Undergraduate Courses in Mathematics & Statistics.
Every year, around 200 students decide to join one of the 16 undergraduate degree programmes we run here in University of Sheffield’s School of Mathematics and Statistics. We’re delighted that you’re thinking about becoming one of them. Our courses are taught by more than 60 academic staff. Most of them are active researchers, dedicated to sharing their expertise in pure maths, applied maths, probability, statistics and computer programming with you. They’ll also help you develop skills to improve your career prospects – team work, problem solving, presenting findings – and they’ll be on hand to provide any support and guidance you need between now and graduation.

We know our students have a great time when they get here. The University of Sheffield is number one in the Russell Group for student experience, and our department is based in the Hicks Building, right next to the UK’s best Students’ Union and one of the UK’s top library services. We’re only a short walk from the University’s award-winning student accommodation, close to the city centre’s shops, culture and nightlife, and a few minutes from the spectacular Peak District National Park. Over the next few pages you can find out what makes Sheffield a great place to study mathematics and statistics. Our contact details are on the back if there’s anything else you need.

Professor Caitlin Buck
Head of Undergraduate Recruitment and Admissions
School of Mathematics and Statistics
University of Sheffield

Professor Nick Monk
Head of School (from January 2018)
School of Mathematics and Statistics
University of Sheffield

Contents

4 Studying maths at Sheffield
6 Degree programmes
8 Degree structure and content
9 Year one
10 Year two
12 Years three and four
14 After you graduate
16 Life in Sheffield
18 Research
19 Entry and application
The world of mathematics is vast. Its history stretches back to the Ancient Greeks and beyond. It’s sparked intellectual revolutions with the likes of Newton and Leibniz. In the last hundred years, maths has moved so fast that now it underpins just about every aspect of modern life.

That makes maths a complex world too. The Poincaré conjecture and Fermat’s Last Theorem have only been proved in the last few years, after puzzling some of the world’s greatest minds for generations. Every mathematical challenge is an opportunity to think creatively and explore the intrinsic beauty of numbers and formulae, symmetry and chaos.

Our degree programmes are designed to equip you with the tools that every mathematician needs to navigate this world. Algebra and calculus will set you on the right track, then you can choose the subjects that interest you the most. With topics ranging from codes and cryptography to game theory, mathematical biology to medical statistics, and signal processing to fluid mechanics, you’ll have lots of freedom, choice and flexibility.

You can even spend part of your degree in another country, or take a dual degree and study another subject such as accounting, computing, economics, management or philosophy. In a subject with the history, scope and significance of maths, there’s no limit to what you can do.
Maths is about solving problems. We’ll help you to develop an even deeper understanding of fundamental mathematical principles, and with this knowledge you’ll learn how to express real-world problems through mathematics. Employers value our students’ ability to break a problem down, analyse the component parts, work out the best approach, and reach a solution in a clear, precise and logical way, while accounting for any assumptions or estimates made along the way.

It’s also essential for mathematicians to be able to explain how they solved a problem and why they approached it the way they did. We teach our students to work with others on real maths and stats challenges and get them to explain their solutions to staff, students and non-experts. They also get the opportunity to teach mathematics in local schools, to really put their communication skills into practice. Towards the end of your studies, research projects will give you the chance to tie all of these skills together, as you see complex problems through from start to finish and share what you’ve learned along the way.

Lectures
Expert mathematicians will explain essential concepts and the latest research in pure maths, applied maths, probability and statistics. The further you go in your degree, the more topics you have to choose from and the more opportunities you have to specialise.

Tutorials
Work in small groups as staff help you work through complex mathematical problems. This is a great chance to see how the ideas in your lectures work in practice, ask questions about areas you’re struggling with, and get extra support from our friendly academic staff.

Practicals
For some of your modules, you’ll have practical sessions to teach you how to use specialist mathematics software. This can include the statistical modelling package R, and the programming language Python – both useful skills to have on your CV.

Research projects
You’ll get to do mini-projects and group projects from the first year of your degree. If you take an MMath degree, you’ll get to do another, even bigger project in your fourth year. There are also opportunities to spend a summer working with one of our academic staff on their area of expertise, via the Sheffield Undergraduate Research Experience scheme.

