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EXECUTIVE SUMMARY 

This paper sets out a generalised linear model (GLM) framework for the synthesis of data from 

randomised controlled trials (RCTs). We describe a common model taking the form of a linear 

regression for both fixed and random effects synthesis, that can be implemented with Normal, 

Binomial, Poisson, and Multinomial data. The familiar logistic model for meta-analysis with 

Binomial data is a GLM with a logit link function, which is appropriate for probability 

outcomes. The same linear regression framework can be applied to continuous outcomes, rate 

models, competing risks, or ordered category outcomes, by using other link functions, such as 

identity, log, complementary log-log, and probit link functions. The common core model for 

the linear predictor can be applied to pair-wise meta-analysis, indirect comparisons, synthesis 

of multi-arm trials, and mixed treatment comparisons, also known as network meta-analysis, 

without distinction.  

We take a Bayesian approach to estimation and provide WinBUGS program code for a 

Bayesian analysis using Markov chain Monte Carlo (MCMC) simulation. An advantage of this 

approach is that it is straightforward to extend to shared parameter models where different 

RCTs report outcomes in different formats but from a common underlying model. Use of the 

GLM framework allows us to present a unified account of how models can be compared using 

the Deviance Information Criterion (DIC), and how goodness of fit can be assessed using the 

residual deviance. WinBUGS code for model critique is provided. Our approach is illustrated 

through a range of worked examples for the commonly encountered evidence formats, 

including shared parameter models. 

We give suggestions on computational issues that sometimes arise in MCMC evidence 

synthesis, and comment briefly on alternative software. 
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1 INTRODUCTION TO PAIRWISE & NETWORK META-ANALYSIS 

Meta-analysis, the pooling of evidence from independent sources, especially randomised 

controlled trials (RCTs) is now common in the medical research literature. There is a 

substantial literature on statistical methods for meta-analysis, going back to methods for 

combination of results from two-by-two tables,1 with the introduction of random effects meta-

analysis2 a second important benchmark in the development of the field. Over the years 

methodological and software advances have contributed to the widespread use of meta-analytic 

techniques. A series of instructional texts and reviews have appeared,3-7 and Sutton and 

Higgins8 provide a review of recent developments.  

With some exceptions,9,10 there have been few attempts to systematise the field. A wide range 

of alternative methods are employed, mostly relevant to binary and continuous outcomes. Our 

purpose here is to present a single unified account of evidence synthesis of aggregate data from 

RCTs, specifically, but not exclusively, for use in probabilistic decision making.11 In order to 

cover the variety of outcomes reported in trials and the range of data transformations required 

to achieve linearity, we adopt the framework of generalised linear modelling.12 This provides 

for Normal, Binomial, Poisson and Multinomial likelihoods, with identity, logit, log, 

complementary log-log, and probit link functions, and common core models for the linear 

predictor in both fixed effects and random effects settings.    

Indirect and mixed treatment comparisons (MTC), also known as network meta-analysis, 

represent a recent development in evidence synthesis, particularly in decision making 

contexts.13-23 Rather than pooling information on trials comparing treatments A and B, network 

meta-analysis combines data from randomised comparisons, A vs B, A vs C, A vs D, B vs D, 

and so on, to deliver an internally consistent set of estimates while respecting the randomisation 

in the evidence.24 Our common core models are designed for network meta-analysis, and can 

synthesise data from pair-wise meta-analysis, multi-arm trials, indirect comparisons and 

network meta-analysis without distinction. Indeed, pair-wise meta-analysis and indirect 

comparisons are special cases of network meta-analysis.  

The common Generalised Linear Model (GLM) framework can, of course, be applied in either 

frequentist or Bayesian contexts. However, Bayesian Markov Chain Monte Carlo (MCMC) 

has for many years been the mainstay of “comprehensive decision analysis”,25 because 

simulation from a Bayesian posterior distribution supplies both statistical estimation and 

inference, and a platform for probabilistic decision making under uncertainty. The freely 

available WinBUGS 1.4.3 MCMC package26 takes full advantage of the modularity afforded 
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by a GLM approach to synthesis, allowing us to present a unified treatment of the fixed and 

random effects models for meta-analysis and model critique.  

In Section 2 we present the standard Bayesian MCMC approach to pair-wise meta-analysis for 

binomial data, based on Smith et al.6. We then develop our approach to assessment of goodness 

of fit, model diagnostics and comparison based on the residual deviance and the Deviance 

Information Criterion (DIC).27 In Section 3 the GLM framework for continuous, Poisson, and 

Multinomial likelihoods is developed with identity, log, complementary log-log and probit link 

functions, with an introduction to competing risks and ordered probit models. Section 3.4, on 

continuous outcomes, describes methods for “before-after” differences. All these models have 

a separate likelihood contribution for each trial arm: in Section 3.5 we develop a modified core 

model for forms of meta-analysis in which the likelihood is based on a summary treatment 

difference and its variance. Section 4 shows how different trial reporting formats can be 

accommodated within the same synthesis in shared parameter models. In Section 5 the core 

linear predictor models for pair-wise meta-analysis are shown to be immediately applicable to 

indirect comparisons, multi-arm trials, and network meta-analysis, without further extension. 

An extensive appendix provides code to run a series of worked examples, and fully annotated 

WinBUGS code is also available at www.nicedsu.org.uk. Section 6 provides advice on 

formulation of priors and a number of technical issues in MCMC computation.  

While Bayesian MCMC is surely the most convenient approach, particularly in decision 

making, it is certainly not the only one, and there have been a series of recent developments in 

frequentist software for evidence synthesis. These are briefly reviewed in Section 7, where we 

also outline the key issues in using frequentist methods in the context of probabilistic decision 

making. Section 8 provides some pointers to further reading, and more advanced extensions, 

and we conclude with a brief discussion. 

This technical guide is the second in a series of technical support documents on methods for 

evidence synthesis in decision making. It focuses exclusively on synthesis of relative treatment 

effect data from randomised controlled trial (RCTs). Issues such as evidence consistency, and 

the construction of models for absolute treatment effects, are taken up in other guides in this 

series (see TSDs 428 and 529). 
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2 DEVELOPMENT OF THE CORE MODELS: BINOMIAL DATA 

WITH LOGIT LINK 

Consider a set of M trials comparing two treatments 1 and 2 in a pre-specified target patient 

population, which are to be synthesised in a meta-analysis. A fixed effect analysis would 

assume that each study i generates an estimate of the same parameter d12, subject to sampling 

error. In a random effects model, each study i provides an estimate of the study-specific 

treatment effects δi,12 which are assumed not to be equal but rather exchangeable. This means 

that all δi,12 are ‘similar’ in a way which assumes that the trial labels, i, attached to the treatment 

effects δi,12 are irrelevant. In other words, the information that the trials provide is independent 

of the order in which they were carried out, over the population of interest.30 The 

exchangeability assumption is equivalent to saying that the trial-specific treatment effects come 

from a common distribution with mean d12 and variance 2

12
σ .  

The common distribution is usually chosen to be a normal distribution, so that 

 2

,12 12 12
~ ( , )

i
N dδ σ  (1) 

It follows that the fixed effect model is a special case of this, obtained by setting the variance 

to zero.   

Note that in the case of a meta-analysis of only two treatments the subscripts in d, δ and σ are 

redundant since only one treatment comparison is being made. We shall drop the subscripts for 

σ, but will keep the subscripts for δ and d, to allow for extensions to multiple treatments in 

Section 5.  

 

2.1 WORKED EXAMPLE: A LOGIT MODEL FOR A META-ANALYSIS OF BINOMIAL 

DATA 

Carlin31 and the WinBUGS user manual26 consider a meta-analysis of 22 trials of beta-blockers 

to prevent mortality after myocardial infarction. The data available are the number of deaths in 

the treated and control arms, out of the total number of patients in each arm, for all 22 trials 

(Table 1).  
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Table 1 Blocker example: number of events and total number of patients in the control and beta-blocker 

groups for the 22 trials.31 

study 

i 

Control Treatment 

no. of events 

(ri1) 

no. of patients 

(ni1) 

no. of events 

(ri2) 

no. of patients 

(ni2) 

1 3 39 3 38 

2 14 116 7 114 

3 11 93 5 69 

4 127 1520 102 1533 

5 27 365 28 355 

6 6 52 4 59 

7 152 939 98 945 

8 48 471 60 632 

9 37 282 25 278 

10 188 1921 138 1916 

11 52 583 64 873 

12 47 266 45 263 

13 16 293 9 291 

14 45 883 57 858 

15 31 147 25 154 

16 38 213 33 207 

17 12 122 28 251 

18 6 154 8 151 

19 3 134 6 174 

20 40 218 32 209 

21 43 364 27 391 

22 39 674 22 680 

2.1.1 Model specification 

Defining rik as the number of events (deaths), out of the total number of patients in each arm, 

nik, for arm k of trial i, we assume that the data generation process follows a Binomial likelihood 

i.e.  

 ~ Binomial( , )
ik ik ik
r p n  (2) 

where pik represents the probability of an event in arm k of trial i (i=1,…,22; k=1,2). 

Since the parameters of interest, pik, are probabilities and therefore can only take values 

between 0 and 1, a transformation (link function) is used that maps these probabilities into a 

continuous measure between plus and minus infinity. For a Binomial likelihood the most 

commonly used link function is the logit link function (see Table 3). We model the probabilities 

of success pik on the logit scale as 
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 ,1 { 1}logit( )
ik i i k k
p Iµ δ

≠
= +  (3) 

where 

 { }

1 if  is true

0 otherwise
u

u
I


= 


  

In this setup,
 i
µ  are trial-specific baselines, representing the log-odds of the outcome in the 

‘control’ treatment (i.e. the treatment indexed 1), 
,12i
δ  are the trial-specific log-odds ratios of 

success on the treatment group (2) compared to control (1). We can write equation (3) as 

 
1

2 ,12

logit( )

logit( )

i i

i i i

p

p

µ

µ δ

=

= +

  

where, for a random effects model the trial-specific log-odds ratios come from a common 

distribution: 2

,12 12
~ ( , )

i
N dδ σ . For a fixed effect model we replace equation (3) with 

 
12 { 1}logit( )

ik i k
p d Iµ

≠
= + ×   

which is equivalent to setting the between-trial heterogeneity σ2 to zero thus assuming 

homogeneity of the underlying true treatment effects. 

An important feature of all the meta-analytic models presented here is that no model is assumed 

for the trial-specific baselines
i
µ . They are regarded as nuisance parameters which are 

estimated in the model. An alternative is to place a second hierarchical model on the trial 

baselines, or to put a bivariate normal model on both.32,33 However, unless this model is correct, 

the estimated relative treatment effects will be biased. Our approach is therefore more 

conservative, and in keeping with the widely used frequentist methods in which relative effect 

estimates are treated as data (see Section 3.5) and baselines eliminated entirely. Baseline 

models are discussed in TSD5.29 

2.1.2 Model fit and model comparison 

To check formally whether a model’s fit is satisfactory, we will consider an absolute measure 

of fit: the overall residual deviance: 
res
D . This is the posterior mean of the deviance under the 

current model, minus the deviance for the saturated model,12 so that each data point should 
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contribute about 1 to the posterior mean deviance.27,34 We can then compare the value of 
res
D  

to the number of independent data points to check if the model fit can be improved. For a 

Binomial likelihood each trial arm contributes 1 independent data point and the residual 

deviance is calculated as  

 
2 log ( ) log

ˆ ˆ

     dev

ik ik ik

res ik ik ik

i k ik ik ik

ik

i k

r n r
D r n r

r n r

    −
= + −     −    

=

∑∑

∑∑

 (4) 

where rik and nik are the observed number of events and patients in each trial arm, îk ik ik
r n p=  

is the expected number of events in each trial arm calculated at each iteration, based on the 

current model, and devik is the deviance residual for each data point calculated at each iteration. 

This is then summarised by the posterior mean: 
res
D . 

Leverage statistics are familiar from frequentist regression analysis where they are used to 

assess the influence that each data point has on the model parameters. The leverage for each 

data point, leverageik, is calculated as the posterior mean of the residual deviance minus the 

deviance at the posterior mean of the fitted values. For a Binomial likelihood, letting 
ik
rɶ  be the 

posterior mean of 
îk
r , and ikdev  the posterior mean of devik, 

 �
ik ikD ik

i k i k

p leverage dev dev = = − ∑∑ ∑∑   

where � ikdev  is the posterior mean of the deviance calculated by replacing 
îk
r  with 

ik
rɶ  in 

equation (4). 

The Deviance Information Criterion (DIC)27 is the sum of the posterior mean of the residual 

deviance, 
res
D , and the leverage, pD, (also termed the effective number of parameters). The 

DIC provides a measure of model fit that penalises model complexity – lower values of the 

DIC suggest a more parsimonious model. The DIC is particularly useful for comparing 

different parameter models for the same likelihood and data, for example fixed and random 

effects models or fixed effect models with and without covariates. 

If the deviance residuals provide indications that the model does not fit the data well, leverage 

plots can give further information on whether poorly fitting data points are having a material 

effect on the model parameters. Leverage plots show each data point’s contribution to pD 
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(leverageik) plotted against their contribution to 
res
D  ( ikdev ) and can be used to check how 

each point is affecting the overall model fit and DIC. It is useful to display these summaries in 

a plot of leverageik vs wik for each data point, where ikik
w dev= ± , with sign given by the sign 

of ( )ˆik ik
r r−  to indicate whether the data is over- or under-estimated by the model. Curves of 

the form 2
x y c+ = , c=1,2,3,…, where x represents wik and y represents the leverage, are 

marked on the plots and points lying on such parabolas each contribute an amount c to the 

DIC.27 Points which lie outside the lines with c=3 can generally be identified as contributing 

to the model’s poor fit. Points with a high leverage are influential, which means that they have 

a strong influence on the model parameters that generate their fitted values.  

Leverage plots for the fixed and random effects models are presented in Figure 1 and Figure 2, 

respectively. From these the random effects model appears to be more appropriate as points lie 

closer to the centre of the plot. To further examine the model fit at individual data points, 

inspection of ikdev  for all i and k will highlight points with a high residual deviance, over 2 

say, as accounting for the lack of fit. This can help identify data points that fit poorly. 

WinBUGS will calculate pD and the posterior mean of the deviance for the current model D , 

but will not output the contributions of the individual data points to the calculations. 

Furthermore, without subtracting the deviance for the saturated model, D  is hard to interpret 

and can only be useful for model comparison purposes and not to assess the fit of a single 

model. Therefore users wishing to produce leverage plots such as those in Figure 1 and Figure 

2 need to calculate the contributions of individual studies to 
res
D  and to the leverage 

themselves. The latter needs to be calculated outside WinBUGS, for example in R or Microsoft 

Excel. The pD , and therefore the DIC, calculated in the way we suggest is not precisely the 

same as that calculated in WinBUGS, except in the case of a normal likelihood. This is because 

WinBUGS calculates the fit at the mean value of the parameter values, while we propose the 

fit at the mean value of the fitted values. The latter is more stable in highly non-linear models 

with high levels of parameter uncertainty. 

In this document we suggest that global DIC statistics and 
res
D  are consulted both to compare 

fixed and random effect models, and to ensure that overall fit is adequate. Leverage plots may 

be used to identify influential and/or poorly fitting observations. Guidance on choice of fixed 

or random effects model, an issue that is closely bound up with the impact of sparse data and 

choice of prior distributions, is given in Section 6. In network meta-analysis there are additional 
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issues regarding consistency between evidence sources on different contrasts. This is discussed 

fully in TSD4.28  

2.1.3 WinBUGS implementation and illustrative results 

Annotated WinBUGS 1.4.3 code is shown in the Appendix, for both a random effects model 

and a fixed effect model (Blocker Examples 1(c) and 1(d)). Included in the description of the 

code are some additional comments on alternative priors, and additional code that can be used 

when there are more than two treatments being compared, to rank the treatments, or compute 

the probability that each is the best treatment. We ran both fixed and random effects models, 

and some of the results, including the 
res
D  and DIC statistics, are shown in Table 2. All results 

are based on 20,000 iterations on 3 chains, after a burn-in of 10,000. 

Table 2 Blocker example: posterior mean, standard deviation (sd), median and 95% Credible interval (CrI) 

for both the fixed and random effects models for the treatment effect d12, absolute effects of the placebo (T1) 

and beta-blocker (T2) for a mean mortality of -2.2 and precision 3.3 on the logit scale; heterogeneity 

parameter σ and model fit statistics. 

