Towards a step change in the economics of titanium alloys for the automotive sector

Challenges and innovations in Automotive Engineering
Thursday 28th April 2016
The AMRC Knowledge Transfer Centre

Martin Jackson
Department of Materials Science and Engineering
The University of Sheffield
martin.jackson@sheffield.ac.uk
Titanium alloy usage today
Current processing of titanium alloys

Development of disruptive solid-state powder manufacturing technologies.
Researchers

- **Dr Luke Marshall:** Designing novel Ti alloys for continuous rotary extrusion
- **Dr Ben Thomas:** Continuous extrusion of Ti alloy powder into wire/springs
- **Mark Richardson:** Property evolution during forging of near beta Ti alloys
- **Nick Weston:** Exploitation of spark plasma sintering of Ti alloy powders
- **Graham Richards:** Alpha case formation in Ti-6-4 alloy sheet during DBSPF
- **Oliver Hatt:** Tool/workpiece interactions during machining of Ti alloys
- **James Pollard:** Texture prediction during direct extrusion & HT of Ti alloys
- **Adam Cox:** High performance machining & fatigue of beta Ti alloys
- **Lyndsey Benson:** Direct reduction of novel Ti alloys from synthetic rutile
- **Emma Calvert:** Development of forging & aging of Ti alloys from powder
- **Maureen Aceves:** Micro-milling of alpha Ti alloys for surgical instruments
- **Jacob Pope:** Diffusion bonding & CRF of Ti alloy powder preforms
- **Nayden Matev:** Fatigue limiting damage during machining of Ti alloys
- **Sarah Smythe:** Continuous extrusion of Ti powder into WAAM feedstock

Industry Sponsors & Collaborators
Low cost titanium alloy projects

1. Production of titanium alloys directly from rutile

2. **TWISTER**: Titanium Wire for Innovative Spring Technologies and Emissions Reduction

3. **FAST-Forge**: From rutile sand to novel titanium alloy aerospace component in 3 steps
Low cost titanium alloy projects

1) Production of titanium alloys directly from rutile using the FFC process

Low cost titanium alloy developments

2) **TWISTER**: Titanium Wire for Innovative Spring Technologies and Emissions Reduction

[Diagram and images of TWISTER process and titanium wire]

Thomas, B.M., Derguti, F., Jackson, M.; UK Patent Application No.1421818.4
- Manufacture of metal particles (Ti Continuous Rotary Extrusion).
Low cost titanium alloy developments

Titanium Today, July 2013

November 2011
3) **FAST-Forge** – From rutile sand to novel titanium alloy aerospace component in 3 steps

STEP 1:
- Alternative Extraction Method
 - Rutile Ore
 - Titanium Alloy Powder

STEP 2:
- Shaped Field Assisted Sintering Technology
 - Optimised Shape Preform Billet

STEP 3:
- One-Step Forging
 - Near Net-Shape Component
Low cost titanium alloy developments

Low cost titanium alloy developments

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>0.2% Proof (MPa)</th>
<th>UTS (MPa)</th>
<th>Elongation (%)</th>
<th>Red. Of Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST Centre Axial</td>
<td>815</td>
<td>965</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>810</td>
<td>965</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>FAST Centre Axial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td>825</td>
<td>970</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAST Edge Axial</td>
<td>820</td>
<td>965</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAST Edge Radial</td>
<td>810</td>
<td>955</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional Billet</td>
<td>865</td>
<td>980</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>Sample 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>885</td>
<td>1000</td>
<td>16</td>
<td>39</td>
</tr>
</tbody>
</table>

- Tests conducted to ASTM E8-15a by Special Testing Ltd.
- Round samples machined from bulk FAST disc with axial orientation and 16 mm gauge length x 4 mm cross-sectional area
Low cost titanium alloy developments
Low cost titanium alloy developments

950°C 0.1s⁻¹

Centre Intermediate Edge

Shaped FAST

Bulk FAST

Compression Direction

50 µm 50 µm 50 µm

Load (kN) Displacement (mm)

- 850°C - NNS FAST
- 950°C - NNS FAST
- 1050°C - NNS FAST
- 850°C - Bulk
- 950°C - Bulk
- 1050°C - Bulk
Martin Jackson
Department of Materials Science and Engineering
The University of Sheffield

martin.jackson@sheffield.ac.uk

Acknowledgements:
Lyndsey Benson
Ben Thomas
Nick Weston
Jacob Pope