“By studying a mathematics degree, I’ve developed my analytical and problem solving skills, whilst also following complex logic. I’ve learnt about some fascinating areas of mathematics too!”
Elizabeth Sheppeck, BSc Mathematics
Guardian University Awards: Teaching Excellence
A couple of years ago, we asked a radical question: what if we scrapped lectures? We decided to take a “flipped learning” approach to the teaching we run for engineering students at the University of Sheffield, putting an emphasis on spending as much time as possible with students in small groups. Lectures were replaced with 10-minute videos, online quizzes and twice as many tutorial sessions. Students’ marks improved as a result and we were nominated in the Teaching Excellence category at the Guardian University Awards.

Sheffield University Maths Society: SUMS
Our student society organises lots of activities, from fascinating maths talks to nights out and trips abroad. They’re also a great source of extra support. Through their Bigs and Littles scheme, new students are paired with a second or third year mentor to make sure they get settled in.

Find out more about SUMS in ‘Student Views’.

International students
Students come from all over the world to study maths in Sheffield. Currently, we have students from countries including Kenya, Oman, Malaysia and China. Find out more about the support available for international students, as well as visa, entry and English language requirements at www.sheffield.ac.uk/international.

Mature students
Around 15% of University of Sheffield students are 21 or over when they start their degree. Mature students should still apply through UCAS, but if there is anything else you need to know about support for mature students, there is lots of information at www.sheffield.ac.uk/mature.

Special requirements
Students come to Sheffield in lots of different circumstances. Let us know if there is any additional support you might need from us – our contact details are on the back.

“What I’ve really enjoyed about my degree at Sheffield has been the ability to explore a large variety of topics and areas of mathematics, to be able to get a strong idea of where my specific interests lie.”
Declan Maurice, MMath Mathematics
Our degree programmes

Single Honour Degrees

We have a range of options for students who want to study straight Mathematics. You can do a course covering all aspects of the subject with the option to specialise later or you can choose a degree which focuses your study more on one area. Most of these courses have three-year (BSc) and four-year (MMath) versions available.

Mathematics BSc (3 year)
This degree provides you with a thorough grounding in Mathematics, and emphasizes clarity of thought, powers of reasoning and abstraction, and mathematical understanding. The BSc degree allows a wide choice within and between the fields of Pure Mathematics, Applied Mathematics and Probability and Statistics. In your first year you can also study an unrestricted subject allowing you to pick up a language, try something new or pursue an alternative area of interest.

Mathematics MMath (4 year)
The MMath is our flagship course for those thinking of a career as a professional mathematician, for example in a university or in industry. MMath students and BSc students study identical courses for the first two years, after which the MMath students progress to more advanced material. A major component of the final year is spent working on a research project alongside a member of academic staff on their particular area of expertise.

Mathematics and Statistics (3 or 4 year)
This degree is intended for those who wish to specialise in Statistics, whilst still developing their broader mathematical understanding. You will learn statistical data analysis and computing skills, and have the opportunity to apply what you have learned in project work. You will have the flexibility in each year to choose further modules in Pure Mathematics, Applied Mathematics and Probability and Statistics, or in an unrestricted subject.

Financial Mathematics
This is one of our most popular new degrees. It was developed specifically to produce graduates with appropriate mathematical and financial skills to enter a career in the expanding financial sector, where Mathematics plays an important role. This course is taught in conjunction with the Management and Economics departments and by Mathematics staff with experience in Financial Mathematics.

Studying with a year in another country

If you’d like to travel as part of your degree, we work with universities across Europe, as well as top institutions in English speaking countries, to offer our Study in Europe and Year Abroad options. This gives you the chance to spend a year of your course studying overseas and keep up/learn a foreign language if you wish.

Mathematics with a Year Abroad (4 year)
The first and second year of this degree run parallel to the BSc and MMath Mathematics courses. The third year is spent studying in the Mathematics department at one of our partner institutions in Australia, Canada, Hong Kong, New Zealand, Singapore or the United States. Students return to Sheffield for the fourth year to study advanced topics and complete a research project.