 Fixed Effect model Random Effects model 

 mean sd median CrI mean sd median CrI 

d12 -0.26 0.050 -0.26 (-0.36,-0.16) -0.25 0.066 -0.25 (-0.38,-0.12) 

T1 0.11 0.055 0.10 (0.04,0.25) 0.11 0.055 0.10 (0.04,0.25) 

T2 0.09 0.045 0.08 (0.03,0.20) 0.09 0.046 0.08 (0.03,0.20) 

σ - - - - 0.14 0.082 0.13 (0.01,0.32) 

res
D * 46.8    41.9    

pD 23.0    28.1    

DIC 69.8    70.0    

* compare to 44 data points  
 

Comparing the fit of both these models using the posterior mean of the residual deviance 

indicates that although the random effects models is a better fit to the data, with a posterior 

mean of the residual deviance of 41.9 against 46.8 for the fixed effect model, this is achieved 

at the expense of more parameters. This better fit can also be seen in the leverage plots for the 

fixed and random effects model (Figure 1 and Figure 2), where two extreme points can be seen 

in Figure 1, at either side of zero. These points refer to the two arms of study 14 (Table 1) but 

are no longer so extreme in Figure 2. We would suggest careful re-examination of the evidence 

and consideration of issues such as the existence of important covariates. These and other issues 

are covered in TSD3.35 The DIC suggests that there is little to choose between the two models 

and the fixed effect model may be preferred since it is easier to interpret (Table 2). The posterior 
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median of the pooled log odds ratio of beta-blockers compared to control in the fixed effect 

model is -0.26 with 95% Credible Interval (-0.36, -0.16) indicating a reduced mortality in the 

treatment group. The posterior medians of the probability of mortality on the control and 

treatment groups are 0.10 and 0.08, respectively (with credible intervals in Table 2). Results 

for the random effects model are similar. 

 

Figure 1 Blocker example: Plot of leverage versus Bayesian deviance residual wik for each data point, with 

curves of the form x2+y=c, with c =1 (solid), c=2 (dashed), c=3 (dotted) and c=4 (dot-dashed), for the fixed 

effect model.  
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Figure 2 Blocker example: Plot of leverage versus Bayesian deviance residual wik for each data point, with 

curves of the form x2+y=c, with c =1 (solid), c=2 (dashed), c=3 (dotted) and c=4 (dot-dashed), for the random 

effects model. 

The logit model assumes linearity of effects on the logit scale. A number of authors, notably 

Deeks,36 have rightly emphasised the importance of using a scale in which effects are additive, 

as is required by the linear model. Choice of scale can be guided by goodness of fit, or by lower 

between-study heterogeneity, but there is seldom enough data to make this choice reliably, and 

logical considerations (see below) may play a larger role. Quite distinct from choice of scale 

for modelling, is the issue of how to report treatment effects. Thus, while one might assume 

linearity of effects on the logit scale, the investigator, given information on the absolute effect 

of one treatment, is free to derive treatment effects on other scales, such as Risk Difference 

(RD), Relative Risk (RR), or Numbers Needed to Treat (NNT). The computer code provided 

in the Appendix shows how this can be done. An advantage of Bayesian MCMC is that 

appropriate distributions, and therefore credible intervals, are automatically generated for all 

these quantities.   
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3 GENERALISED LINEAR MODELS 

We now extend our treatment to models other than the well-known logit link for data with a 

binomial likelihood. The essential idea is that the basic apparatus of the meta-analysis remains 

the same, but the likelihood and the link function can change to reflect the nature of the data 

(continuous, rate, categorical), and the sampling process that generated it (Normal, Poisson, 

Multinomial, etc). In GLM theory,12 a likelihood is defined in terms of some unknown 

parameters γ (for example a Binomial likelihood as in Section 2), while a link function, g(·), 

maps the parameters of interest onto the plus/minus infinity range. Our meta-analysis model 

for the logit link in equation (3), now becomes a GLM taking the form 

 , { 1}( )
ik i i bk k

g Iγ θ µ δ
≠

= = +  (5) 

where g is an appropriate link function (for example the logit link), and 
ik
θ  is the linear 

predictor, usually a continuous measure of the treatment effect in arm k of trial i (for example 

the log-odds). As before, µi are the trial-specific baseline effects in a trial i, treated as unrelated 

nuisance parameters. The δi,bk are the trial-specific treatment effect of the treatment in arm k 

relative to the control treatment in arm b (b=1) in that trial, and  

 
2

,12 12
~ ( , )

i
N dδ σ  (6) 

as in equation (1). 

Table 3 Commonly used link functions and their inverse with reference to which likelihoods they can be 

applied to. 

Link 

Link function 

( )gθ γ=  

Inverse link function 
1( )gγ θ−

=  Likelihood 

Identity γ θ Normal 

Logit ( )ln
(1 )
γ

γ−
 

exp( )

1 exp( )

θ

θ+

 Binomial 
Multinomial 

Log ln( )γ  exp( )θ  Poisson 

Complementary log-log 
(cloglog) { }ln ln(1 )γ− −  { }1 exp exp( )θ− −  

Binomial 
Multinomial 

Reciprocal link 1 / γ  1 /θ  Gamma 

Probit 1( )γ−

Φ  ( )θΦ  
Binomial 
Multinomial 
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We now turn to consider the different types of outcome data generated in trials, and the GLMs 

required to analyses them. In each case, the basic model for meta-analysis remains the same 

(equations (5) and (6)). What changes are the likelihood and the link function. In a Bayesian 

framework, we also need to pay careful attention to the specification of the priors for the 

variance parameter. Table 3 has details of the most commonly used likelihoods, link and 

inverse link functions. The formulae for the residual deviance and the predicted values needed 

to calculate pD for all the different likelihoods described are available in Table 4.  

Table 4  Formulae for the residual deviance and model predictors for common likelihoods 

Likelihood 

Model 

prediction Residual Deviance 

~ Binomial( , )
ik ik ik
r p n  

îk ik ik
r n p=  2 log ( ) log

ˆ ˆ
ik ik ik

ik ik ik

i k ik ik ik

r n r

r n r

r n r

    −
+ −     −    

∑∑  

~ Poisson( )
ik ik ik
r Eλ  

îk ik ik
r Eλ=  ( )ˆ2 log

ˆ
ik

ik ik ik

i k ik

r

r r r

r

  
− +   

  
∑∑  

( )2~ ,
ik ik ik
y N y se  

seik assumed known 
ik
y  

( )
2

2

ik ik

i k ik

y y

se

 −
 
 
 

∑∑  

, ,1: , ,1:
, ~ Multinomial( , )

i k J i k J ik
r p n  îkj ik ikjr n p=  2 log

ˆ

ikj

ikj

i k j ikj

r

r

r

  
    

  
∑∑ ∑  

Multivariate Normal 

( ),1: ,1: ( )~ ,
i k k i k k k
y N y

×
Σ

 
,1:i k
y
 

1

,1: ,1: ,1: ,1:
( ) ( )

T

i k i k i k i k

i

y y y y
−

− −∑ Σ

 

 

3.1 RATE DATA: POISSON LIKELIHOOD AND LOG LINK 

When the data available for the RCTs included in the meta-analysis is in the form of counts 

over a certain time period (which may be different for each trial), a Poisson likelihood and a 

log link is used. Examples would be the number of deaths, or the number of patients in whom 

a device failed. But, rather than having a denominator number at risk, what is supplied is a total 

number of person-years at risk. For patients who do not reach the end event, the time at risk is 

the same as their follow-up time. For those that do, it is the time from the start of the trial to 

the event: in this way the method allows for censored observations.  

Defining rik as the number of events occurring in arm k of trial i during the trial follow-up 

period, Eik as the exposure time in person-years and λik as the rate at which events occur in arm 

k of trial i, we can write the likelihood as 
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 ~ Poisson( )
ik ik ik
r Eλ   

The parameter of interest is the hazard, the rate at which the events occur in each trial arm, and 

this is modelled on the log scale. The linear predictor in equation (5) is therefore on the log-

rate scale: 

 , { 1}log( )
ik ik i i bk k

Iθ λ µ δ
≠

= = +  (7) 

A key assumption of this model is that in each arm of each trial the hazard is constant over the 

follow-up period. This can only be the case in homogeneous populations where all patients 

have the same hazard rate. In populations with constant but heterogeneous rates, the average 

hazard must necessarily decrease over time, as those with higher hazard rates tend to reach 

their end-points earlier and exit from the risk set. 

These models are also useful for certain repeated event data. Examples would be the number 

of accidents, where each individual may have more than one accident. Here one would model 

the total number of accidents in each arm, that is, the average number of accidents multiplied 

by the number of patients. The Poisson model can also be used for observations repeated in 

space rather than time: for example the number of teeth requiring fillings. Using the Poisson 

model for repeated event data makes the additional assumption that the events are independent, 

so that, for example, an accident is no more likely in an individual who has already had an 

accident than in one who has not. Readers may consult previous work37-39 for examples. Dietary 

Fat Examples 2(a) and 2(b) in the Appendix illustrate random and fixed effects meta-analyses 

of this sort.  

 

3.2 RATE DATA: BINOMIAL LIKELIHOOD AND CLOGLOG LINK 

In some meta-analyses, each included trial reports the proportion of patients reaching an end-

point at a specified follow-up time, but the trials do not all have the same follow-up time. 

Defining rik as the number of events in arm k of trial i, with follow-up time fi (measured in days, 

weeks etc), then the likelihood for the data generating process is Binomial, as in equation (2). 

Using a logit model implies one of the following assumptions: that all patients who reach the 

end-point do so by some specific follow-up time, and further follow-up would make no 

difference; or that the proportional odds assumption holds. This assumption implies a complex 

form for the hazard rates.40 If longer follow-up results in more events, the standard logit model 
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is hard to interpret. The simplest way to account for the different length of follow-up in each 

trial, is to assume an underlying Poisson process for each trial arm, with a constant event rate 

λik, so that Tik, the time until an event occurs in arm k of trial i, has an exponential distribution  

 ~ ( )
ik ik
T Exp λ   

The probability that there are no events by time fi in arm k of trial i, the survival function, can 

be written as 

 Pr( ) exp( )
ik i ik i
T f fλ> = −   

Then, for each trial i, pik, the probability of an event in arm k of trial i after follow-up time fi 

can be written as 

 1 Pr( ) 1 exp( )
ik ik i ik i
p T f fλ= − > = − −  (8) 

which is time dependent.   

We now model the event rate λik, taking into account the different follow-up times fi. Since 

equation (8) is a non-linear function of log(λik) the complementary log-log (cloglog) link 

function41 (Table 3) is used to obtain a generalised linear model for log(λik) giving 

,

cloglog( ) log( ) log( )
ik ik i i bk

p fθ λ= = + , and log(λik) is modelled as in equation (7): 

 , { 1}cloglog( ) log( )
ik ik i i i bk k

p f Iθ µ δ
≠

= = + +   

with the treatment effects 
,i bk
δ  representing log-hazard ratios. The Diabetes Example, programs 

3(a) and 3(b) in the Appendix, illustrates a cloglog meta-analysis. 

The assumptions made in this model are the same as those for the Poisson rate models, namely 

that the hazards are constant over the entire duration of follow-up. This implies homogeneity 

of the hazard across patients in each trial, a strong assumption, as noted above. Nonetheless, 

this assumption may be preferable to assuming that the follow-up time makes no difference to 

the number of events. The clinical plausibility of these assumptions should be discussed and 

supported by citing relevant literature, or by examination of evidence of changes in outcome 

rates over the follow-up period in the included trials. 

When the constant hazards assumption is not reasonable, but further follow-up time is believed 

to result in more events, extensions are available that allow for time-varying rates. One 
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approach is to adopt piece-wise constant hazards. These models can be fitted if there is data 

reported at multiple follow-up times within the same study.42,43 An alternative is to fit a Weibull 

model, which involves an additional “shape” parameter α: 

 Pr( ) exp[( ) ]
ik i ik i

T f f αλ> = −   

which leads to: 

 
, { 1}cloglog( ) (log( ) )

ik ik i i i bk k
p f Iθ α µ δ

≠
= = + +   

Although no longer a GLM, since a non-linear predictor is used, these extensions lead to major 

liberalisation of modelling, but require more data. The additional Weibull parameter, for 

example, can only be adequately identified if there is data on a wide range of follow-up times, 

and if investigators are content to assume the same shape parameter for all treatments. 

 

3.3 COMPETING RISKS: MULTINOMIAL LIKELIHOOD AND LOG LINK 

A competing risk analysis is appropriate where multiple, mutually exclusive end-points have 

been defined, and patients leave the risk set if any one of them is reached. For example, in trials 

of treatments for schizophrenia44 observations continued until patients either relapsed, 

discontinued treatment due to intolerable side effects, or discontinued for other reasons. 

Patients who remain stable to the end of the study are censored. The statistical dependencies 

between the competing outcomes need to be taken into account in the model. These 

dependencies are essentially within-trial, negative correlations between outcomes, applying in 

each arm of each trial. They arise because the occurrence of outcome events is a stochastic 

process, and if more patients should by chance reach one outcome, then fewer must reach the 

others. 

Trials report rikj, the number of patients in arm k of trial i reaching each of the mutually 

exclusive end-points j=1,2,…J, at the end of follow-up in trial i, fi. In this case the responses 

rikj will follow a multinomial distribution: 

 , , 1,..., , , 1,..., , ,

1

~ Multinomial( , )  with  1
J

i k j J i k j J ik i k j

j

r p n p
= =

=

=∑  (9) 
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and the parameters of interest are the rates (hazards) at which patients move from their initial 

state to any of the end-points j, λikj. Note that the Jth endpoint represents the censored 

observations, i.e. patients who do not reach any of the other end-points before the end of follow-

up. 

If we assume constant hazards λikj acting over the period of observation fi in years, weeks etc, 

the probability that outcome j has occurred by the end of the observation period for arm k in 

trial j is: 

 
1

1 1

1

( ) [1 exp( )],       1,2,3,..., 1
Jikj

ikj i i ikuJ u

ikuu

p f f j J
λ

λ

λ

−

− =

=

= − − = −∑
∑

  

The probability of remaining in the initial state, that is the probability of being censored, is 

simply 1 minus the sum of the probabilities of arriving at any of the J-1 absorbing states, ie:  

 
1

1
( ) 1 ( )

J

ikJ i iku iu
p f p f

−

=

= −∑   

The parameters of interest are the hazards, λikj, and these are modelled on the log scale 

 
, , { 1}log( )ikj ikj ij i bk j kIθ λ µ δ

≠
= = +   

The trial-specific treatment effects δi,bk,j of the treatment in arm k relative to the control 

treatment in arm b of that trial for outcome j, are assumed to follow a normal distribution  

 2

,12, 12
~ ( , )

i j j j
N dδ σ   

The between-trials variance of the random effects distribution, 2

j
σ , is specific to each outcome 

j. Three models for the variance can be considered: a fixed effect model, where 2

j
σ =0; a 

Random Effects Single Variance model where the between-trial variance 2

j
σ = 2
σ , reflecting 

the assumption that the between-trials variation is the same for each outcome; and a Random 

Effect Different Variances model where 2

j
σ  denotes a different between-trials variation for 

each outcome j. See the Schizophrenia Example 4 in the Appendix for an illustration.   

These competing risks models share the same assumptions as the cloglog models presented in 

Section 3.2 to which they are closely related: constant hazards over time, implying proportional 

hazards, for each outcome. A further assumption is that the ratios of the risks attaching to each 
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outcome must also remain constant over time (proportional competing risks). Further 

extensions where the assumptions are relaxed are available.45 

 

3.4 CONTINUOUS DATA: NORMAL LIKELIHOOD AND IDENTITY LINK 

With continuous outcome data the meta-analysis is based on the sample means, yik, with 

standard errors seik. As long as the sample sizes are not too small, the Central Limit Theorem 

allows us to assume that, even in cases where the underlying data are skewed, the sample means 

are approximately normally distributed, so that the likelihood can be written as 

 ( )2~ ,
ik ik ik
y N seθ   

The parameter of interest is the mean, 
ik
θ , of this continuous measure which is unconstrained 

on the real line. The identity link is used (Table 3) and the linear model can be written on the 

natural scale as 

 , { 1}ik i i bk k
Iθ µ δ
≠

= +  (10) 

See the Parkinson’s Example, programs 5(a) and 5(b) in the Appendix, for WinBUGS code.  

3.4.1 Before/after studies: change from baseline measures 

In cases where the original trial outcome is continuous and measured at baseline and at a pre-

specified follow-up point the most common method is to base the meta-analysis on the mean 

change from baseline for each patient and an appropriate measure of uncertainty (e.g. the 

variance or standard error) which takes into account any within-patient correlation. It should 

be noted that the most efficient and least biased statistic to use is the mean of the final reading, 

having adjusted for baseline via regression/ANCOVA. Although this is seldom reported, when 

available these should be the preferred outcome measures.5  

The likelihood for the mean change from baseline in arm k of trial i, 
ik
y
∆ , with change variance 

ik
V
∆  can be assumed normal such that 

 ( )~ ,
ik ik ik
y N Vθ
∆ ∆
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The parameter of interest is the mean, 
ik
θ , of this continuous measure which is unconstrained 

on the real line. The identity link is used (Table 3) and the linear model can be written on the 

natural scale as in equation (10). 

