Diagnostic accuracy of individual characteristics following minor head injury in children: A Systematic Review

A. Pickering, S. Harnan, A. Pandor, S. Goodacre
SchARR, University of Sheffield

Introduction:
Clinical decision rules for minor head injury patients incorporate a number of individual characteristics grouped together to provide a tool for identifying those at risk of intracranial injury. We performed a systematic review of the individual characteristics that contribute to clinical decision making and calculated likelihood ratios of significance for each. These data were then compared with current clinical decision rules.

Methods:
Potentially relevant studies were identified by an electronic search of key databases. Papers in English were included with a cohort of more than 20 patients and over 50% being children having suffered a minor head injury (GCS 13-15). Studies described any characteristic to identify patients at risk of intracranial injury or neurosurgery and had to include a proportion of the cohort undergoing imaging. Titles, abstracts and full-text articles were independently screened for relevance by two sets of paired authors (one clinician and one reviewer in each pair) with any discrepancies about inclusion being discussed and resolved. A QUality Assessment of Diagnostic Accuracy Studies (QUADAS) checklist was compiled and each article scored appropriately.

Results:
In total 29 studies were identified of which two reported only on children, two on infants and children and one on adolescents only. Cohorts ranged from 39 to 31694 subjects. Prevalence of neurosurgery ranged from 0.6 to 8.5% (median 3.2%; IQR: 0.8 to 6.0%) and prevalence of intracranial injury ranged from 0.58 to 54.6% (median 12.1%, 8.5%; IQR: 0.8 to 6.0%) and prevalence of neurosurgery ranged from 0.6 to 10%. Fall from a height, visual symptoms, bicycle MVA, any seizure, loss of consciousness, vomiting, severe or persistent headache, anterograde or retrograde amnesia, GCS less than 15 and radiological skull fracture all moderately increased the likelihood of intracranial injury (PLR to 2.5). Only two studies report data for neurological deficit and examined a limited range of characteristics. In infants, a depressed skull fracture or focal neurological deficit indicate a substantially increased risk of intracranial injury, while GCS <15 and any loss of consciousness indicate a moderately increased risk.

Conclusion:
Overall the CHALICE and NEXUS II rules appeared to be most consistent with the findings of our meta-analysis, in terms of including criteria that are diagnostically useful and excluding those that are not. Our meta-analysis supported the use of loss of consciousness, GCS less than 15, skull fracture, vomiting and headache (if severe or persistent), but suggested that scalp laceration/haematoma or an undefined headache were of little diagnostic value.

This project was funded by the NIHR Health Technology Assessment programme and will be published in full in the Health Technology Assessment journal series. Visit the HTA programme website for more details www.hta.ac.uk/link to page project. The views and expressions therein are those of the authors and do not necessarily reflect those of the Department of Health.