Mathematics with French/German/Spanish Language
In the first, second and fourth years of these degrees you will spend two-thirds of your time studying Mathematics and Statistics and one-third of your time studying a language in our Modern Language Teaching Centre. Your third year will be spent studying Mathematics at one of our European partner institutions of your choosing. You will need to have an ‘A’ level in the appropriate language. The courses in year four lead to the FLAW (Foreign Languages at Work) qualification, which leads to a qualification from the London Chamber of Commerce and Industry Board (LCCIB). You will also complete a research project in your fourth year.

Mathematics with Study in Europe
The principal difference between this course and Mathematics with a language is that you are not restricted to French or Spanish but can also study languages such as Italian, Dutch, Portuguese or Swedish. Due to the flexible degree structure, it is not compulsory to spend a third of your time on language study in the second and fourth years. You will need to have an AS Level in your chosen language or a closely related one (for example: Spanish for Portuguese, or German for Dutch). The third year is spent at one of our European partner institutions of your choosing where you will study Mathematics in the language of the country concerned.

“My year abroad was a great opportunity for me to develop my independence and to embrace a new and unfamiliar culture.”
Annabelle Sheldon, MMath with a Year Abroad
Degrees with Employment Experience

Doing a work placement is a great opportunity to put your mathematics skills into practice. It’s also a good way to make contacts and, when you’re looking for a job at the end of your studies, it shows employers that you’re ready for the world of work.

You can do a year-long work placement between the second and third year of any of our BSc degrees, or between the third and fourth year of a MMath degree. This will make your whole degree programme a year longer and you’ll graduate with ‘Employment Experience’ in your degree title. You’ll work full-time for a year, and you can earn a graduate-level salary. You’ll pay reduced fees for the year but still have access to the support you need from the University.

There are no separate UCAS codes for the Degrees with Employment Experience – apply for the degree you want to do and you can decide if you want to add a work placement year after you’ve started your course. Our careers support staff can help you find the placement that’s right for you.

Dual Honour Degrees

These are very popular three-year or four-year degrees where students study two distinct subjects, usually in equal proportions. Overall, the total hours spent studying are the same as for the single honours degrees with the difference that, in a dual degree, half of the modules are in Mathematics, whilst the other half are in the second subject. In this way, Mathematics can be combined with a variety of subjects, such as Accounting and Financial Management, Computer Science, Economics, Business Management, and Philosophy. You take core mathematical modules and those modules of Mathematics which are complementary to their dual subject. Four year degrees incorporate advanced modules and a final year research project in the other subject. Whilst studying, you will obtain a deeper understanding of the role Mathematics plays in your chosen combined subject.

“For my placement year I worked for NHS England as an Operational Research Analyst. It was a challenging year but I would recommend a year of employment experience to anyone. I was really nervous when I first started and didn’t have a clue what I was doing. But everyone was really friendly and helpful and my line manager ensured I received the training I needed.”
Sarah Brill, BSc Mathematics with Employment Experience

“My employment experience was great and it led to a graduate job which meant I could concentrate on just my degree in my final year.”
Taran Matharoo, BSc Financial Mathematics with Employment Experience
Degree structure and content

Our teaching is continually reviewed and revised to take account of new developments in the field. The academic year is divided into two semesters, each comprised of 12 weeks of teaching, followed by a revision and examination period.

The university operates a modular system which allows flexibility within the degree structure. You must take 120 credits worth of modules per year, with each individual module counting as either 10 or 20 credits. The 120 credits are usually split equally between the two semesters of the academic year.

A module typically consists of two 50 minute lectures plus one examples class per week. Examples classes meet in smaller groups than the lectures. They provide opportunities for you to try out the theory and methods presented during the lectures, to ask questions about the course, and to discuss work with fellow students. Each student is also assigned a personal tutor who is available for advice, information or assistance on a small group and one-to-one basis throughout the year.

Assessment

Certain modules have some continuous assessment and others, especially in Statistics and in Applied Mathematics, have mini-projects which count as part of the assessment. Otherwise, most assessment is by examinations which take place in January/February and May/June, at the end of each semester. The first year examinations do not contribute to the final degree classification, though they must be passed if students are to proceed to the second year and beyond. All subsequent examinations count towards the final degree classification.