However, in practice many studies fail to report an adequate measure of the uncertainty for the 

before-after difference in outcome and instead report the mean and variance, ( )b

ik
y  and ( )b

ik
V , (or 

other measure of uncertainty) at baseline (before), and at follow-up times (after), ( )a

ik
y  and ( )a

ik
V

, separately. While the mean change from baseline can be easily calculated as  

 ( ) ( )b a

ik ik ik
y y y
∆
= −   

to calculate 
ik
V
∆  for such trials, information on the within-patient correlation ρ is required since 

 ( ) ( ) ( ) ( )
2

b a b a

ik ik ik ik ik
V V V V Vρ
∆

= + −    

Information on the correlation ρ is seldom available. It may be possible to obtain information 

from a review of similar trials using the same outcome measures, or else a reasonable value for 

ρ, often 0.5 (which is considered conservative) or 0.7,46 can be used alongside sensitivity 

analyses.5,47 A more sophisticated approach, which takes into account the uncertainty in the 

correlation, is to use whatever information is available within the dataset, from trials that report 

both the before/after variances and the change variance (see Section 4), and possibly external 

trials as well, to obtain an evidence-based prior distribution for the correlation, or even to 

estimate the correlation and the treatment effect simultaneously within the same analysis.48  

 

3.5 TREATMENT DIFFERENCES 

Trial results are sometimes only available as overall, trial-based summary measures, for 

example as mean differences between treatments, log-odds ratios, log-risk ratios, log-hazard 

ratios, risk differences, or some other trial summary statistic and its sample variance. In this 

case we can assume a normal distribution for the continuous measure of treatment effect of arm 

k relative to arm 1 in trial i, 
ik
y , with variance 

ik
V , such that  

 ( )~ ,
ik ik ik
y N Vθ   
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The parameters of interest are the trial-specific mean treatment effects 
ik
θ . An identity link is 

used and since no trial-specific effects of the baseline or control treatment can be estimated the 

linear predictor is reduced to 
,ik i bk

θ δ= . The trial baselines are eliminated and the 
,i bkδ  are, 

exactly as in all previous models, assumed to come from a random effects distribution 

2

,12 12
~ ( , )

i
N dδ σ  or to be fixed 

,12 12i
dδ = . Examples 7 (Parkinson’s Differences) in the 

Appendix can be consulted. 

Readers will recognise that this is overwhelmingly the most common form of meta-analysis, 

especially amongst the Frequentist methods. The case where the yik are log-odds ratios, and an 

inverse-variance weighting is applied, with variance based on the normal theory 

approximation, remains a main-stay in applied meta-analytic studies. We refer to some of the 

key literature comparing different meta-analytic estimators and methods in the discussion. 

An important caveat about synthesis based on treatment differences relates to multi-arm trials. 

In Section 5 we show how the framework developed so far applies to syntheses that include 

multi-arm trials. However, trial-level data based on treatment differences present some special 

problems because, unlike data aggregated at the arm-level, there are correlations between the 

treatment differences that require adjustment to the likelihood. Details are given in Section 5.1. 

The WinBUGS coding we provide (Example 7) incorporates these adjustments. This point is 

also taken up in our discussion of alternative software (Section 7).  

3.5.1 Standardised mean differences 

There are a series of standardised mean difference (SMD) measures commonly used with 

psychological or neurological outcome measures. These can be synthesised in exactly the same 

way as any other treatment effect summary. We include some specific comments here relating 

to the special issues they raise.  

The main role of the SMD is to facilitate combining results from trials which have reported 

outcomes measured on different continuous scales. For example, some trials might use the 

Hamilton Depression scale, others the Montgomery-Asberg Depression Rating Scale. The idea 

is that the two scales are measuring essentially the same quantity, and that results can be placed 

on a common scale if the mean difference between the two arms in each trial is divided by its 

standard deviation. The best known SMD measures are Cohen’s d49, and Hedges’ adjusted g,50 

which differ only in how the pooled standard deviation is defined and the fact that Hedges’ g 

is adjusted for small sample bias: 
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2 2

1 1 2 2

1 2

difference in means
Cohen's d =

( 1) ( 1)n s n s

n n

− + −

+

  

 
2 2

1 2
1 1 2 2

1 2

difference in means 3
Hedges' (adjusted) g = 1

4( ) 9( 1) ( 1)

2

n nn s n s

n n

 
× − 

+ −− + −  

+ −

 (11) 

where n1 and n2 represent the sample sizes and s1 and s2 the standard errors of the means in 

arms 1 and 2 of a given trial. 

However, dividing estimates through by the sample standard deviation introduces additional 

heterogeneity in two ways. First, standard deviations are themselves subject to sampling error, 

and secondly, the use of SMD opens the results to various kinds of distortion because trials 

vary in how narrowly defined the patient population is. For example we would expect trials 

with narrow inclusion criteria such as “severe depression”, to have smaller sample standard 

deviations, and thus larger SMDs, than trials on patients with “severe to moderate depression”. 

A procedure that would produce more interpretable results would be to divide all estimates 

from a given test instrument by the standard deviation obtained in a representative population 

sample, external to the trial.   

The Cochrane Collaboration recommends the use of Hedges’ g (equation (11)), while noting 

that interpretation of the overall intervention effect is difficult.5 It recommends re-expressing 

the pooled SMD in terms of effect sizes as small, medium or large (according to some rules of 

thumb), transforming the pooled SMD into an Odds Ratio, or re-expressing the SMD in the 

units of one or more of the original measurement instruments,5 although it is conceded none of 

these manoeuvres mitigates the drawbacks mentioned above. 

SMDs are sometimes used for non-continuous outcomes. For example in a review of topical 

fluoride therapies to reduce caries in children and adolescents, the outcomes were the number 

of new caries observed but the mean number of caries in each trial arm were modelled as 

SMD.51 Where possible, it is preferable to use the appropriate GLM, in this case a Poisson 

likelihood and log link, as this is likely to reduce heterogeneity.38 



29 

 

3.6 ORDERED CATEGORICAL DATA: MULTINOMIAL LIKELIHOOD AND PROBIT 

LINK 

In some applications, the data generated by the trial may be continuous but the outcome 

measure categorised, using one or more pre-defined cut-offs. Examples include the PASI 

(Psoriasis Area Severity Index) and the ACR (American College of Rheumatology) scales, 

where it is common to report the percentage of patients who have improved by more than 

certain benchmark relative amounts. Thus ACR-20 would represent the proportion of patients 

who have improved by at least 20% on the ACR scale, PASI-75 the proportion who have 

improved by at least 75% on the PASI scale. Trials may report ACR-20, ACR-50 and ACR-

70, or only one or two of these end-points. We can provide a coherent model and make efficient 

use of such data by assuming that the treatment effect is the same regardless of the cut-off. This 

assumption can be checked informally by examining the relative treatment effects at different 

cut-offs in each trial and seeing if they are approximately the same. In particular, there should 

not be a systematic relationship between the relative effects at different cut-off points. The 

residual deviance check of model fit is also a useful guide. 

The likelihood is the same as in the competing risk analysis: trials report rikj, the number of 

patients in arm k of trial i belonging to different, mutually exclusive categories j=1,2,…J, where 

these categories represent the different thresholds (e.g. 20%, 50% or 70% improvement), on a 

common underlying continuous scale. The responses for each arm k of trial i in category j will 

follow a multinomial distribution as defined in equation (9) and the parameters of interest are 

the probabilities, pikj, that a patient in arm k of trial i belongs to category j. We may use the 

probit link function to map pikj onto the real line. This is the inverse of the normal cumulative 

distribution function Φ (see Table 3). The model can be written as 

 1

, { 1}( )ikj ikj ij i bk kp Iθ µ δ−

≠
= Φ = +   

or equivalently 

 
, { 1}( )ikj ij i bk kp Iµ δ

≠
= Φ +   

In this setup, the pooled effect of taking the experimental treatment instead of the control is to 

change the probit score (or Z score) of the control arm, by δi,bk standard deviations. This can be 

translated back into probabilities of events by noting that when the pooled treatment effect 
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12
0d > , then for a patient population with an underlying probability πj of an event in category 

j, the experimental treatment will increase this probability to ( )1

12
( )

j
dπ

−

Φ Φ + .  

The model is set-up with the assumption that there is an underlying continuous variable which 

has been categorised by specifying different cut-offs, zij, which correspond to the point at which 

an individual moves from one category to the next in trial i. Several options are available 

regarding the relationship between outcomes within each arm. Re-writing the model as 

 
, { 1}( )ikj i ij i bk kp z Iµ δ

≠
= Φ + +   

we can consider the terms zij as the differences on the standard normal scale between the 

response to category j and the response to category j-1 in all the arms of trial i. Different 

assumptions can be made. One option is to assume a ‘fixed effect’ zij = zj for each of the J-1 

categories over all trials i, or a ‘random effect’ in which the trial-specific terms are drawn from 

a distribution, but are the same for each arm within a trial, taking care to ensure that the zj are 

increasing with category (i.e. are ordered). Choice of model can be made on the basis of DIC. 

Example 6 (Psoriasis) in the Appendix, illustrates fixed and random effects meta-analyses with 

fixed effects zj. Examples of very similar analyses can be found in the health technology 

assessment literature on psoriasis,52 psoriatic arthritis53 and rheumatoid arthritis,54 although in 

some cases random effect models were placed on baselines, which is not the practice we 

recommend. The model, and the WinBUGS coding, are appropriate in cases where different 

trials use different thresholds, or when different trials report different numbers of thresholds, 

as is the case in the Psoriasis Example 6. There is, in fact, no particular requirement for trials 

to even use the same underlying scale, in this case the PASI: this could however require an 

expansion of the number of categories. 

Unless the response probabilities are very extreme the probit model will be undistinguishable 

from the logit model in terms of model fit or DIC. Choosing which link function to use should 

therefore be based on the data generating process and on the interpretability of the results.   

3.7 ADDITIVE AND MULTIPLICATIVE EFFECTS WITH BINOMIAL DATA, AND 

OTHER NON-CANONICAL LINKS 

It was mentioned earlier (Section 2.1) that the appropriate scale of measurement, and thus the 

appropriate link function, was the one in which effects were linear. It is common to see Log 

Relative Risks (LRR) and Risk Differences (RD) modelled using the treatment difference 
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approach (Section 3.4), but there are advantages to adopting an arm-based analysis with 

Binomial likelihoods (see discussion). To perform an arm-based analysis using the RD or LRR 

requires special programming, because, unlike the “canonical”12 logit models, there is 

otherwise nothing to prevent the fitted probabilities in a risk difference or log risk model from 

being outside the natural zero-to-one range for probabilities. Suitable adjustments to coding 

have been published for Frequentist software,55 or more recently for WinBUGS.56 A Risk 

Difference model would be: 

 
, { 1}

~ (0,1)

min(max( , ), (1 ))

i

ik i i bk i i k

Uniform

p I

µ

µ δ µ µ
≠

= + − −

  

The effect of this construction is to guarantee that both the baseline probability 
i
µ  and 

,i i bk
µ δ+  

remain in the interval (0,1) with δi,bk interpreted as a Risk Difference. For a Relative Risk 

model: 

 
, { 1}

exp( ) ~ (0,1)

log( ) min( , )

i

ik i i bk i k

Uniform

p I

µ

µ δ µ
≠

= + −

  

Here, δi,bk is a Log Relative Risk. Warn et al.56 should be consulted for further details of the 

WinBUGS coding and considerations on prior distributions.  

Our experience with these models is that they can sometimes be less stable, and issues of 

convergence and starting values need especially close attention. One can readily avoid their 

use, of course, by using estimates of Relative Risk or Risk Difference as data. But this approach 

runs into difficulties when multi-arm trials are included (see Sections 5.1 and 7). 

 

4 SHARED PARAMETER MODELS 

Shared parameter models allow the user to generate a single coherent synthesis when trials 

report results in different formats. For example some trials may report binomial data for each 

arm, while others report only the estimated log odds ratios and their variances; or some may 

report numbers of events and time at risk, while others give binomial data at given follow-up 

times. In either case the trial-specific relative effects δi,bk represent the shared parameters, 

which are generated from a common distribution regardless of which format trial i is reported 

in.  
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So if in a meta-analysis of M trials, M1 trials report the mean of a continuous outcome for each 

arm of the trial, and the remaining trials report only the difference in the means of each 

experimental arm relative to control, a shared parameter model to obtain a single pooled 

estimate, can be written as a combination of the models presented in Section 3.4 such that 

 ( )2~ ,
ik ik ik
y N seθ  

where 

 
, { 1} 1

, 1

for 1,..., ; 1, 2,...,

for 1,..., ; 2,...,

i i bk k i

ik

i bk i

I i M k a

i M M k a

µ δ
θ

δ

≠
+ = =

= 
= + =

  

and ai represents the number of arms in trial i (ai=2,3,…). The trial-specific treatment effects 

δi,bk come from a common random effects distribution 
2

,12 12
~ ( , )

i
N dδ σ  as before. 

Separate likelihood statements could also be defined, so for example in a meta-analysis with a 

binomial outcome, the M1 trials reporting the binomial counts in each trial arm could be 

combined with the trials reporting only the log-odds ratio of each experimental treatment 

relative to control and its variance. In this case the binomial data would be modelled as in 

Section 2.1 and the continuous log-odds ratio data could be modelled as in Section 3.5, with 

the shared parameter being the trial-specific treatment effects δi,bk as before. For a fixed effect 

model, δi,12 can be replaced by d12 in the model specification. 

These models can be easily coded in WinBUGS by having different loops for each of the data 

types, taking care to index the trial-specific treatment effects appropriately. 

Examples of shared parameter models will primarily include cases where some trials report 

results for each arm, whether proportions, rates, or continuous outcomes, and other trials report 

only the between-arm differences. A common model for log rates could be shared between 

trials with Poisson outcomes and time-at-risk and trials with Binomial data with a cloglog link; 

log rate ratios with identity link and normal approximation sample variance could form a third 

type of data for a shared log rate model. These models can be used to combine studies reporting 

outcomes as mean differences or as binomial data57 and to combine data on survival endpoints 

which have been summarised either by using a hazard ratio or as number of events out of the 

total number of patients.58 Another possibility would be to combine trials reporting test results 

at one or more cut-points using a probit link with binomial or multinomial likelihoods, with 

data on continuous outcomes transformed to a standard normal deviate scale.   
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To combine trials which report continuous outcome measures on different scales with trials 

reporting binary outcomes created by dichotomising the underlying continuous scale, authors 

have suggested converting the odds ratios calculated from the dichotomous response into a 

SMD,5,59 or converting both the binary and continuous measures into log-odds ratios for 

pooling.60 These methods could be used within a shared parameter model. 

Examples 7 and 8 (Parkinson’s differences and shared parameter) in the Appendix are shared 

parameter models.  

 

5 EXTENSION TO INDIRECT COMPARISONS AND NETWORK 

META-ANALYSIS 

In Section 2 we defined a set of M trials over which the study-specific treatment effects of 

treatment 2 compared to treatment 1, δi,12, were exchangeable with mean d12 and variance 2

12σ

. We now suppose that, within the same set of trials (i.e. trials which are relevant to the same 

research question), comparisons of treatments 1 and 3 are also made. To carry out a pairwise 

random effects meta-analysis of treatment 1 v 3, we would now assume that the study-specific 

treatment effects of treatment 3 compared to treatment 1, δi,13, are also exchangeable such that 

( )2

,13 13 13
~ ,

i
N dδ σ . If so, it can then be shown that the study-specific treatment effects of 

treatment 3 compared to 2, δi,23, are also exchangeable: 

 ( )2

,23 23 23
~ ,

i
N dδ σ   

This follows from the transitivity relation 
,23 ,13 ,12i i i
δ δ δ= − . It can further be shown61 that this 

implies  

 
23 13 12
d d d= −  (12) 

and 

 2 2 2 (1)

23 12 13 23 12 132σ σ σ ρ σ σ= + −   

where (1)

23ρ  represents the correlation between the relative effects of treatment 3 compared to 

treatment 1, and the relative effect of treatment 2 compared to treatment 1 within a trial (see 

Lu & Ades61). For simplicity we will assume equal variances in all subsequent methods, i.e. 
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2 2 2 2

12 13 23
σ σ σ σ= = = , and this implies that the correlation between any two treatment contrasts 

in a multi-arm trial is 0.5.19 For heterogeneous variance models see Lu & Ades.61 

The exchangeability assumptions regarding the treatment effects 
,12i

δ  and 
,13i

δ therefore make 

it possible to derive indirect comparisons of treatment 3 vs treatment 2, from trials of treatment 

1 vs 2 and 1 vs 3, and also allow us to include trials of treatments 2 vs 3 in a coherent synthesis 

with the 1 vs 2 and 1 vs 3 trials.  

