Flood forecasting with uncertainty using a fully automated flood model chain: A case study for the City of Kulmbach

Md Nazmul Azim Beg¹, Jorge Leandro², Punit Bholā², Iris Konnerth², Kanwal Amin², Florian Köck³, Rita F. Carvalho¹, Markus Disse²

¹ MARE, Department of Civil Engineering, University of Coimbra, PT
² Chair of Hydrology and River Basin Management, Technical University of Munich, Germany
³ Bayerisches Landesamt für Umwelt, Germany

jorge.leandro@tum.de
Introduction/Motivation

Floods in Heinsberg, Germany, 22 May 2018. Photo: Feuerwehr Gangelt via Twitter

Floods in San Polo, Tuscany, Italy, 08 May 2018. Photo: Region of Tuscany Government

Disruption traffic

Disruption navigable waterways

Disruption City’s services...

Sewer Overflows...

Early Warning Systems

Swollen Seine river, Paris, January 2018. Photo: Julien Colin
Flood forecasting

- Bayerisches Landesamt für Umwelt
 - Flood Forecast Center

- Predicting High discharges (statistical approach)
Methodology: Flood forecasting

- Forecast flood discharges
- Forecast 2D flood extents
- Include uncertainty
- Automatic calibration

FloodEvac Tool
Methodology: Flood forecasting
Methodology: Flood forecasting

- Forecast flood discharges
- Include uncertainty
- Model Parameter
- Rainfall

FloodEvac Tool

Operational Modus

Hindcast
Methodology: Flood forecasting

- Checks observed or forecasted rainfall data
- Distribute the data within the whole catchment area considering **sequential conditional geospatial simulation**.
- Spatial resolution of 1 km x 1 km. (whole catchment as 4000 km²)

Include uncertainty

- **Rainfall**
 - \(P_1 \)
 - \(P_2 \)
 - \(\ldots \)
 - \(P_m \)
Methodology: Flood forecasting

- Sensitivity analysis on the parameters
- 8 out of 34 are selected
- Monte Carlo for generation of ensemble of models
- LARSIM Model from Flood Forecast Center – LFU

Include uncertainty

Model Parameter

Rainfall
Methodology: Flood forecasting

- forecast flood discharges
- Include uncertainty

FloodEvac Tool
Methodology: Flood forecasting

FloodEvac Tool

Operational Modus

Inclue uncertainty

Forecast flood discharges

Hindcast

<table>
<thead>
<tr>
<th>MP</th>
<th>P₁.MP₁</th>
<th>P₁.MP₂</th>
<th>...</th>
<th>P₁.MPₖ</th>
<th>P₂.MPₖ₊₁</th>
<th>P₂.MPₖ₊₂</th>
<th>...</th>
<th>Pₘ.MPₙ</th>
</tr>
</thead>
</table>
Methodology: Flood forecasting

- one year warm-up period
- forecast is repeated every hour, length of 12 hours
- 50 MP (parameter sets) and 10 P (rainfall sets)
- 25 minutes (3 core desktop in parallel)
Case study: Upper Main catchment, Kulmbach

- Germany, Bavaria
- Area = 4244 km2
- December, 2012
- January, 2011
- January, 2012
Results: flood forecasting Dec-2012
Results: flood forecasting Dec-2012
Methodology extension

\[\Delta Q \]

\begin{align*}
Q_1 & \quad Q_2 \\
Q_3 & \quad Q_4 \\
\Delta Q & \\
t &
\end{align*}

<table>
<thead>
<tr>
<th>∆Q</th>
<th>up</th>
<th>lr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Q_1</td>
<td>MP_2</td>
<td>MP_{10}</td>
</tr>
<tr>
<td>Q_1-Q_2</td>
<td>MP_1</td>
<td>MP_{10}</td>
</tr>
<tr>
<td>Q_3-Q_4</td>
<td>MP_5</td>
<td>MP_2</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Chair of Hydrology and River Basin Management
Prof. Dr.-Ing. Markus Disse
TUM Department of Civil, Geo and Environmental Engineering
Technical University of Munich
Validation: Event 1 Dec-2012

Forecast for station Ködnitz

Date and Time

Dec 12 Dec 13 Dec 14 2012

Q (m3/s)

0 20 40 60 80 100 120

Observed Data

Date and Time

Dec 12 Dec 13 Dec 14 2012

Q (m3/s)

0 20 40 60 80 100 120

Observed Data
Validation: Event 2 Jan-2011
Validation: Event 3 Jan-2012
Conclusions

• Flood forecasting with uncertainty using a fully automated flood model chain: FloodEvac tool
• A case study: City of Kulmbach
• Possible to reduce the uncertainty band in the forecasts
• Possible to improve computational time
• Validated in 3 Events
Acknowledgement

The tool is developed within the FloodEvac project funded by the Bundesministerium für Bildung und Forschung (BMBF, FKZ 13N13196 (TUM)).

First author would also like to acknowledge to QUICS project. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 607000.

Thank for your attention!