From the plough to the plate: reducing environmental impact and improving efficiency

A British bread maker has joined forces with University researchers and a leading agricultural intelligence provider, to better understand the impact its activities are having on the environment – from the plough to the plate.

Plough to Plate"It's important for bakers to know where the environmental hotspots in their supply chain are," says University of Sheffield supply chain and energy efficiency researcher, Dr Liam Goucher. "By working with us, we can help them identify those hotspots and develop targeted solutions that both reduce the impact on the environment and make them more efficient as a company."

Using real-world data ranging from the energy consumption of its ovens and mills, to the volume of fertiliser used on its farmers’ fields, members of a multidisciplinary research team are now undertaking analysis using the Supply Chain Environmental Analysis Tool (SCEnAT) developed by Professor Lenny Koh at the University’s Advanced Resource Efficiency Centre.

"This tool allows us to pin point where the weak points in a supply chain are and assess their impact across a range of environmental indicators,” says Professor Koh. Early results, which are currently being poured over by a British baking company and an independent agricultural intelligence services company.

"What makes this project especially interesting to a British baker, is that once we have identified and quantified environmental impact throughout the supply chain, the members of our multidisciplinary team are able to develop viable and sustainable interventions to address key problem areas," says Dr Liam Goucher, who has undertaken much of the original research.

Smart bread makers know that reducing energy costs, cutting back on waste, and being more efficient is good not just for the environment, but also for business.

Professor Lenny Koh

Whether it is a way to reduce the energy inputs needed to bake the more than 60 million loaves annually in a single bakery, or the development of novel seed varieties and production techniques, the Sheffield team has the intellectual resource to design these solutions.

But for biochemist, Professor Peter Horton, of the University’s Grantham Centre for Sustainable Futures, this specific piece of research has much wider implications. “We know that big challenges such as sustainable food production will not be met by research within a single discipline. That’s why we are so passionate about the integration of science, engineering and social science here at Sheffield. By creating teams like this we can not only identify the problems, we can also design the sustainable solutions,” he added.