Note the relationship between the standard assumptions of pair-wise meta-analysis, and those 

required for indirect and mixed treatment comparisons. For a random effects pair-wise meta-

analysis, we need to assume exchangeability of the effects 
,12i

δ  over the 1 vs 2 trials, and also 

exchangeability of the effects 
,13i

δ  over the 1 vs 3 trials. For network meta-analysis, we must 

assume the exchangeability of both treatment effects over both 1 vs 2 and 1 vs 3 trials. The 

theory extends readily to additional treatments k = 4,5…,S. In each case we must assume the 

exchangeability of the δ’s across the entire set of trials. Then the within-trial transitivity relation 

is enough to imply the exchangeability of all the treatment effects 
,i xy
δ . The consistency 

equations21 

 

23 13 12

24 14 12

( 1), 1 1,( 1)

  

  

s s s s

d d d

d d d

d d d
− −

= −

= −

= −

⋮
 

are also therefore implied; they are assumptions required by indirect comparisons and MTC, 

but, given that we are assuming that all trials are relevant to the same research question, they 

are not additional assumptions. However, whilst in theory, consistency of the treatment effects 

must hold, there may be inconsistency in the evidence. Methods to assess evidence consistency 

are addressed in TSD4.28 The consistency equations can also be seen as an example of the 

distinction between the (s-1) basic parameters62 d12, d13, d14, …, d1s on which prior distributions 

are placed, and the functional parameters which are functions of the basic parameters, and 

represent the remaining contrasts. It is precisely the reduction in the number of dimensions, 

from the number of functions on which there are data to the number of basic parameters, that 

allows all data, whether directly informing basic or functional parameters, to be combined 

within a coherent (internally consistent) model.  
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Now that several treatments are being compared, we clarify our notation a little, and have the 

trial-specific treatment effects of the treatment in arm k, relative to the control treatment (in 

arm 1), drawn from a common random effects distribution: 

 
1

2

,1 ,
~ ( , )

i ik
i k t t

N dδ σ   

where 
1
,

i ik
t t
d  represents the mean effect of the treatment in arm k in trial i, tik, compared to the 

treatment in arm 1 of trial i, ti1, and σ2 represents the between-trial variability in treatment 

effects (heterogeneity). For trials that compare treatments 1 and 2 
1
, 12

i ik
t t
d d= , for trials that 

compare treatments 2 and 3 
1
, 23

i ik
t t
d d=  and so on. The pooled treatment effect of treatment 3 

compared to treatment 2, d23, is then obtained from equation (12). 

The WinBUGS code provided in the Appendix will extend to MTC. Examples 3 to 8 in the 

Appendix illustrate analyses with multiple treatments. 

 

5.1 INCORPORATING MULTI-ARM TRIALS 

Suppose we have a number of multi-arm trials involving the treatments of interest, 1,2,3,4,… 

Among commonly suggested stratagems are combining all active arms into one, or splitting 

the control group between all relevant experimental groups, or ignoring all but two of the trial 

arms.5 None of these are satisfactory. The question of how to conduct a meta-analysis of the 

multi-arms trials has been considered in a Bayesian framework by Lu & Ades,20 and in a 

frequentist framework by Lumley22 and Chootrakool & Shi.63   

Based on the same exchangeability assumptions above, a single multi-arm trial will estimate a 

vector of random effects 
i
δ . For example a three-arm trial will produce two random effects 

and a four-arm trial three. Assuming, as before, that the relative effects all have the same 

between-trial variance we have 

 
1 2

1

2 2 2

,12 1
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,1 ,

~ , / 2 / 2
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i
i i ai

i i a t t

i a t t

N d

d
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−

  =    
     
     

           

δ …
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⋯

 (13) 

where 
i
δ  is the vector of random effects, which follows a multivariate normal distribution, ai 

represents the number of arms in trial i (ai=2,3,…) and 
1 1

1, 1,
i ik ik i
t t t t
d d d= − . Then the conditional 
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univariate distributions for the random effect of arm k>2, given all arms from 2 to k-1, is (see 

eg. Raiffa & Schlaiffer64) 

 ( ) ( )
1 1

1
2

,1 ,12 1, 1, ,1 1, 1,

1

,1( 1)

1
| ~ ,

1 2( 1)ik i ij i

k

i k i t t i j t t

j

i k

k
N d d d d

k k
δ δ δ σ

δ

−

=

−

  − + − −    − −   
 
 
 

∑
⋮

 (14) 

Either the multivariate distribution in equation (13) or the conditional distributions in equation 

(14) must be used to estimate the random effects for each multi-arm study so that the between-

arm correlations between parameters are taken into account. The code presented in the 

Appendix uses the formulation in equation (14) as it allows for a more generic code which 

works for trials with any number of arms. 

This formulation provides another interpretation of the exchangeability assumptions made in 

the previous section, and indeed another way of deducing the consistency relations. This is that 

we may consider a connected network of M trials involving S treatments to originate from M 

S-arm trials, but that some of the arms are missing at random (MAR). (Note that MAR does 

not mean that the choice of arms is random, but that the missingness of arms is unrelated to the 

efficacy of the treatment). It should be noted that the general formulation is no different from 

the model presented by Higgins & Whitehead.19 

The WinBUGS code provided in the Appendix is based on a conditional distribution 

formulation of the multivariate normal distribution. It therefore exactly instantiates the theory 

behind network meta-analysis that relates it to pair-wise meta-analysis. The code in the 

Appendix will analyse pair-wise meta-analysis, indirect comparisons, network meta-analysis 

(MTC) and multi-arm trials without distinction. 

5.1.1 Multi-arm trials with treatment differences (trial-based summaries) 

As mentioned in Section 3.5, when results from multi-arm trials are presented as (continuous) 

treatment differences relative to the control arm (arm 1), a correlation between the treatment 

differences is induced, since all differences are taken relative to the same control arm. Unlike 

the correlations between the relative effect parameters, this correlation is inherent in the data, 

and so requires an adjustment to the likelihood. A trial with ai arms produces ai-1 treatment 

differences which are correlated. The covariance between differences taken with respect to the 

same control arm is equal to the observed variance for the common control arm. So for example 
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in a three arm trial comparing treatments A, B and C, letting yAB and yAC represent the treatment 

differences of treatments B and C relative to treatment A, we know that  

 ( ) ( ) ( ) 2 ( , )
AB AC AB AC AB AC

Var y y Var y Var y Cov y y− = + −  (15) 

and,  

 
( ) ( ) ( )

( ) ( ) ( )

AB A B

AC A C

Var y Var y Var y

Var y Var y Var y

= +

= +

 (16) 

with, yA, yB and yC representing the original measurements on each arm of the trial, because, in 

a randomised controlled trial the measurements in each trial arm are independent. By 

successive replacement of the expressions in equation (16) into equation (15), we have: 

 ( , ) ( )
AB AC A

Cov y y Var y=   

So, the likelihood for a trial i with ai arms would be defined as multivariate normal 
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where the diagonal elements in the variance-covariance matrix represent the variances of the 

treatment differences and the off-diagonal elements represent the observed variance in the 

control arm in trial i, denoted by 2

1i
se  (see Section 3.4). For example, when the treatment 

differences are given as log-odds ratios, 2

1i
se  is the variance of the log-odds for arm 1 of trial i. 

Example 7 (Parkinson’s Difference) in the Appendix includes a three-arm trial in a meta-

analysis of treatment differences where the variance of the common arm, 2

1i
se , is known. When 

2

1i
se  is not reported, an approximation should be made, perhaps based on the variances of the 

differences.58 If the value of the control variance is available only for some of the included 

trials, that information can be used to estimate the parameters of a distribution for the control 

variance (assumed to be common). This estimated distribution can then be used to predict the 

variance of the control arm, in the trials where it is missing. This method has been used, in a 

slightly different context, to predict missing variances.65 Riley66 provides a review of methods 
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to impute unknown within-study correlations within the context of multivariate meta-analysis. 

These methods can also be applied to network meta-analysis with multi-arm trials.  

 

6 TECHNICAL ISSUES IN BAYESIAN MCMC 

The use of the WinBUGS Bayesian MCMC software has advantages (Section 7), but it also 

requires some care. Users are strongly advised to acquire a good understanding of Bayesian 

theory,67 and to follow advice given in the WinBUGS manual. Particular care must be taken in 

checking convergence, and we suggest that at least three chains are run, starting from widely 

different (yet sensible) initial values. The diagnostics recommended in the literature should be 

used to check convergence.68,69 Users should also ensure that, after convergence, each chain is 

sampling from the same posterior. Posteriors should be examined visually for spikes and 

unwanted peculiarities, and both the initial “burn-in” and the posterior samples should be 

conservatively large. The number of iterations for both must be reported in the analysis. An 

often cited guideline suggests that the Monte Carlo error, which reflects both the number of 

simulations and the degree of autocorrelation, should be no more than 5% of the posterior 

standard deviation of the parameters of interest. 

Beyond these warnings, which apply to all Bayesian MCMC analyses, evidence synthesis 

models have particular properties which may require careful examination: choice of reference 

treatment, choice of prior distributions and zero counts in binomial and Poisson data. 

 

6.1 CHOICE OF REFERENCE TREATMENT 

While the likelihood is not altered by a change in which treatment is taken to be “Treatment 

1”, the choice of the reference treatment can affect the posterior estimates because priors cannot 

be totally non-informative. However, for the vague priors we suggest throughout for µi and d1k 

(see below) we expect the effect to be negligible. Choice should therefore be based on ease of 

interpretation, with placebo or standard treatment usually taken as Treatment 1. In larger 

networks, it is preferable to choose as Treatment 1 a treatment that is in the “centre” of the 

network. In other words, choose the treatment that has been trialled against the highest number 

of other treatments. The purpose of this is to reduce strong correlations that may otherwise be 

induced between mean treatment effects for each pair of treatments k and h, d1k and d1h: these 

can slow convergence and make for inefficient sampling from the posterior.  
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6.2 CHOICE OF PRIORS 

We recommend vague or flat priors, such as N(0, 1002), throughout for µi and d1k. Informative 

priors for relative effect measures would require special justification. 

It has become standard practice to also set vague priors for the between-trial variances. For 

binomial with logit links models, the usual practice is to place a Uniform prior on the standard 

deviation, for example σ ~ Uniform(0,2). The upper limit of 2 represents a huge range of trial-

specific treatment effects. For example if the median treatment effect was an odds ratio of 1.5, 

then we would expect 95% of trials to have true odds ratios between 0.2 and 11. For rate 

models, whether with log or cloglog linking functions, uniform priors on σ may also be used, 

but investigators need to be aware of the scale: a prior that is vague for a rate per year may not 

be so vague for a rate per month. Similarly, for continuous outcomes close attention to the scale 

of measurement is essential. For trials with blood pressure as the outcome σ ~ Uniform(0,100) 

may be considered vague. The posterior distribution of σ should always be inspected to ensure 

that it is sufficiently different from the prior as this would otherwise indicate that the prior is 

dominating the data and no posterior updating has taken place. 

An alternative approach, which was once popular but has since fallen out of favour, is to set a 

vague Gamma prior on the precision, for example 1/σ 
2 ~ Gamma(.001,.001). This approach 

gives a low prior weight to unfeasibly large σ on the logit scale. The disadvantage is that this 

puts more weight on values of σ near zero. On the other hand, there are occasions where it may 

be an advantage that this prior rules out values of σ  at zero, because it is not uncommon, 

particularly when data is sparse, that MCMC sampling can “get stuck” at σ = 0, leading to 

spikes in the posterior distribution of both σ  and the treatment effect parameters d1k . In these 

cases a Gamma prior may improve numerical stability and speed convergence.  

However they are formulated, there are major disadvantages in routinely using vague priors, 

although this has become a widely accepted practice. In the absence of large numbers of large 

trials, the posterior distribution of σ  will be poorly identified and likely to include values that, 

on reflection, are implausibly high or possibly implausibly low. Two further alternatives may 

be found useful when there is insufficient data to adequately estimate the between-trials 

variation. The first is the use of external data.19 If there is insufficient data in the meta-analysis, 

it may be reasonable to use an estimate for σ from a larger meta-analysis on the same trial 

outcome involving a similar treatment for the same condition. The posterior distribution, or a 

posterior predictive distribution, from such an analysis could be used to approximate an 
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informative prior. The derivation of suitable priors from large numbers of meta-analyses is 

currently being actively researched.  

If there is no data on similar treatments and outcomes that can be used, an informative prior 

can be elicited from a clinician who knows the field. This can be done by posing the question 

in this way. “Suppose we accept that different trials, even if infinitely large, can produce 

different effect sizes. If the average effect was an odds ratio of 1.8 (choose a plausible average), 

what do you think an extremely high and an extremely low effect would be, in a very large 

trial?” Based on the answer to this it should be possible, by trial and error, to construct an 

informative Gamma prior for 1/σ2, or a Normal prior for σ , subject to σ > 0. For further 

discussion of priors for variance parameters see Lambert et al.70 and Spiegelhalter et al.67 

 

6.3 ZERO CELLS 

Because Binomial and Poisson likelihoods with zero cells are allowed, special precautions do 

not usually need to be taken in the case of the occasional trial with a zero cell count. This is a 

major strength of the Bayesian MCMC approach, because some popular frequentist approaches 

for log odds ratios or log relative risks have to add an arbitrary constant, usually 0.5, to cells in 

order to obtain non-infinite estimates of treatment effects and non-infinite variance, but in so 

doing they generate biased estimates of effect size.71,72  

However, in extreme cases where several trials have zero cells and many of the trials are small, 

the models we have recommended can be numerically unstable, either failing to converge, or 

converging to a posterior with very high standard deviation on some of the treatment effects. 

This is unlikely to happen with fixed effect models, and it can often be remedied in random 

effects models by using a (more) informative prior on the variance parameter. A last resort, 

recognising the assumptions being made, is to put a random effect model on the treatment 

baselines µi as well as the relative treatment effects d1k. 

A specific problem arises in sparse networks, in which for example there is only one trial 

making the comparison X vs Y, and treatment Y only appears in this one trial. If the trial 

contains a zero cell, it may not be possible to estimate a treatment effect. One solution is to 

revert to the practice of adding 1 to the denominator and 0.5 to the numerator, or the 0.5 can 

be replaced with a fraction that is closer to the expected treatment effect to reduce bias.72 The 

problem can also be solved by placing a distribution on the baseline model. Trials with zero 
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cells in both arms do not contribute evidence in the treatment effect and can be excluded, unless 

a model has been assumed for the baselines (see TSD529).  

Readers should be aware that, when evaluating model fit using the residual deviance, this will 

always appear large (i.e. >1) for individual data points where there are zero cells. This is 

because none of the models presented can actually predict a zero cell since probabilities at zero 

or one are ruled out. Also no leverage can be calculated for these points. 

 

7 NON-BAYESIAN APPROACHES AND COMPUTATIONAL ISSUES 

In this section we briefly review the advantages of the Bayesian MCMC approach to synthesis 

for probabilistic decision modelling. Bayesian methods are clearly convenient in this context, 

but frequentist analyses can be used to approximate Bayesian posterior sampling, as we 

describe below. We then provide some pointers to the literature that examines the statistical 

properties of alternative Bayesian and frequentist meta-analytic estimators. Finally, we 

describe frequentist software that can be used for evidence synthesis. The statistical reliability 

of the different synthesis methods is, of course, an entirely separate issue from the accuracy of 

different computational approaches to implementing the synthesis method. 

 

7.1 BAYESIAN VERSUS FREQUENTIST APPROACHES IN THE CONTEXT OF 

DECISION MAKING 

One of the advantages of the Bayesian MCMC approach is that sampling from the posterior 

distribution fulfils at the same time the need for posterior inference and the MC approach to 

probabilistic modelling. Although inference in the form of significance tests and interval 

estimation tends to be set aside when a decision maker follows the rules of cost effectiveness 

analysis (CEA),73 conclusions from CEA may be highly sensitive to the model that is assumed 

from the data. Statistical model critique and model choice are, therefore critical to CEA, 

whether conducted in a Bayesian or frequentist framework. 

Posterior sampling in addition retains the correlation between parameters that is induced by 

their joint estimation from the same data. For this reason, when there are closed loops in the 

evidence structure, it is essential to either use the posterior samples from WinBUGS in the 

decision model or to take steps to propagate the correlations through the model (see below). 

Distributions based on the posterior marginal summaries are not adequate. 
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Perfectly valid evidence synthesis is also, of course, produced by frequentist software (see 

below), and the question then arises of how the results from such analyses can be used in a 

probabilistic decision modelling context. For pair-wise meta-analysis and indirect 

comparisons, as long as they are restricted to two-arm trials, and do not involve covariates on 

baselines or treatment effects, it is simple to use the maximum likelihood (ML) estimates and 

their standard errors to create parameter distributions for forward MC sampling. Where multi-

arm trials or MTC evidence structures (in other words where there are loops in the evidence 

structure), or baseline models, or covariates are involved, two approaches are possible. One is 

the bootstrap,74 which requires re-sampling from the data, and the other is to use the ML 

parameter estimates of all the parameters and their covariance matrix to form a multivariate 

normal distribution from which to carry out MC sampling. The latter is technically easier, and 

the bootstrap runs into difficulties when there are zero cells. This multivariate distribution 

obtained should be approximately the same as a Bayesian posterior distribution.   