• Flexible degree structure
• Wide choice of modules
• No prior knowledge of mechanics, statistics, or decision maths assumed
• Problem solving classes
• Excellent personal tutorial system

“Each lecturer is so passionate about their area of Maths that you can’t help but feel more passionate about it too! Through telling us about different internships or work experience projects SoMaS staff have shown me that Maths is needed in so many different types of jobs which makes me very excited for the future.”
Georgina Lambert, MMath Mathematics with French
Year One

Single honours Mathematics students must take the modules listed here, along with 20 credits of unrestricted modules, which may be from outside Mathematics and Statistics. Among the unrestricted modules on offer is Mathematical Investigation Skills, covering mathematical computing and writing skills, and group investigation. Dual honours students typically take a selection of these modules, including the core mathematics modules, with the remainder of their course being composed from their dual subject.

<table>
<thead>
<tr>
<th>Core Mathematics (40 credits)</th>
<th>Sets and logic, calculus, complex numbers, differential equations, calculus with several variables, matrices, coordinate geometry, links between geometry and algebra.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers and Groups (20 credits)</td>
<td>Introduction to the language of university mathematics, elementary number theory, introduction to group theory and the study of symmetry.</td>
</tr>
<tr>
<td>Vectors and Mechanics (20 credits)</td>
<td>Theory and applications of vectors. Applying Newton’s laws of motion to particle models in areas such as sport, rides at theme parks and oscillation theory.</td>
</tr>
<tr>
<td>Probability and Statistics (20 credits)</td>
<td>Introduction to the theory of probability, including applications to practical examples. Development of the theory of statistical inference.</td>
</tr>
</tbody>
</table>
Year Two

Second year courses build on the material of those in the first year to develop a powerful toolbox of techniques and ideas, many of which can be immediately applied to interesting developments. Others are developed further and used in third and fourth year courses. There is a small compulsory core, and a choice of options in pure mathematics, applied mathematics, and probability and statistics. There are modules which emphasise transferable skills, which are of use outside of mathematics as well as within the subject. You may take up to 20 credits of unrestricted modules, including modules from different subjects, and the Career Development Skills module.

Dual honours students will generally take 60 credits of Mathematics and Statistics modules in the second year, with the remaining half of the modules coming from their dual subject.

<table>
<thead>
<tr>
<th>Core Mathematics (20 credits)</th>
<th>Mathematics Options (10 or 20 credits each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Calculus and Linear Algebra</td>
<td>Algebra</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
</tr>
<tr>
<td></td>
<td>Differential Equations</td>
</tr>
<tr>
<td></td>
<td>Statistical Inference and Modelling</td>
</tr>
<tr>
<td></td>
<td>Mechanics and Fluids</td>
</tr>
<tr>
<td></td>
<td>Probability Modelling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transferable Skills Options (10 or 20 credits each)</th>
<th>Scientific Computing and Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability and Statistics in Society</td>
<td></td>
</tr>
<tr>
<td>Career Development Skills</td>
<td></td>
</tr>
</tbody>
</table>
“I really enjoy living in Sheffield as the city has a lot of great things to get involved with no matter what you're interested in. The course allows you to choose modules from various aspects of maths, meaning that you can structure your degree so that you can learn the areas you find most interesting.”

Matt Tate, BSc Mathematics
Years Three and Four

In the third year and possibly fourth year of your degree, you will have the opportunity to focus on the subjects that interest you most, and there is a very wide range of possibilities to choose from. Students take around 12 topics a year in their third and fourth years, including project work. A selection of current third and fourth year modules is listed below. Some of these are based around the research topics of staff members and are therefore subject to change in order to keep abreast of current developments.

Some examples of current 3rd and 4th-year modules

- Topics in Number Theory
- Metric Spaces
- History of Mathematics
- Codes and Cryptography
- Differential Geometry
- Combinatorics
- Graph Theory
- Knots and Surfaces
- Financial Mathematics
- Practical and Applied Statistics
- Sampling Theory and Design of Experiments
- Time Series
- Introduction to Relativity
- Waves
- Mathematical Methods
- Continuum Mechanics
- Undergraduate Ambassadors Scheme
- Group Project
- Galois Theory
- Algebraic Topology
- Groups and Symmetry
- Analytical Dynamics and Classical Field Theory
- Commutative Algebra
- Functional Analysis
- Bayesian Statistics
- Stochastic Processes and Finance
- Computational Inference
- Optics and Symplectic Geometry
- Linear Models
- Medical Statistics
- Multivariate Data Analysis
- Magnetohydrodynamics
- Operations Research
- Differential Equations
- Signal Processing
- Mathematical Biology
- Fluid Mechanics I
- Advanced Fluid Mechanics

“I’ve really enjoyed completing my fourth year project as it’s given me a chance to learn about an area of mathematics I wouldn’t normally find out about. It’s given me an opportunity to develop my research skills and to work closely with a supervisor who is an expert in the field.”

