TY - JOUR T1 - Predicting physics efficiently with hybrid hardware JO - Nature Computational Science UR - https://doi.org/10.1038/s43588-025-00922-6 PY - 2025/12/10 AU - Manneschi L AU - Ellis MOA ED - DO - DOI: 10.1038/s43588-025-00922-6 PB - Springer Science and Business Media LLC Y2 - 2025/12/20 ER -