 

7.2. COMPARISON OF META-ANALYTIC METHODS 

While there is no technical reason why frequentist methods cannot be used, there are a wide 

variety of estimators to choose between for count data, which in specific circumstances can 

produce different results. There is a useful literature comparing meta-analytic estimators for 

binomial data, based on simulation studies. Bradburn et al71 discuss the biases arising from the 

common practice of adding 0.5, or other amounts, to zero cells, and it is an undoubted 

advantage of methods using exact binomial and Poisson likelihoods, like Bayesian MCMC, 

that these problems are very largely avoided (though see Section 6.3). Simulation studies on 

fixed effect estimators72 have shown that Bayesian MCMC has performed well, and ranks with 

Mantel Haenszel75 and Exact method76 estimators, and is superior to the Peto method77 and 

inverse-variance weighting in a wide range of situations. There is a useful simulation study of 

tests of heterogeneity for binomial data.78 

There has, however, been little work comparing Bayesian and non-Bayesian approaches in the 

context of random effect models, nor on our proposal that a choice can be made between 

random and fixed effect models on the basis of the DIC statistics. 

It should be emphasised that except for the Exact method (which only applies to fixed effects 

models), none of the frequentist methods use the Binomial, Multinomial or Poisson likelihoods, 
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but instead rely on normal approximations. This should not create problems as long as low cells 

counts are rare.  

Furthermore, in random effects models, the MCMC implementation automatically takes into 

account the uncertainty in the between-study heterogeneity parameter σ2. Whilst this is also 

possible using frequentist approaches,79,80 it is rarely done in practice, possibly because such 

models are not currently implemented in user-friendly frequentist software. 

 

7.3. COMPARISON OF EVIDENCE SYNTHESIS SOFTWARE 

In this section we provide a brief review of frequentist software for evidence synthesis, and 

where possible a comparison with the Bayesian MCMC WinBUGS software. We will refer to 

existing literature where possible. Alternative software for pair-wise meta-analysis has been 

developed over the past two decades, both as stand-alone applications and as ‘macro’ routines 

for pre-existing packages. Probably the most comprehensive and up-to-date routines for 

existing software are those developed and freely distributed for STATA81 and R.82 Stand alone 

packages include Comprehensive Meta-Analysis,83 Meta-Analyst84 and MIX85 as well as the 

Cochrane Collaboration software RevMan.86 If pair-wise meta-analysis is all that is required, 

and appropriate estimators are used, this software is perfectly adequate to produce estimates 

and corresponding standard errors to inform a distribution in a probabilistic decision model. 

These approaches can also be used to carry out two pairwise meta-analyses from which an 

“indirect” comparison can be formed. This is effectively an implementation of the Bucher 

method for indirect comparisons87 (and a simple example of an MTC network). Note that in a 

random effects context, this approach allows for separate and unrelated meta-analyses for AB 

and AC whereas all models considered in this guide (and software examples in the Appendix) 

have considered a common random effect. (Note that this could also be achieved in any 

simulation package, including WinBUGS, by setting up distributions for the AB and AC 

effects, and then subtracting one from the other to form a distribution for the BC effect).  

It would appear no stand-alone software to fit MTC models to arbitrarily complex networks 

exists. Perhaps the most general code for frequentist software is that developed by Lumley.22 

However, this fits a different model from the one described in this paper which does not assume 

consistency of direct and indirect evidence and will be discussed in TSD4.28 

It is also important to note that most frequentist software for MTC is based on data on trial-

level differences, and not data aggregated at arm-level. As we saw in Section 5.1, when multi-
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arm trials are involved, it is essential to take account of both the correlation in parameters in 

random effect models, but also the correlations in the likelihood, which affect both fixed and 

random effect models. To the best of our knowledge, there is only one frequentist software 

module available for STATA, mvmeta, that takes account of the correlations at the data 

level.81,88 Frequentist analysis can also be correctly carried out in SAS.89 In our experience, 

failure to make the adjustment can give materially different results whenever multi-arm trials 

form a substantial proportion of the evidence for any treatment contrast.  

 

8. FURTHER READING 

This brief introduction raises many further questions. Some of these are taken up in detail in 

the other technical guides in this series. TSD335 for example covers issues of heterogeneity, 

looking at meta-regression and treatment effects in subgroups. Individual patient data has a 

particularly important role in meta-regression. Regression and other methods for bias 

adjustment, including publication bias and so-called “small-study bias” will also be covered. 

Similarly, the introduction of network meta-analysis (Section 5) raises questions about 

inconsistency between “direct” and “indirect” evidence, which will be addressed in TSD4.28 

Here we will restrict attention to further extensions involving multiple outcomes. 

There are a huge variety of multiple outcome structures, only a minority of which have been 

examined in the context of evidence synthesis. One particularly important area for multiple 

outcome synthesis is where a set of eligible trials have been identified, but some report one 

outcome, some another, and perhaps others report both. The function of multiple outcome 

synthesis in this case is to use all the available data, taking into account the correlation between 

outcomes at the within-trial (between-patient) level, and the between-trial level. Methods for 

doing this have been described by Riley and others.90,91 Readers may also refer to earlier work 

also based on multivariate normal methods.92,93  

A quite different form of multiple outcome synthesis occurs when different trials report a single 

outcome, but at different follow-up times. Further, some may report at several follow-up times. 

Lu et al42 describe a series of piece-wise-constant hazard models that extend the cloglog models 

of Section 3.2, in that treatment effects are allowed to vary between time intervals.  

Multiple outcomes are often structurally related. For example, time-to-progression cannot post-

date overall survival in cancer studies, and time to end of ‘flu cannot post-date time to the end 

of symptoms in studies of influenza treatments. Where possible, these structural constraints 
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should be built into the synthesis. Burch et al94 and Welton et al95,96 provide examples. A further 

form of structural relation can be seen in trials on treatments for myocardial infarction, where 

trial evidence on an early intermediary outcome, coronary patency, can be combined with trial 

evidence on mortality.13,97   

Multiple reporting formats present further challenges for synthesis. Many of these are covered 

in the earlier section on shared parameter models (Section 4). A more complex example94,95 

involved a synthesis that combined trials reporting median time to an event, mean time to an 

event, and proportion experiencing the event before a certain time. Results may also be reported 

separately for different subgroups, or collapsed over subgroups. Here, too, methods exist that 

make it possible to combine all the available information.98-101 Another example of multiple 

reporting formats would be trials reporting on binary, categorical or continuous scales.57 

A final special topic is synthesis for Markov models. It seems clear that, for purposes of 

synthesis, it may be preferable to express Markov models in terms of transition rates rather 

than transition probabilities.102 This facilitates combining information from studies run over 

different follow-up periods, as explained in Section 3.2. It also gives the flexibility to model 

different treatment effects on different transitions (e.g. competing risks, Section 3.3), which is 

difficult to achieve with logit models. A further option is to combine data from studies where 

certain transitions are unobserved.102 Finally, it is worth mentioning that it is often open to 

question whereabouts in a Markov model a treatment effect is operating. Readers are referred 

to recent work103 showing how treatment effects can be parameterised, synthesised and 

estimated in Markov rate models. 

 

9. DISCUSSION 

Our objective in this document has been to present a single unified account of evidence 

synthesis of aggregate data from RCTs, specifically but not exclusively for use in probabilistic 

decision making. In order to cover the variety of outcomes that are reported, and the range of 

data transformations required to obtain approximate linearity, we have set this within the 

familiar framework of Generalised Linear Models. This leads to a modular approach: different 

likelihoods and link functions may be employed, but the “synthesis” operation, which occurs 

at the level of the linear predictor, takes the exact same form in every case. The linear predictor, 

furthermore, is a regression model of a very specific type, with K-1 treatment effect parameters 

for any K treatment network, offering a single model for pair-wise meta-analysis, indirect 
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comparisons, network meta-analysis (mixed treatment comparisons), and synthesis of multi-

arm trials in any combination. This has all been presented in a Bayesian MCMC context and 

supported by code for WinBUGS 1.4.3.26 The use of WinBUGS dovetails with the GLM 

approach, as it allows us to take full advantage of the modularity implied by GLMs. 

This document brings together a great deal of previous work on Bayesian meta-analysis and 

MTC methods, and on meta-analysis methods for particular outcomes, into a single accessible 

and unified treatment and with a modular approach to computation. One aspect that may be 

considered novel is the application to synthesis of multi-arm trials. Although it would be 

relatively simple to extend all the commonly used estimators for use in meta-analysis of 

multiple trials on the same K comparators, this does not appear to have been done. In our 

framework, however, the transitivity and exchangeability assumptions required for MTC 

automatically deliver multiple-treatment meta-analysis, and vice versa. 

In the course of the document we have raised the question: what is the relation between the 

arm-based analyses assumed in our models and software, with the far more common trial-based 

summaries where the difference between treatments is taken as the data. With count data, there 

has always been a strong case for adopting an arm-based approach because it avoids normal 

approximations for the likelihood, and difficulties with zero cells. We have, however, brought 

to light a further problem with the arm-based approach, which is that with multi-arm trials a 

correction must be made to the likelihood to account for correlations in the data. This applies 

to continuous outcome data as well as count data, and to both fixed and random effect models. 

With the appropriate correction to the likelihood, the results from arm-based and treatment 

difference-based analyses are identical. Since all frequentist software for synthesis currently 

adopts the trial-level treatment difference approach, we can give a quite specific 

recommendation that this software should be avoided for multi-treatment syntheses with multi-

arm trials, unless the correlation between relative treatment effects from the same trail can be 

appropriately accounted for. For syntheses where all trials are two-arm, there is no reason why 

frequentist methods should not be used, as long as statistically sound estimators are used and 

appropriate steps are taken to propagate parameter uncertainty, including correlations, through 

the decision model.  

Bayesian analysis is by no means a panacea: one area that clearly deserves more work is how 

to specify a “vague” prior distribution for the variance parameter. There can be little doubt that 

the vague priors that are generally recommended produce posteriors that are biased upwards. 

The extent of the bias is likely to be greater when the true variance is low, and when there is 
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little data: either few trials or small trials, but this is also a problem when using frequentist 

estimators. The question could perhaps be resolved through a comprehensive simulation 

exercise. Although we can be reassured that the bias tends to be conservative, ultimately it may 

be preferable to use informative priors, perhaps tailored to particular outcomes and disease 

areas, based on studies of many hundreds of meta-analyses. This is currently an active research 

area.  

45,52,104,105 
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APPENDIX: ILLUSTRATIVE EXAMPLES AND WINBUGS CODE 

This appendix gives illustrative WinBUGS code for all the link functions and likelihoods, as 

well as example code for shared parameter models. All programming code is fully annotated. 

The program codes are printed here, but are also available as WinBUGS system files at 

www.nicedsu.org.uk. Users are advised to download the WinBUGS files from the website 

instead of copying and pasting from this document. We have provided the codes as complete 

programs. However, the majority of each RE program is identical to other RE programs, and 

similarly for the FE programs. We have therefore highlighted the linear predictor in blue, and 

the likelihood and deviance calculations in red to emphasise the modular nature of the code. 

Tables A1 gives an index of the programmes and their relation to the descriptions in the text. 

Note that for each example there are random and fixed effects versions of the code. All fixed 

effects code can be run using the same data structure described for the random effects.   

 

Table A1 Index of WinBUGS code with details of examples and sections where they are described. 

Program 

number 

Fixed or 

Random Effects Likelihood 

Link 

Function 

Example 

name 

Model 

specification 

1 (a) Random (2-arm) Binomial logit Blocker Section 2.1 

 

(b) 
(c) 
(d) 

Fixed (2-arm) 
Random 
Fixed     

2 (a) Random Poisson log Dietary fat Section 3.1 
 (b) Fixed     

3 (a) Random Binomial cloglog Diabetes Section 3.2 
 (b) Fixed     

4 (a) Random Multinomial log 
Schizophren

ia Section 3.3 
 (b) Fixed     

5 (a) Random Normal identity Parkinson’s Section 3.4 
 (b) Fixed     

6 (a) Random Multinomial probit Psoriasis Section 3.6 
 (b) Fixed     

7 (a) Random Normal identity Parkinson’s Section 3.5 
 (b) Fixed (difference data)    

8 (a) Random Normal identity Parkinson’s Section 4 
 (b) Fixed (shared parameter)    
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EXAMPLE 1. BLOCKER 

The first two programmes (Blocker 1(a) and 1(b)) are somewhat apart from the other 

programmes: these programmes are only capable of processing syntheses of two treatments 

and 2-arm trials. We include them for the benefit of readers who may wish to start with the 

simplest possible case and see how the more general code that allows incorporation of multi-

arm trials is related to the simpler code. The Blocker example is described in Section 2.1. 

Program 1(a):  Binomial likelihood, logit link, Random Effects, two treatments (Blocker 

example). Two-arm trials Only 

# Binomial likelihood, logit link, pairwise meta-analysis (2 treatments) 

# Random effects model 

model{     # *** PROGRAM STARTS 

for(i in 1:ns){    #   LOOP THROUGH STUDIES 

    delta[i,1] <- 0    # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)   # vague priors for all trial baselines 

    for (k in 1:2) {    #  LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 

        logit(p[i,k]) <- mu[i] + delta[i,k]    # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   #Deviance contribution 

            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 

      } 

    resdev[i] <- sum(dev[i,])   #  summed residual deviance contribution for this trial 

    delta[i,2] ~ dnorm(d[2],tau)   # trial-specific LOR distributions 

  }    

totresdev <- sum(resdev[])   #Total Residual Deviance 

d[1]<- 0     # treatment effect is zero for reference treatment 

d[2] ~ dnorm(0,.0001)    # vague prior for treatment effect 

sd ~ dunif(0,5)    # vague prior for between-trial SD 

tau <- pow(sd,-2)       # between-trial precision = (1/between-trial variance) 

}      # *** PROGRAM ENDS 

 

The data structure has two components: a list specifying the number of studies ns and the main 

body of data which is in a column format: r[,1] and n[,1] are the numerators and denominators for 

the first treatment; r[,2] and n[,2], the numerators and denominators for the second listed 

treatment. Text can be included after the hash symbol (#) for ease of reference to the original 

data source. 

# Data (Blocker example) 

list(ns=22)    

 

r[,1] n[,1] r[,2] n[,2] # Study ID 

3 39 3 38 # 1 

14 116 7 114 # 2 

11 93 5 69 # 3 

127 1520 102 1533 # 4 

27 365 28 355 # 5 

6 52 4 59 # 6 

152 939 98 945 # 7 

48 471 60 632 # 8 

37 282 25 278 # 9 

188 1921 138 1916 # 10 

52 583 64 873 # 11 
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47 266 45 263 # 12 

16 293 9 291 # 13 

45 883 57 858 # 14 

31 147 25 154 # 15 

38 213 33 207 # 16 

12 122 28 251 # 17 

6 154 8 151 # 18 

3 134 6 174 # 19 

40 218 32 209 # 20 

43 364 27 391 # 21 

39 674 22 680 # 22 

END 

 

# Initial values 

#chain 1 

list(d=c( NA, 0), sd=1, mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), sd=4, mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2), sd=2, mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, -3, -3,0, 3, 5, -3, -3, -1, -3, -7, -3, -3)) 

Program 1(b):  Binomial likelihood, logit link, Fixed Effects, two treatments (Blocker 

example), Two-arm trials only. 

# Binomial likelihood, logit link, pairwise meta-analysis (2 treatments) 

# Fixed effect model 

model{     # *** PROGRAM STARTS 

for(i in 1:ns){    #   LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)   # vague priors for all trial baselines 

    for (k in 1:2) {    #  LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])    # binomial likelihood 

        logit(p[i,k]) <- mu[i] + d[k]    # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]           # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   #Deviance contribution 

            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))  

  } 

    resdev[i] <- sum(dev[i,])   #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])   #Total Residual Deviance 

d[1]<- 0     # treatment effect is zero for reference treatment 

d[2] ~ dnorm(0,.0001)    # vague prior for treatment effect 

}     # *** PROGRAM ENDS  

 

# Initial values 

#chain 1 

list(d=c( NA, 0),  mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, -3, -3,0, 3, 5, -3, -3, -1, -3, -7, -3, -3)) 

 

All code presented below is completely general and will be suitable for fitting pairwise or 

network meta-analyses with any number of treatments and multi-arm trials. We also provide 

an indication of the relevant parameters to monitor for inference and model checking for the 

various programs. 
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The nodes to monitor for the fixed effects models are the same as those for the random effects 

models, except that there is no heterogeneity parameter. 

This example and results are described in Section 2.1 of the paper (Table 1 and Table 2). The 

WinBUGS code for random effects is given in program 1(c) and the fixed effects code is given 

in program 1(d). 