Sam Hayes, MMath
Mathematics
Project work

Project work forms an important part of our teaching. The topics are very varied and most tie in to active research interests of the project supervisor, giving you the opportunity to gain an insight into the current research in the topic concerned. It is also possible to propose a project topic of your own. Fourth year students will spend a third of the year on a major project, which includes training in mathematical report writing and presentation skills.

Some examples of past 4th-year projects

- Helioseismology – unveiling secrets of the Sun
- Mathematical analysis of games such as NIM
- A comparison of a storm surge model data with high frequency radar measurements
- Penrose’s non-repeating tilings of the plane
- Introduction to space plasma physics
- Data mining in credit card transactions
- Cosmology – the evolution of the universe
- Black holes
- Elliptic curves used in the proof of Fermat’s Last Theorem

Flexibility

Sometimes a subject is not quite what a student expected, and a change of degree course seems sensible. This is often possible within the first three weeks of arriving in Sheffield, provided your new course is not full and you are qualified for it. It may also be possible to change at the end of the first year provided the modules you have studied are adequate preparation for the second year of your new course. Changes between dual honours degrees and single honours Mathematics are not uncommon. Additionally, each semester you have the first three weeks to swap between individual modules if you wish to change your initial choice.

“My final year project is on error correcting codes. For example, if you put a scratched CD into the computer, the computer can allow for some errors in the data and correct itself. The same principle applies to data passing between satellites – small errors can be detected and adjusted. It all ties in with number theory and the sort of beautiful, clever Maths which really fascinates me.”

Joel Gore, MMath Mathematics with French
After you graduate

“Learning how to apply mathematical techniques to other disciplines was a real eye opener, and made me realise what a range of opportunities there is for people with mathematical skills... I’ve also seen how maths and statistics can play a key role in virtually all disciplines, from climate science to public health to politics. It’s not just finance and accounting!”

David Irons, MMath Mathematics

Find out more about our alumni in ‘Student Views’

Some recent graduate destinations:

- Deloitte & Touche
- KPMG
- PricewaterhouseCoopers
- GCHQ
- British Airways
- European Space Agency
- Barclays subsidiary, Barcelona
- MSc in Operations Research
- Teacher training
- Ford in Köln, Germany
- Dorset Software
- Advertising executive

Our graduates get excellent jobs

Mathematics graduates are highly sought after in many different areas of employment, and have good salary prospects. A recent study conducted by economists at the University of Swansea, showed that Mathematics and Computing degrees make the biggest difference to lifetime earnings.

Many of our graduates go into the financial services industry – accounting, actuarial work, insurance, the City and so on. The jobs aren’t always in the UK – for example recent graduates have gone on to work in Spain, the Netherlands, and Germany.

Around 10% of our graduates start careers in computing, software engineering, information technology or in less easily categorized research positions in industry. A number of our graduates teach in schools. Mathematics graduates are scarce in teaching, and there are financial incentives during training and excellent career prospects.

Some of our graduates go on to further study, to advanced courses giving them specialist training in areas related to Mathematics such as operations research or systems engineering, often leading to higher degrees. Others go for PhDs in Mathematics, Statistics or more applied areas such as engineering or science.

A proportion of our graduates use the skills they have gained in careers not directly related to Mathematics. Examples are publishing, personnel management, and advertising.

The University of Sheffield Careers Service has a specialist mathematics advisor to provide guidance and support to our students. The service also arranges employer presentations and careers fairs, as well as CV workshops, interview practice and courses to enhance transferable skills.

94% of 2015 graduates in work or further study six months after graduation.

Destinations of Leavers from Higher Education Survey
Working in partnership

Sajni Malde (pictured) graduated from our BSc Economics and Mathematics course in 2014, but she continues to work with some of our academics as a Knowledge Transfer Partnership Associate at the civil engineering and environmental hydraulics consultancy HR Wallingford.

