, Jordan</td>
</tr>
<tr>
<td>Poster number</td>
<td>Poster Topic</td>
<td>Presenters</td>
<td>Group</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| 86 | Assessment of single particle contact mechanisms and cohesion under controlled temperature and humidity | C.I. Haider\(^1\)
T.O. Althaus\(^2\)
G. Niederreiter\(^3\)
S. Palzer\(^3\)
M.J. Hounslow\(^1\)
A.D. Salman\(^1\) | 1 University of Sheffield, UK
2 Nestlé Product Technology Centre, UK
3 Nestlé SA Headquarters, Vevey, Switzerland |
| 87 | Critical assessment of the unified compaction curve model | J. Mosig
P. Kleinebudde | Heinrich-Heine-University, Duesseldorf, Germany |
| 88 | Flow pattern and stability analysis in pneumatic conveying of pulverized coal in an industrial-scale horizontal pipe | X. Guo
H. Lu
K. Xie
X. Gong | East China University of Science and Technology, Shanghai, China |
| 89 | Assessment of granule parameters for implementation in process monitoring and control of twin screw wet granulation using high speed imaging | A.S. El Hagrasy\(^1\)
P. Cruise\(^2\)
I. Jones\(^2\)
J.D. Litster\(^1,3\) | 1 School of Chemical Engineering, Purdue University, USA
2 Innopharma Labs, Sandyford, Ireland
3 Department of Industrial and Physical Pharmacy, Purdue University, USA |
| 90 | Semi-solid binder dispersion in detergent agglomeration | M. Balashanmugam\(^1\)
A.E. Bayly\(^2\)
Y.S. Cheong\(^2\)
M.J. Hounslow\(^1\)
A.D. Salman\(^1\) | 1 University of Sheffield, UK
2 Procter and Gamble, Beijing Innovation Centre, China |

Updated on 7 June 2013 at 19:11 GMT