Program 1(c): Binomial likelihood, logit link, Random Effects (Blocker example) 

# Binomial likelihood, logit link 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     # LOOP THROUGH STUDIES 

     w[i,1] <- 0     # adjustment for multi-arm trials is zero for control arm 

     delta[i,1] <- 0     # treatment effect is zero for control arm 

     mu[i] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

     for (k in 1:na[i])  {     #  LOOP THROUGH ARMS 

          r[i,k] ~ dbin(p[i,k],n[i,k])    # binomial likelihood 

          logit(p[i,k]) <- mu[i] + delta[i,k]   # model for linear predictor 

          rhat[i,k] <- p[i,k] * n[i,k]    # expected value of the numerators  

          dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 

            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))  

      } 

     resdev[i] <- sum(dev[i,1:na[i]])   #  summed residual deviance contribution for this trial 

     for (k in 2:na[i]) {     # LOOP THROUGH ARMS 

          delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 

          md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]    # mean of LOR distributions (with multi-arm trial correction) 

          taud[i,k] <- tau *2*(k-1)/k   # precision of LOR distributions (with multi-arm trial correction) 

          w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 

          sw[i,k] <- sum(w[i,1:k-1])/(k-1)   # cumulative adjustment for multi-arm trials 

         } 

  }    

totresdev <- sum(resdev[])    #Total Residual Deviance 

d[1] <- 0      # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

sd ~ dunif(0,5)     # vague prior for between-trial SD. ALTERNATIVES BELOW  

tau <- pow(sd,-2)     # between-trial precision = (1/between-trial variance) 

}      # *** PROGRAM ENDS  

 

Alternative prior distributions can be used for the Random Effects Variance. For example, the 

last two lines above can be replaced by a vague Gamma prior on the precision parameter, which 

is sometimes also referred to as a vague inverse Gamma prior on the variance: 

 

tau ~ dgamma(.001,.001)   # vague gamma prior on the precision  

sd <- pow(tau,-0.5)  

 

See Section 6.2 in the main document for further discussion of prior distributions. 

Additional code can be added before the closing brace to estimate all the pair-wise Log Odds 

Ratios and Odds Ratios, to generate ranking statistics and the probability that each treatment is 

the best treatment, and to produce estimates of absolute effects, given additional information 

on the absolute treatment effect on one of the treatments. In addition, given an assumption 
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about the absolute effect of one treatment, it is possible to express the treatment effect on other 

scales (risk difference, relative risk), or number needed to treat, and to obtain confidence 

intervals for all these quantities. This is illustrated below. 

 

################################################################################ 

# Extra code for all odds ratios and log odds ratios, ranking, and absolute effects, and relative effects 

# on alternative scales: Numbers Needed to Treat, Risk Difference, Relative Risks 

################################################################################ 

# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2 

for (c in 1:(nt-1)) {   

     for (k in (c+1):nt)  {  

          or[c,k] <- exp(d[k] - d[c]) 

          lor[c,k] <- (d[k]-d[c]) 

         }   

     } 

 

# ranking on relative scale 

for (k in 1:nt) {  

      rk[k] <- nt+1-rank(d[],k) # assumes events are “good” 

#    rk[k] <- rank(d[],k) # assumes events are “bad” 

      best[k] <- equals(rk[k],1) #calculate probability that treat k is best 

      for (h in 1:nt){  prob[h,k] <- equals(rk[k],h)  } # calculates probability that treat k is h-th best 

     } 

 

# Provide estimates of treatment effects T[k] on the natural (probability) scale  

# Given a Mean Effect, meanA, for ‘standard’ treatment 1, with precision (1/variance) precA 

A ~ dnorm(meanA,precA) 

for (k in 1:nt) { logit(T[k]) <- A + d[k]  } 

 

# Provide estimates of number needed to treat NNT[k], Risk Difference RD[k],  

# and Relative Risk RR[k], for each treatment, relative to treatment 1 

for (k in 2:nt) {  

    NNT[k] <- 1/(T[k] - T[1]) # assumes events are “good” 

#  NNT[k] <- 1/(T[1]- T[k]) # assumes events are “bad” 

    RD[k] <- T[k] - T[1] 

    RR[k] <- T[k]/T[1] 

   } 

 

The data structure has two components: a list specifying the number of treatments nt and 

number of studies ns. Both data components need to be loaded into WinBUGS for the program 

to run. The main body of data is in a vector format, in the order r[,1]  then n[,1], the numerators 

and denominators for the first treatment,  then r[,2]  then n[,2], the numerators and denominators 

for the second listed treatment, then t[,1] and t[,2], the treatment number identifiers for the first 

and second listed treatments, and finally the number of arms in each trial, na[]. The purpose for 

this structure becomes clearer in datasets with multi-arm trials. An important feature of the 

code presented is the assumption that the treatments are always presented in ascending 

(numerical) order and that treatment 1 is taken as the reference treatment. This rule is crucial 

when conducting network meta-analysis to ensure the correct relative effects are estimated.  
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We strongly recommend the use of the column data format shown here in preference to the list 

format that WinBUGS also allows, and the use of comments to add trial names or references. 

This facilitates data checking. 

 

# Data (Blocker example) 

list(nt=2, ns=22) 

 

r[,1] n[,1] r[,2] n[,2] t[,1] t[,2] na[] 

3 39 3 38 1 2 2 

14 116 7 114 1 2 2 

11 93 5 69 1 2 2 

127 1520 102 1533 1 2 2 

27 365 28 355 1 2 2 

6 52 4 59 1 2 2 

152 939 98 945 1 2 2 

48 471 60 632 1 2 2 

37 282 25 278 1 2 2 

188 1921 138 1916 1 2 2 

52 583 64 873 1 2 2 

47 266 45 263 1 2 2 

16 293 9 291 1 2 2 

45 883 57 858 1 2 2 

31 147 25 154 1 2 2 

38 213 33 207 1 2 2 

12 122 28 251 1 2 2 

6 154 8 151 1 2 2 

3 134 6 174 1 2 2 

40 218 32 209 1 2 2 

43 364 27 391 1 2 2 

39 674 22 680 1 2 2 

END 

 

# Initial values 

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d=c( NA, 0), sd=1, mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), sd=4, mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2), sd=2, mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, -3, -3,0, 3, 5, -3, -3, -1, -3, -7, -3, -3)) 

 

To obtain the posterior summaries of the parameters of interest for inference, the nodes d and 

sd (in the random effects model only) need to be monitored. To obtain the posterior means of 

the parameters required to assess model fit and model comparison, dev, totresdev and the DIC 

(from the WinBUGS DIC tool), need to be monitored.  In addition, to calculate the leverage 

for each data point and to draw leverage plots, rhat needs to be monitored. 

Program 1(d):  Binomial likelihood, logit link, Fixed Effects (Blocker example) 

# Binomial likelihood, logit link 

# Fixed effects model 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     # LOOP THROUGH STUDIES 

     mu[i] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

     for (k in 1:na[i])  {     #  LOOP THROUGH ARMS 
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          r[i,k] ~ dbin(p[i,k],n[i,k])    # binomial likelihood 

          logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]  # model for linear predictor 

          rhat[i,k] <- p[i,k] * n[i,k]    # expected value of the numerators  

          dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))      #Deviance contribution 

             +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    

        } 

     resdev[i] <- sum(dev[i,1:na[i]])   # summed residual deviance contribution for this trial 

     }    

totresdev <- sum(resdev[])    #Total Residual Deviance 

d[1]<-0      # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

}      # *** PROGRAM ENDS  

 

# Initial values 

#chain 1 

list(d=c( NA, 0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2),  mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, -3, -3,0, 3, 5, -3, -3, -1, -3, -7, -3, -3)) 

 

 

EXAMPLE 2.  DIETARY FAT 

In a Cochrane Review of randomised controlled trials to assess the effect of change in dietary 

fats on total and cardiovascular mortality,104 data extracted was in the form of rates and given 

as the number of events per person-years observed (Table A2).   

 

Table A2 Dietary fat example: Study names and treatment codes for the 10 included studies and person-

years and total mortality observed in each study. 

 Treatment Person-yrs obs Total mortality Number randomised 

 control diet diet 2 control diet diet 2 control diet diet 2 control diet diet 2 

Study name and ID t[,1] t[,2] t[,3] E[,1] E[,2] E[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] 

1.DART 1 2  1917 1925  113 111  1015 1018  

2.London Corn /Olive 1 2 2 43.6 41.3 38 1 5 3 26 28 26 

3.London Low Fat 1 2  393.5 373.9  24 20  129 123  

4.Minnesota Coronary 1 2  4715 4823  248 269  4516 4516  

5.MRC Soya 1 2  715 751  31 28  194 199  

6.Oslo Diet-Heart 1 2  885 895  65 48  206 206  

7.STARS 1 2  87.8 91  3 1  30 30  

8.Sydney Diet-Heart 1 2  1011 939  28 39  237 221  

9.Veterans Administration 1 2  1544 1588  177 174  422 424  

10.Veterans Diet & Skin CA 1 2  125 123  2 1  67 66  

 

Most of the trials compared only one reduced fat dietary intervention with a control diet (non-

reduced fat). However, the ‘London Corn/Olive’ trial compared two types of reduced fat diets 
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against control (for more details see Hooper et al.104). For the purpose of this example we 

considered the two different types of diet as the same intervention (treatment 2), but kept the 

treatment arms separately, so that in a random effects model, this trial will provide two 

correlated estimates of the trial-specific treatment effect δi,12 and in the fixed effects model, 

both arms will contribute to the estimate of the common treatment effect d12.  

The model for this type of data is outlined in Section 3.1. The WinBUGS code for random 

effects is given in program 2(a) and the fixed effects code is given in program 2(b).   

Program 2(a):  Poisson likelihood, log link, Random Effects (Dietary fat example) 

# Poisson likelihood, log link 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     # LOOP THROUGH STUDIES 

    w[i,1] <- 0     # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0     # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        r[i,k] ~ dpois(theta[i,k])    # Poisson likelihood 

        theta[i,k] <- lambda[i,k]*E[i,k]   # failure rate * exposure 

        log(lambda[i,k]) <- mu[i] + delta[i,k]   # model for linear predictor 

        dev[i,k] <- 2*((theta[i,k]-r[i,k]) + r[i,k]*log(r[i,k]/theta[i,k])) #Deviance contribution 

     } 

    resdev[i] <- sum(dev[i,1:na[i]])   #  summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {     # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud[i,k])   # trial-specific LOR distributions 

        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]      # mean of LOR distributions (with multi-arm trial correction) 

        taud[i,k] <- tau *2*(k-1)/k     # precision of LOR distributions (with multi-arm trial correction) 

        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)    # cumulative adjustment for multi-arm trials 

      } 

  }    

totresdev <- sum(resdev[])    #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

sd ~ dunif(0,5)     # vague prior for between-trial SD 

tau <- pow(sd,-2)     # between-trial precision = (1/between-trial variance) 

}       # *** PROGRAM ENDS  

 

As before, additional code can be added to monitor all the K(K-1)/2 log hazard ratios and hazard 

ratios when there are more than 2 treatments: 

 

# pairwise HRs and LHRs for all possible pair-wise comparisons, if nt>2 

for (c in 1:(nt-1)) {    

       for (k in (c+1):nt)  {   

              lhr[c,k] <- (d[k]-d[c]) 

              log(hr[c,k]) <- lhr[c,k] 

         }   

     } 

 

or to rank treatments and monitor the probabilities that each is best, and to generate absolute 

rates for each treatment. For example if, on the basis of some external data we believe that the 



64 

 

log-rate for Treatment 1 has mean -3, and precision 1.77, then we can generate absolute rates 

for other treatments as follows: 

 

A ~ dnorm(-3,1.77) 

for (k in 1:nt) { log(T[k]) <- A + d[k]  } 

 

A further variable that may be required for cost-effectiveness modelling might be the 

proportion of patients that would be expected to have an event, after a follow-up of, say, 3 

months, under each treatment. In this example the rates are per year, so: 

 

for (k in 1:nt) { p[k] <- 1-exp(-T[k]*0.25)  } 

 

The data structure again has two components: a list specifying the number of treatments nt and 

number of studies ns. Both data components need to be loaded into WinBUGS for the program 

to run. The main body of data is in a vector format, and we need to allow for a 3-arm trial. 

Three places are therefore required to specify the treatments t[,], the exposure times E[,] and the 

number of events r[,] in each arm; “NA” indicates that the data is missing for a particular cell. As 

before na[] is the number of arms in each study. Text can be included after a hash symbol for 

ease of reference to the original data source. 

 

# Data (Dietary fat example) 

list(ns=10, nt=2)    

 

t[,1] t[,2] t[,3] E[,1] E[,2] E[,3] r[,1] r[,2] r[,3] na[] #ID 

1 2 NA 1917 1925 NA 113 111 NA 2 #2 DART 

1 2 2 43.6 41.3 38 1 5 3 3 #10 London Corn /Olive 

1 2 NA 393.5 373.9 NA 24 20 NA 2 #11 London Low Fat 

1 2 NA 4715 4823 NA 248 269 NA 2 #14 Minnesota Coronary 

1 2 NA 715 751 NA 31 28 NA 2 #15 MRC Soya 

1 2 NA 885 895 NA 65 48 NA 2 #18 Oslo Diet-Heart 

1 2 NA 87.8 91 NA 3 1 NA 2 #22 STARS 

1 2 NA 1011 939 NA 28 39 NA 2 #23 Sydney Diet-Heart 

1 2 NA 1544 1588 NA 177 174 NA 2 #26 Veterans Administration 

1 2 NA 125 123 NA 2 1 NA 2        #27 Veterans Diet & Skin CA 

END 

 

# Initial Values  

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d=c( NA, 0), sd=1, mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), sd=4, mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2), sd=2, mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0)) 
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To get the posterior summaries of the parameters of interest for inference, the nodes d and sd 

(in the random effects model only) need to be monitored. To obtain the posterior means of the 

parameters required to assess model fit and model comparison, dev, totresdev and the DIC (from 

the WinBUGS the DIC tool), need to be monitored.  In addition, to calculate the leverage for 

each data point and to draw leverage plots, theta needs to be monitored. 

Program 2(b):  Poisson likelihood, log link, Fixed Effects (Dietary fat) 

# Poisson likelihood, log link 

# Fixed effects model for multi-arm trials 

model{       # *** PROGRAM STARTS 

for(i in 1:ns){      #   LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)     # vague priors for all trial baselines 

    for (k in 1:na[i]) {      #  LOOP THROUGH ARMS 

        r[i,k] ~ dpois(theta[i,k])     # Poisson likelihood 

        theta[i,k] <- lambda[i,k]*E[i,k]    # event rate * exposure 

        log(lambda[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]]   # model for linear predictor 

        dev[i,k] <- 2*((theta[i,k]-r[i,k]) + r[i,k]*log(r[i,k]/theta[i,k]))     #Deviance contribution 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])    #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }    # vague priors for treatment effects 

}       # *** PROGRAM ENDS  

 

# Initial Values 

#chain 1 

list(d=c( NA, 0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) 

#chain 2 

list(d=c( NA, -1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3)) 

#chain 3 

list(d=c( NA, 2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0)) 

RESULTS 

The results from the two models (3 chains: 20,000 iterations after a burn-in of 20,000 for the 

FE model and 100,000 iterations after a burn-in of 100,000 for the RE model) are compared in 

Table A3. The random and fixed effects models are indistinguishable in terms of model fit, and 

both appear to fit the data well in that 
res
D  is close to 21, the number of data points.  The 

posterior median of the pooled log-rate of a reduced fat diet, compared to the control diet is -

0.01 in the FE model with 95% Credible Interval (-0.11, 0.10) suggesting no difference in the 

number of cardiovascular mortalities in each group. The posterior medians of the absolute rates 

of mortality (and their 95% Credible intervals), having assumed that the log-rate of mortality 

on the control diet has mean -3 and precision 1.77, on the control and reduced fat diets are the 

same (Table A3).   
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Table A3 Dietary fat example: posterior mean, standard deviation (sd), median and 95% Credible interval 

(CrI) for both the fixed and random effects models for the treatment effect d12, absolute effects of the control 

diet (T1) and the reduced fat diet (T2) for a log-rate of mortality on the control diet with mean -3 and 

precision 1.77, heterogeneity parameter τ and model fit statistics. 