The company uses mathematical modelling in lots of different contexts, from flood and water management to port and harbour design. This led to HR Wallingford entering into a partnership with our department where, for the last 15 years, academics have been pioneering statistical methods for analysing uncertainty in complex mathematical models.

In her role, Sajni has been developing software so that statistical methods developed by Sheffield academics can be applied to HR Wallingford’s waves and coastal flood models. She’s also being trained in project management and is working towards an MPhil postgraduate degree, under the supervision of our Professor Jeremy Oakley.

“I have learnt a lot about earth sciences and how the earth is modelled in computers. This has allowed me to apply the statistics I learnt during my time in Sheffield to study the uncertainties that come from using computers to simulate the real world... I now get invited to talk at international conferences, at university seminars, and at public lectures. I have been able to travel the world to present my research and now the international community is realising the value of statisticians in earth science departments.”

Lindsay Lee, BSc Mathematics, PhD Probability and Statistics Research Fellow, University of Leeds
Life in Sheffield

Sheffield’s got it all: groundbreaking annual festivals, galleries with links to the Tate and the V&A, a world-famous theatre scene and the biggest indie cinema outside London. More than a third of the city is inside the Peak District National Park, the first national park to be established in the UK.

Sheffield is a green, friendly and affordable place where you’ll find incredible bars, restaurants, clubs, and sports facilities, both on and off campus.

“The past two years have been the happiest years of my life. I couldn’t think of a better place to be a student.”
Bethany Darke, BSc Mathematics

“There is so much going on at Sheffield. No matter what your interest is, you can pursue it.”
Joe Middleton, BSc Mathematics

Students’ union

Our Students’ Union has a thriving nightlife, countless cultural events and hundreds of student societies. It’s not surprising that it’s regularly been rated as the best Students’ Union in the country.

The Students’ Union is also home to the Student Advice Centre and the Student Services Information Desk, while the university provides health and wellbeing support through the University Health Service and the University Counselling Service.

Many of our students join SUMS, the Sheffield University Maths Society – you can read more about SUMS in our ‘Student Views’ review.

The UK’s best Students’ Union.
Accommodation

University accommodation is another great place to meet new friends when you arrive. We offer a range of high quality room types, affordable rents and three fantastic locations to choose from, all in walking distance of campus.

Your accommodation includes your bills, free internet and contents insurance. You’ll also benefit from Residence Life events, sports activities and support from our Residence Mentors.

International students

There is lots of support for international students when they come to Sheffield. You can be picked up from Manchester airport when you arrive and take part in a range of activities to help you get to know the city, the University and other students.

The University’s Student Services Information Desk can help with any academic, financial, personal, or social issues, with specially trained immigration advisers. Find more information at www.sheffield.ac.uk/international.

1st for accommodation.
Most academics in the School of Mathematics and Statistics are active researchers working on world-class research projects. Our staff have made important contributions to many areas across pure and applied mathematics, and probability and statistics, including algebraic geometry, topology, solar physics and statistics. Here are a few examples of our work.

89% of research is world-leading or internationally excellent. Research Excellence Framework

Topology is an area of pure mathematics concerned with the properties of space that are preserved under continuous deformations. The idea is that some problems don't depend on the exact shape of an object, but on more general features, such as how many “holes” it has. This photo was taken at the 100th meeting of the Transpennine Topology Triangle, a joint seminar series run by leading topology experts at the universities of Leicester, Manchester and Sheffield. It’s a key focal point for topology research in the UK.

Our statisticians helped develop a series of radiocarbon calibration curves that allow scientists and archaeologists to precisely date discoveries. They also help reduce uncertainty around the timing of major events in history, including the development of plants, humans and other animals. One of the curves was used to date the bones of Richard III, which were famously found beneath a Leicester car park, as well as mammoths preserved in Siberia. Image: The University of Leicester.

Professor Shaun Quegan is working with the European Space Agency and Natural Environment Research Council on a €200 million satellite mission. The project will use P-band synthetic aperture radar in space for the first time, to provide accurate global maps of how much carbon is stored in the world’s forests. The data generated will be useful for carbon trading, forest resource management and prospecting for water in arid regions. It will also provide credible figures for treaties aimed at reducing carbon.
Entry Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Years</th>
<th>Entry Qualifications</th>
<th>UCAS Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>4</td>
<td>A in Maths plus AA</td>
<td>G103 MMath/Math</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>G100 BSc/Math</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>G112 BSc/Math</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>4</td>
<td>A in Maths plus AA</td>
<td>G110 MMath/Math</td>
</tr>
<tr>
<td>Mathematics with Study in Europe</td>
<td>4</td>
<td>A in Maths plus AB + AS foreign language</td>
<td>G102 MMath/Eur</td>
</tr>
<tr>
<td>Mathematics with a Year Abroad</td>
<td>4</td>
<td>A in Maths plus AA</td>
<td>G106 MMath/Math</td>
</tr>
<tr>
<td>Mathematics with French Language</td>
<td>4</td>
<td>A in Maths plus AB including named language</td>
<td>GIR1 MMath/MWF</td>
</tr>
<tr>
<td>Mathematics with German Language</td>
<td>4</td>
<td>A in Maths plus AB including named language</td>
<td>GIR2 MMath/MWG</td>
</tr>
<tr>
<td>Mathematics with Spanish Language</td>
<td>4</td>
<td>A in Maths plus AB including named language</td>
<td>GIR4 MMath/MWS</td>
</tr>
<tr>
<td>Financial Mathematics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>GN13 BSc/FinM</td>
</tr>
<tr>
<td>Computer Science and Mathematics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>GG41 BSc/ComMat</td>
</tr>
<tr>
<td>Computer Science with Mathematics</td>
<td>4</td>
<td>A in Maths plus AB</td>
<td>G4G1 MComp/ComM</td>
</tr>
<tr>
<td>Mathematics and Philosophy</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>VG51 BSc/MathPhi</td>
</tr>
<tr>
<td>Accounting and Financial Management</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>NG41 BA/AccMath</td>
</tr>
<tr>
<td>Business Management and Mathematics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>NG21 BA/ManMath</td>
</tr>
<tr>
<td>Economics and Mathematics</td>
<td>3</td>
<td>A in Maths plus AB</td>
<td>LG11 BSc/EcMath</td>
</tr>
</tbody>
</table>

Alternative qualifications

Vocational A Levels are accepted in place of undesignated A2 Levels. General Studies A2 level is accepted.

How to apply

All applications are coordinated through UCAS, the Universities and Colleges Admissions Service. Your application must be received by UCAS between 1st September and 15th January during the year before entry. We welcome deferred entry applications from those of you planning to take a year out before starting your course, and your application will be treated on an equal basis with those applying for standard entry.

When you apply you will be invited to one of our School of Mathematics and Statistics Open Days, which are held from November through to March. This gives you the opportunity to visit the School and we will have the opportunity to meet you. You will also see the accommodation and much of the University. If you are applying for one of the dual degree courses, you also have the opportunity to meet a member of staff in the relevant partner department. If you would like to see Sheffield before you apply, come to one of the University Open Days during the summer (for more information about open days see www.sheffield.ac.uk/opendays).

For qualifications other than A Level, typical offers are as follows:

Scottish Highers A Maths plus AAA, plus two advanced Highers
Irish Leaving Certificate A Maths plus ABB
International Baccalaureate 35 points including 6 in Higher level maths

University of Sheffield UCAS Code: SHEFD S18
For more details, please see our prospective undergraduate web pages at www.shef.ac.uk/maths/prospectivetug

You can also get in touch with our recruitment and admissions team.

• Admissions Hotline: 0114 222 3999
• E-mail: maths.admiss@sheffield.ac.uk
• By post:
 Miss Lesley Hudson
 Undergraduate Recruitment Secretary
 School of Mathematics and Statistics
 The University of Sheffield
 Sheffield S3 7RH
The content of our programmes is reviewed annually to make sure it’s up-to-date and relevant. This is in response to discoveries through our world-leading research, funding changes, professional accreditation requirements, student or employer feedback, outcomes of reviews, and variations in staff or student numbers.

While every effort has been made to ensure the accuracy of the information in this publication, for the reasons detailed above, changes may need to be made to modules, programmes, entry requirements and fees between the date of this publication and the start of your programme.

This publication is correct as at the time of print, but please see www.sheffield.ac.uk/maths for the most up-to-date information about these programmes.