 FE model RE model 

 mean sd median CrI mean sd median CrI 

d12 -0.01 0.054 -0.01 (-0.11,0.10) -0.02 0.09 -0.01 (-0.19,0.16) 

T1 0.06 0.04 0.05 (0.01,0.18) 0.06 0.04 0.05 (0.01,0.18) 

T2 0.06 0.04 0.05 (0.01,0.18) 0.06 0.04 0.05 (0.01,0.18) 

τ - - - - 0.13 0.12 0.10 (0.00,0.43) 

res
D * 22.32    21.5    

pD 10.9    13.3    

DIC 33.2    34.8    

* Compare to 21 data points  

 

EXAMPLE 3. DIABETES 

Here we show code for a linear model on the log rate scale based on binomial data gathered at 

different follow-up times. We use as an illustration a network meta-analysis to assess the 

incidence of diabetes in randomised controlled trials of antihypertensive drugs.105 The outcome 

was new cases of diabetes observed over the trial duration period (measured in years) for 6 

different drugs: Diuretic (treatment 1), Placebo (treatment 2), β blocker (treatment 3), CCB 

(treatment 4), ACE inhibitor (treatment 5) and ARB (treatment 6). In this example of a network 

meta-analysis, the reference treatment chosen was diuretic, as recommended in this field – for 

more details see Elliott & Meyer.105 The data are presented in Table A4 and the network 

diagram in Figure A3.  
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Table A4 Diabetes example: study names, follow-up time in years, treatments compared, total number of 

new cases of diabetes and number of patients in each trial arm, where Diuretic = treatment 1, Placebo = 

treatment 2, β blocker = treatment 3, CCB = treatment 4, ACE inhibitor = treatment 5 and ARB = 

treatment 6.105 

 
Study Follow-up 

(in years) 

Treatment 

New cases of 

diabetes Total number of patients 

 arm 1 arm 2 arm 3 arm 1 arm 2 arm 3 arm 1 arm 2 arm 3 

Study ID time[] t[,1] t[,2] t[,3] r[,1] r[,2] r[,3] n[,1] n[,2] n[,3] 

1.MRC-E 5.8 1 2 3 43 34 37 1081 2213 1102 

2.EWPH 4.7 1 2  29 20  416 424  

3.SHEP 3 1 2  140 118  1631 1578  

4.HAPPHY 3.8 1 3  75 86  3272 3297  

5.ALLHAT 4 1 4 5 302 154 119 6766 3954 4096 

6.INSIGHT 3 1 4  176 136  2511 2508  

7.ANBP-2 4.1 1 5  200 138  2826 2800  

8.ALPINE 1 1 6  8 1  196 196  

9.FEVER 3.3 2 4  154 177  4870 4841  

10.DREAM 3 2 5  489 449  2646 2623  

11.HOPE 4.5 2 5  155 102  2883 2837  

12.PEACE 4.8 2 5  399 335  3472 3432  

13.CHARM 3.1 2 6  202 163  2721 2715  

14.SCOPE 3.7 2 6  115 93  2175 2167  

15.AASK 3.8 3 4 5 70 32 45 405 202 410 

16.STOP-2 4 3 4 5 97 95 93 1960 1965 1970 

17.ASCOT 5.5 3 4  799 567  7040 7072  

18.NORDIL 4.5 3 4  251 216  5059 5095  

19.INVEST 4 3 4  665 569  8078 8098  

20.CAPPP 6.1 3 5  380 337  5230 5183  

21.LIFE 4.8 3 6  320 242  3979 4020  

22.VALUE 4.2 4 6  845 690  5074 5087  
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Figure A3 Diabetes network: each edge represents a treatment, connecting lines indicate pairs of treatments 

which have been directly compared in randomised trials. The numbers on the lines indicate the numbers 

of trials making that comparison and the numbers by the treatment names are the treatment codes used in 

the modelling. 

 

The model for this type of data is outlined in Section 3.2. The WinBUGS code for random 

effects is given in program 3(a) and the fixed effects code is given in program 3(b).   

Program 3(a):  Binomial likelihood, cloglog link, Random Effects (Diabetes example) 

# Binomial likelihood, cloglog link 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     #   LOOP THROUGH STUDIES 

    w[i,1] <- 0     # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0     # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])    # Binomial likelihood 

        cloglog(p[i,k]) <- log(time[i]) + mu[i] + delta[i,k]     # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]    # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))    

            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) #Deviance contribution 

} 

    resdev[i] <- sum(dev[i,1:na[i]])   #  summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {     # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud[i,k])    # trial-specific LOR distributions 

        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]   # mean of LOR distributions (with multi-arm correction) 

        taud[i,k] <- tau *2*(k-1)/k    # precision of LOR distributions (with multi-arm correction) 

        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)    # cumulative adjustment for multi-arm trials 

      } 

  }    

totresdev <- sum(resdev[])    #Total Residual Deviance 

d[1]<-0      # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 
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sd ~ dunif(0,5)     # vague prior for between-trial SD 

tau <- pow(sd,-2)     # between-trial precision = (1/between-trial variance) 

}       # *** PROGRAM ENDS  

 

Additional code to generate all the treatment contrasts, absolute effects, ranking can be added, 

as with the Poisson – log link models.  To generate absolute probabilities for each treatment, 

if, on the basis of some external data, we believe that the cloglog of the probability of an event 

for Treatment 1, after a time period of 3 years, has mean -4.2, and precision 1.11, then we can 

generate absolute probabilities for other treatments as follows: 

 

A ~ dnorm(-4.2,1.11) 

for (k in 1:nt) { cloglog(T[k]) <- log(3) + A + d[k]  } 

 

The main body of data is in the same format as the binomial likelihood with logit link in 

Example 1, with an additional vector for follow-up time, time[]. Note that treatments are ordered 

numerically so that the treatment in arm 2 has a higher code than the treatment in arm 1, and 

the treatment in arm 3 has a higher code than the treatment in arm 2. This is essential to ensure 

the correct relative effects are obtained. 

 

# Data (Diabetes example) 

list(ns=22, nt=6)    

 

time[] t[,1] r[,1] n[,1] t[,2] r[,2] n[,2] t[,3] r[,3] n[,3] na[] #Study 

5.8 1 43 1081 2 34 2213 3 37 1102 3 #MRC-E 38 

4.7 1 29 416 2 20 424 NA NA NA 2 #EWPH 32 

3 1 140 1631 2 118 1578 NA NA NA 2 #SHEP 42 

3.8 1 75 3272 3 86 3297 NA NA NA 2 #HAPPHY33 

4 1 302 6766 4 154 3954 5 119 4096 3 #ALLHAT 26 

3 1 176 2511 4 136 2508 NA NA NA 2 #INSIGHT35 

4.1 1 200 2826 5 138 2800 NA NA NA 2 #ANBP-2 18 

1 1 8 196 6 1 196 NA NA NA 2 #ALPINE 27 

3.3 2 154 4870 4 177 4841 NA NA NA 2 #FEVER 20 

3 2 489 2646 5 449 2623 NA NA NA 2 #DREAM 31 

4.5 2 155 2883 5 102 2837 NA NA NA 2 #HOPE 34 

4.8 2 399 3472 5 335 3432 NA NA NA 2 #PEACE 40 

3.1 2 202 2721 6 163 2715 NA NA NA 2 #CHARM 30 

3.7 2 115 2175 6 93 2167 NA NA NA 2 #SCOPE 41 

3.8 3 70 405 4 32 202 5 45 410 3 #AASK 25 

4 3 97 1960 4 95 1965 5 93 1970 3 #STOP-2 43 

5.5 3 799 7040 4 567 7072 NA NA NA 2 #ASCOT 28 

4.5 3 251 5059 4 216 5095 NA NA NA 2 #NORDIL 39 

4 3 665 8078 4 569 8098 NA NA NA 2 #INVEST 36 

6.1 3 380 5230 5 337 5183 NA NA NA 2 #CAPPP 29 

4.8 3 320 3979 6 242 4020 NA NA NA 2 #LIFE 37 

4.2 4 845 5074 6 690 5087 NA NA NA 2 #VALUE 44 

END 

 

# Initial Values  

# In this case it is advisable to initialise delta to avoid numerical errors 

#chain 1 

list(d=c(NA,0,0,0,0,0),  sd=1,  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0), 
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delta= structure(.Data= c(NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 

0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0,0, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, 

NA, 0, NA), .Dim=c(22, 3))) 

#chain 2 

list(d=c(NA,-1,4,-1,2,3),  sd=3,  mu=c(1,1,0,1,0,    0,1,0,0,0,    1,1,0,0,0,   0,1,0,0,0,  1,1), 

delta= structure(.Data= c(NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 

0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0,0, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, 

NA, 0, NA), .Dim=c(22, 3))) 

#chain 3 

list(d=c(NA,1,4,-3,-2,3),  sd=4.5,  mu=c(1,1,0,1,0,    0,1,0,0,0,    1,1,0,-2,0,   0,1,0,-2,0,  1,1), 

delta= structure(.Data= c(NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 

0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0,0, NA, 0, 0, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, NA, 0, NA, 

NA, 0, NA), .Dim=c(22, 3))) 

Program 3(b):  Binomial likelihood, cloglog link, Fixed Effects (Diabetes example) 

# Binomial likelihood, cloglog link 

# Fixed effects model  

model{       # *** PROGRAM STARTS 

for(i in 1:ns){      # LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)     # vague priors for all trial baselines 

    for (k in 1:na[i]) {      # LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])     # Binomial likelihood 

        cloglog(p[i,k]) <- log(time[i]) + mu[i] + d[t[i,k]] - d[t[i,1]]     # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]     # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   

            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))     #Deviance contribution 

} 

    resdev[i] <- sum(dev[i,1:na[i]])     #  summed residual deviance contribution for this trial 

}    

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }    # vague priors for treatment effects 

}       # *** PROGRAM ENDS  

 

# Initial Values  

#chain 1 

list(d=c(NA,0,0,0,0,0),  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0) ) 

#chain 2 

list(d=c(NA,1,1,1,1,1),  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0)  ) 

#chain 3 

list(d=c(NA,1,1,1,1,2),  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0)  ) 

RESULTS 

Both fixed and random effects models were fitted (3 chains: 100,000 iterations after a burn-in 

of 50,000). From the results presented in Table A5, we see that the fixed effects model has a 

very poor fit and the random effects model should be preferred for inference.   
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Table A5 Diabetes example: posterior mean, standard deviation (sd), median and 95% Credible interval 

(CrI) for both the fixed and random effects models for the treatment effects of Placebo (d12), β blocker (d13), 

CCB (d14), ACE inhibitor (d15) and ARB (d16) relative to Diuretic; absolute effects of diuretic (T1) Placebo 

(T2), β blocker (T3), CCB (T4), ACE inhibitor (T5) and ARB (T6); heterogeneity parameter τ and model fit 

statistics. 

 FE model RE model 

 mean sd median CrI mean sd median CrI 

d12 -0.25 0.06 -0.25 (-0.36,-0.14) -0.29 0.09 -0.29 (-0.47,-0.12) 

d13 -0.06 0.06 -0.06 (-0.17,0.05) -0.07 0.09 -0.07 (-0.25,0.10) 

d14 -0.25 0.05 -0.25 (-0.36,-0.15) -0.24 0.08 -0.24 (-0.41,-0.08) 

d15 -0.36 0.05 -0.36 (-0.46,-0.25) -0.40 0.09 -0.40 (-0.58,-0.24) 

d16 -0.45 0.06 -0.45 (-0.58,-0.33) -0.47 0.11 -0.47 (-0.70,-0.27) 

T1 0.065 0.067 0.044 (0.01,0.25) 0.065 0.067 0.044 (0.01,0.25) 

T2 0.052 0.055 0.034 (0.01,0.20) 0.050 0.053 0.033 (0.01,0.20) 

T3 0.062 0.064 0.042 (0.01,0.24) 0.061 0.064 0.041 (0.01,0.24) 

T4 0.051 0.055 0.034 (0.01,0.20) 0.052 0.056 0.035 (0.01,0.20) 

T5 0.047 0.050 0.031 (0.00,0.18) 0.045 0.048 0.030 (0.00,0.18) 

T6 0.043 0.046 0.028 (0.00,0.17) 0.042 0.046 0.028 (0.00,0.17) 

τ     0.13 0.04 0.12 (0.05,0.23) 

res
D * 78.25    53.7    

pD 27.0    38.0    

DIC 105.2    91.7    

* Compare to 48 data points  

 

The posterior median of the pooled treatment effects, on the complementary log-log scale, of 

treatments 2 to 6 relative to the reference treatment show a beneficial effect of all the treatment 

with the exception of treatment 3 (Table A5).  

The posterior medians of the absolute probabilities of developing diabetes after a period of 

three years, assuming that the cloglog of the probability of developing diabetes on Placebo has 

mean -4.2 and precision 1.11, on each of the treatments are between 3 and 4% (Table A5). 
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EXAMPLE 4. SCHIZOPHRENIA 

In a network meta-analysis of trials of antipsychotic medication for the prevention of relapse 

in people with schizophrenia, 17 trials comparing 9 treatments including placebo were 

included.45 The data available from each trial are the number of patients in each of three 

outcome states at the end of follow-up.  The outcome states are: relapse (j=1), discontinuation 

of treatment due to intolerable side effects (j=2), and discontinuation for other reasons (j=3), 

which might include inefficacy of treatment that did not fulfil all criteria for relapse, or loss to 

follow-up. Patients not reaching any of these end-points at the end of follow-up were 

considered as censored observations, and still in remission (j=4) (for more details see Ades et 

al.45). The data are presented in Table A6 and the network diagram in Figure A4. 

 

Table A6 Schizophrenia example: study names, follow-up time in weeks, treatments compared, total 

number of events for each of the four states and total number of patients in each trial arm, where Placebo 

= treatment 1, Olanzapine = 2, Amisulpride = 3, Zotepine = 4, Aripripazole = 5, Ziprasidone = 6, 

Paliperidone = 7, Haloperidol = 8, Risperidone = 9.45 

    number of events   

 
follow-

up  

(weeks) 

treatment relapse 

discontinuation 

due to 

intolerable side 

effects 

discontinuation for 

other reasons 

Patient still in 

remission 

total no of 

patients 

  arm 1 arm 2 arm 1 arm 2 arm 1 arm 2 arm 1 arm 2 arm 1 arm 2 arm 1 arm 2 

Study f[] t[,1] t[,2] r[,1,1] r[,2,1] r[,1,2] r[,2,2] r[,1,3] r[,2,3] r[,1,4] r[,2,4] n[,1] n[,2] 

1 42 1 2 28 9 12 2 15 19 47 194 102 224 

2 46 1 2 7 10 0 2 4 16 2 17 13 45 

3 46 1 2 5 6 2 10 5 15 2 17 14 48 

4 26 1 3 5 4 5 1 39 26 23 38 72 69 

5 26 1 4 21 4 4 16 24 21 9 20 58 61 

6 26 1 5 85 50 13 16 12 18 45 71 155 155 

7 52 1 6 43 71 11 19 7 28 10 88 71 206 

8 47 1 7 52 23 1 3 7 17 41 61 101 104 

9 28 2 6 11 8 6 5 44 33 10 9 71 55 

10 52 2 8 87 34 54 20 170 50 316 76 627 180 

11 52 2 8 28 29 9 14 26 25 78 66 141 134 

12 28 2 9 20 53 17 17 36 18 99 79 172 167 

13 52 3 8 5 9 3 5 2 2 19 15 29 31 

14 52 8 9 65 41 29 22 80 60 14 54 188 177 

15 104 8 9 8 4 0 3 4 4 18 22 30 33 
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Figure A4 Schizophrenia network: each edge represents a treatment, connecting lines indicate pairs of 

treatments which have been directly compared in randomised trials. The numbers on the lines indicate the 

numbers of trials making that comparison and the numbers by the treatment names are the treatment 

codes used in the modelling. 

 

A random effects model with different between-trial variation for each outcome and a fixed 

effects model were fitted, as outlined in Section 3.3. The WinBUGS code for the random effects 

model is given in program 4(a), and the fixed effect code is given in program 4(b).   

Program 4(a):  Multinomial likelihood (with competing risks), log link, Random Effects 

(Schizophrenia example) 

# Multinomial likelihood, log link (competing risks) 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     #   LOOP THROUGH STUDIES 

    for (m in 1:3) {     # LOOP OVER 3 ENDPOINTS 

        w[i,1,m] <- 0      # adjustment for multi-arm trials is zero for control arm 

        delta[i,1,m] <- 0    # treatment effect is zero for control arm 

        mu[i,m] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

      }  

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        r[i,k,1:4] ~ dmulti(p[i,k,1:4],n[i,k])   # multinomial likelihood 

        p[i,k,4] <- 1 - sum(p[i,k,1:3]) 

        slam[i,k] <- sum(lamda[i,k,])    # sum of the 3 hazard rates 

        for (m in 1:4) {      # LOOP OVER ALL ENDPOINTS 

            rhat[i,k,m] <- p[i,k,m]*n[i,k]       # predicted number events  

            dv[i,k,m] <- 2*r[i,k,m]*log(r[i,k,m]/rhat[i,k,m])      #Deviance contribution 

          } 

        dev[i,k] <- sum(dv[i,k,])    # deviance contribution for arm 

        for (m in 1:3) {     # LOOP THROUGH 3 ENDPOINTS  

# cumulative pr(failed) at each end point (per year), data in weeks 

            p[i,k,m] <- lamda[i,k,m] * (1-exp(-slam[i,k]*f[i]/52))/slam[i,k]     
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            log(lamda[i,k,m]) <- mu[i,m] + delta[i,k,m]     # model for linear predictor for each outcome 

        for (k in 2:na[i]) {    # LOOP THROUGH ARMS 

            delta[i,k,m] ~ dnorm(md[i,k,m],taud[i,k,m]) 

            md[i,k,m] <- d[t[i,k],m] - d[t[i,1],m] + sw[i,k,m]    # mean of LHR distributions (with multi-arm correction) 

            taud[i,k,m] <- tau[m] *2*(k-1)/k       # precision of LHR distributions with multi-arm correction 

            w[i,k,m] <- (delta[i,k,m] - d[t[i,k],m] + d[t[i,1],m])     # adjustment for multi-arm RCTs 

            sw[i,k,m] <- sum(w[i,1:k-1,m])/(k-1)   # cumulative adjustment for multi-arm trials 

          } 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])   #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])     #Total Residual Deviance 

for (m in 1:3) {     # LOOP THROUGH 3 END-POINTS 

    d[1,m]<-0     # treatment effect is zero for reference treatment 

    for (k in 2:nt){  d[k,m] ~ dnorm(0,.0001) }  # vague priors for treatment effects 

    sd[m] ~ dunif(0,5)     # vague prior for between-trial SD 

    tau[m] <- pow(sd[m],-2)    # between-trial precision = (1/between-trial variance) 

  } 

}       # *** PROGRAM ENDS  

 

Additional code to monitor all treatment contrasts and rank treatments can be added as before. 

Given values for the mean for each outcome, meanA = c(-0.078,-1.723,-0.7185), and precision, precA = 

c(1.6, 1.05, 0.61), of the hazards for each endpoint on Treatment 1, from external sources, absolute 

effects, and absolute probabilities of the competing outcomes occurring within a given time 

period, timeA, say, a 1-month (1/12=0.083 years) interval, could be monitored as follows: 

 

for (k in 1:nt) {pslam(k] <- sum(T[k,]) }       #LOOP THROUGH TREATMENTS, summing the 3 rates 

for (m in 1:3) {     # LOOP THROUGH 3 END-POINTS 

    A[m] ~ dnorm(meanA[m],precA[m]) 

    for (k in 1:nt) {     # LOOP THROUGH TREATMENTS 

          log(T[k,m]) <- A[m] + d[k,m]   

          cumpr[k,m] <- T[k,m] * (1-exp(-pslam[k]*timeA))/pslam[k] # cumulative pr(failed) at each end point 

     } 

  } 

 

The data structure again consists of a list specifying the number of treatments nt and number of 

studies ns, with the main body of data in a vector format; f[] represents the follow-up time in 

that trial. Only two columns are required for each arm variable since there are no multi-arm 

trials: t[,1] then t[,2] the treatment codes; then r[,k,j] the number of events for the k-th treatment, 

outcome j; then n[,1] and n[,2] the total number of individuals in each trial arm; and finally the 

number of arms in the study, na[], and the study identifiers commented out. Both data 

components need to be loaded into WinBUGS for the program to run. 

 

# Data (Schizophrenia example) 

list(ns=15, nt=9)    

 

f[] t[,1] t[,2] r[,1,1] r[,2,1] r[,1,2] r[,2,2] r[,1,3] r[,2,3] r[,1,4] r[,2,4] n[,1] n[,2]

 na[] #study ID 

42 1 2 28 9 12 2 15 19 47 194 102 224

 2 #1 
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46 1 2 7 10 0 2 4 16 2 17 13 45

 2 #2 

46 1 2 5 6 2 10 5 15 2 17 14 48

 2 #3 

26 1 3 5 4 5 1 39 26 23 38 72 69

 2 #4 

26 1 4 21 4 4 16 24 21 9 20 58 61

 2 #5 

26 1 5 85 50 13 16 12 18 45 71 155 155

 2 #6 

52 1 6 43 71 11 19 7 28 10 88 71 206

 2 #7 

47 1 7 52 23 1 3 7 17 41 61 101 104

 2 #8 

28 2 6 11 8 6 5 44 33 10 9 71 55

 2 #9 

52 2 8 87 34 54 20 170 50 316 76 627 180

 2 #10 

52 2 8 28 29 9 14 26 25 78 66 141 134

 2 #11 

28 2 9 20 53 17 17 36 18 99 79 172 167

 2 #12 

52 3 8 5 9 3 5 2 2 19 15 29 31

 2 #13 

52 8 9 65 41 29 22 80 60 14 54 188 177

 2 #14 

104 8 9 8 4 0 3 4 4 18 22 30 33

 2 #15 

END 

 

# Initial Values  

# In this case it is advisable to initialise delta to avoid numerical errors 

#chain 1 

list(d= structure(.Data= c(NA, NA, NA,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0), .Dim=c(9, 3)),  

sd=c(1, 1, 1),  

mu= structure(.Data= c(0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  

0,0,0), .Dim=c(15, 3)),  

delta= structure(.Data= c(NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0),  .Dim=c(15, 2, 3))   ) 

 

#chain 2 

list(d= structure(.Data= c(NA, NA, NA,   1,0,1,  0,0,1,  0,0,0,  0,0,1,  0,0,0,  0,0,0,  0,1,0,  0,0,1), .Dim=c(9, 3)),  

sd=c(1, 2, 1.5),  

mu= structure(.Data= c(0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  

0,0,0), .Dim=c(15, 3)),  

delta= structure(.Data= c(NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0),  .Dim=c(15, 2, 3))   ) 

 

#chain 3 

list(d= structure(.Data= c(NA, NA, NA,   -1,0,-1,  0,0,-1,  0,0,0,  0,0,-1,  0,0,0,  0,0,0,  0,-1,0,  0,0,-1), .Dim=c(9, 3)),  

sd=c(1, 2, 1.5),  

mu= structure(.Data= c(0,1,0,  0,1,0,  0,0,0,  0,0,1,  0,0,0,  0,0,1,  0,0,0,  0,0,1,  0,0,0,  0,1,0,   0,1,0,  0,0,0,  0,0,0,  1,0,1,  

0,0,0), .Dim=c(15, 3)),  

delta= structure(.Data= c(NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  

NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0,  NA,NA,NA,  0,0,0),  .Dim=c(15, 2, 3))  ) 

 

Readers experimenting with this example need to be aware of difficulties with starting values. 

We have found one set of starting values which converges, but to a different posterior. 
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Examples like this remind us of the importance of careful attention to the technical aspects of 

fitting models by Bayesian MCMC, and the need to look at the results obtained with different 

starting values.  This is also an example where inverse gamma priors on the between trial 

variance leads to faster convergence, and avoids spikes in the posterior distributions.45 

Program 4(b):  Multinomial likelihood (with competing risks), log link, Fixed Effects 

(Schizophrenia example) 

# Multinomial likelihood, log link (competing risks) 

# Fixed effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){     #   LOOP THROUGH STUDIES 

    for (m in 1:3) {     # LOOP OVER 3 ENDPOINTS 

        w[i,1,m] <- 0     # adjustment for multi-arm trials is zero for control arm 

        delta[i,1,m] <- 0    # treatment effect is zero for control arm 

        mu[i,m] ~ dnorm(0,.0001)    # vague priors for all trial baselines 

      } 

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        r[i,k,1:4] ~ dmulti(p[i,k,1:4],n[i,k])    # multinomial likelihood 

        p[i,k,4] <- 1 - sum(p[i,k,1:3]) 

        slam[i,k] <- sum(lamda[i,k,])    # sum of the 3 hazard rates 

        for (m in 1:4) {     # LOOP OVER ALL ENDPOINTS 

            rhat[i,k,m] <- p[i,k,m]*n[i,k]       # predicted number events (adjusting zero fitted values) 

            dv[i,k,m] <- 2*r[i,k,m]*log(r[i,k,m]/rhat[i,k,m])     #Deviance contribution 

          } 

        dev[i,k] <- sum(dev[i,k,])    # deviance contribution for arms 

        for (m in 1:3) {     # LOOP THORUGH ENDPOINTS 

            p[i,k,m] <- lamda[i,k,m] * (1-exp(-slam[i,k]*f[i]/52))/slam[i,k]   # cumulative pr(failed) at each end point 

            log(lamda[i,k,m]) <- mu[i,m] +  d[t[i,k],m] - d[t[i,1],m]   # model for linear predictor 

          } 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])   #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])    #Total Residual Deviance 

for (m in 1:3) {     # LOOP THORUGH ENDPOINTS 

    d[1,m]<-0      # treatment effect is zero for reference treatment 

    for (k in 2:nt){  d[k,m] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

  } 

}      # *** PROGRAM ENDS  

 

# Initial Values  

#chain 1 

list(d= structure(.Data= c(NA, NA, NA,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0), .Dim=c(9, 3)),  

mu= structure(.Data= c(0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  

0,0,0), .Dim=c(15, 3))   ) 

 

#chain 2 

list(d= structure(.Data= c(NA, NA, NA,   1,0,1,  0,0,1,  0,0,0,  0,0,1,  0,0,0,  0,0,0,  0,1,0,  0,0,1), .Dim=c(9, 3)),  

mu= structure(.Data= c(0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,  0,0,0,   0,0,0,  0,0,0,  0,0,0,  0,0,0,  

0,0,0), .Dim=c(15, 3))   ) 

 

#chain 3 

list(d= structure(.Data= c(NA, NA, NA,   -1,0,-1,  0,0,-1,  0,0,0,  0,0,-1,  0,0,0,  0,0,0,  0,-1,0,  0,0,-1), .Dim=c(9, 3)),  

mu= structure(.Data= c(0,5,0,  0,5,0,  0,0,0,  0,0,5,  0,0,0,  0,0,5,  0,0,0,  0,0,5,  0,0,0,  0,5,0,   0,5,0,  0,0,0,  0,0,0,  3,0,3,  

0,0,0), .Dim=c(15, 3)))  
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RESULTS 

Results (based on 3 chains: 100,000 iterations after a burn-in of 50,000 for the FE model and 

100,000 iterations after a burn-in of 10,000 for the RE model) are presented in Table A7. Note 

that the follow-up time data are entered in weeks, while the analysis delivers annual rates.  The 

model fit statistics suggest that the random effects model is a better fit to the data and the DIC 

shows that this model should be preferred. The log-hazard rates for each of the competing 

events and the absolute probabilities of the competing outcomes occurring within 1 month 

(assuming a baseline log-hazard as detailed above) are given in Table A7.  For a graphical 

representation of which treatment is best for each of the competing outcomes and further 

comments see Ades et al.45 

 

Table A7 Schizophrenia example: posterior mean, standard deviation (sd), median and 95% Credible 

interval (CrI) for both the fixed and random effects models for the treatment effects of Olanzapine (d12), 

Amisulpride (d13), Zotepine (d14), Aripripazole (d15), Ziprasidone (d16), Paliperidone (d17), Haloperidol (d18) 

and Risperidone (d19) relative to Placebo, absolute probabilities of reaching each of the outcomes for 

Placebo (Pr1), Olanzapine (Pr2), Amisulpride (Pr3), Zotepine (Pr4), Aripripazole (Pr5), Ziprasidone (Pr6), 

Paliperidone (Pr7), Haloperidol (Pr8) and Risperidone (Pr9); heterogeneity parameter τ for each of the three 

outcomes, and model fit statistics for the fixed and random effects models. 

 FE model RE model 

 mean sd median CrI mean sd median CrI 

Relapse 

d12 -1.57 0.23 -1.57 (-2.01,-1.13) -1.46 0.48 -1.47 (-2.39,-0.50) 
d13 -1.15 0.48 -1.14 (-2.10,-0.22) -0.97 0.80 -0.97 (-2.53,0.63) 
d14 -2.10 0.23 -0.52 (-0.96,-0.06) -2.10 0.99 -2.08 (-4.11,-0.19) 
d15 -0.73 0.19 -0.72 (-1.10,-0.36) -0.73 0.82 -0.73 (-2.37,0.92) 
d16 -1.12 0.20 -1.12 (-1.50,-0.73) -1.23 0.65 -1.23 (-2.56,0.05) 
d17 -1.02 0.26 -1.01 (-1.53,-0.53) -1.02 0.84 -1.02 (-2.70,0.66) 
d18 -0.90 0.26 -0.90 (-1.41,-0.38) -0.69 0.64 -0.71 (-1.93,0.63) 
d19 -1.27 0.28 -1.27 (-1.82,-0.71) -1.12 0.74 -1.13 (-2.59,0.37) 
Pr1 0.09 0.07 0.07 (0.02,0.29) 0.09 0.07 0.07 (0.02,0.29) 
Pr2 0.02 0.02 0.02 (0.00,0.08) 0.03 0.03 0.02 (0.00,0.10) 
Pr3 0.03 0.04 0.02 (0.00,0.14) 0.05 0.07 0.03 (0.00,0.23) 
Pr4 0.01 0.02 0.01 (0.00,0.06) 0.02 0.04 0.01 (0.00,0.10) 
Pr5 0.05 0.04 0.03 (0.01,0.16) 0.06 0.08 0.03 (0.00,0.27) 
Pr6 0.03 0.03 0.02 (0.00,0.11) 0.03 0.05 0.02 (0.00,0.15) 
Pr7 0.03 0.03 0.02 (0.00,0.12) 0.04 0.06 0.02 (0.00,0.20) 
Pr8 0.04 0.04 0.03 (0.01,0.14) 0.06 0.07 0.04 (0.00,0.24) 
Pr9 0.03 0.03 0.02 (0.00,0.10) 0.04 0.06 0.02 (0.00,0.19) 
τ     0.73 0.32 0.66 (0.30,1.53) 
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Discontinuation due to side effects 

d12 -1.33 0.34 -1.33 (-2.01,-0.67) -1.07 0.89 -1.14 (-2.67,0.97) 
d13 -1.67 0.68 -1.64 (-3.09,-0.41) -1.75 1.39 -1.72 (-4.63,0.99) 
d14 1.15 0.59 1.12 (0.06,2.41) 1.14 1.56 1.12 (-2.05,4.34) 
d15 0.02 0.38 0.02 (-0.72,0.78) 0.02 1.49 0.02 (-3.10,3.12) 
d16 -1.05 0.34 -1.06 (-1.71,-0.35) -0.98 1.16 -1.02 (-3.28,1.52) 
d17 1.31 1.43 1.16 (-1.10,4.58) 1.35 2.05 1.24 (-2.48,5.76) 
d18 -0.90 0.39 -0.90 (-1.67,-0.15) -0.84 1.14 -0.86 (-3.16,1.56) 
d19 -1.34 0.42 -1.33 (-2.17,-0.52) -0.71 1.40 -0.89 (-3.08,2.63) 
Pr1 0.02 0.02 0.01 (0.00,0.09) 0.02 0.03 0.01 (0.00,0.09) 
Pr2 0.01 0.01 0.00 (0.00,0.03) 0.01 0.04 0.00 (0.00,0.07) 
Pr3 0.01 0.01 0.00 (0.00,0.03) 0.01 0.05 0.00 (0.00,0.06) 
Pr4 0.08 0.10 0.04 (0.00,0.35) 0.12 0.19 0.04 (0.00,0.82) 
Pr5 0.02 0.03 0.01 (0.00,0.10) 0.05 0.12 0.01 (0.00,0.38) 
Pr6 0.01 0.01 0.00 (0.00,0.04) 0.02 0.06 0.01 (0.00,0.11) 
Pr7 0.13 0.20 0.04 (0.00,0.84) 0.16 0.26 0.05 (0.00,0.97) 
Pr8 0.01 0.01 0.01 (0.00,0.04) 0.02 0.06 0.01 (0.00,0.11) 
Pr9 0.01 0.01 0.00 (0.00,0.03) 0.03 0.10 0.01 (0.00,0.26) 
τ     1.20 0.80 1.03 (0.14,3.31) 

Discontinuation due to other reasons 

d12 -0.52 0.23 -0.52 (-0.96,-0.06) -0.51 0.26 -0.52 (-0.99,0.03) 
d13 -0.60 0.25 -0.60 (-1.11,-0.11) -0.59 0.33 -0.60 (-1.23,0.07) 
d14 -0.48 0.32 -0.48 (-1.10,0.15) -0.48 0.40 -0.49 (-1.25,0.30) 
d15 0.24 0.38 0.23 (-0.50,1.00) 0.23 0.46 0.24 (-0.64,1.11) 
d16 -0.44 0.27 -0.44 (-0.96,0.10) -0.44 0.33 -0.45 (-1.06,0.24) 
d17 0.74 0.47 0.73 (-0.13,1.70) 0.75 0.52 0.76 (-0.26,1.79) 
d18 -0.43 0.26 -0.44 (-0.94,0.08) -0.43 0.32 -0.43 (-1.04,0.22) 
d19 -1.07 0.29 -1.07 (-1.64,-0.51) -1.08 0.36 -1.10 (-1.76,-0.33) 
Pr1 0.07 0.10 0.04 (0.00,0.37) 0.07 0.10 0.04 (0.00,0.37) 
Pr2 0.05 0.08 0.02 (0.00,0.26) 0.05 0.08 0.02 (0.00,0.27) 
Pr3 0.05 0.07 0.02 (0.00,0.24) 0.05 0.07 0.02 (0.00,0.25) 
Pr4 0.05 0.08 0.02 (0.00,0.27) 0.05 0.08 0.02 (0.00,0.27) 
Pr5 0.10 0.13 0.05 (0.00,0.49) 0.09 0.13 0.05 (0.00,0.49) 
Pr6 0.05 0.08 0.03 (0.00,0.28) 0.05 0.08 0.02 (0.00,0.29) 
Pr7 0.14 0.17 0.07 (0.00,0.66) 0.13 0.17 0.07 (0.00,0.66) 
Pr8 0.05 0.08 0.03 (0.00,0.28) 0.05 0.08 0.02 (0.00,0.29) 
Pr9 0.03 0.05 0.01 (0.00,0.16) 0.03 0.05 0.01 (0.00,0.16) 
τ     0.17 0.16 0.13 (0.00,0.59) 

res
D * 120.0    89.1    
pD 68.5    80.2    
DIC 188.5    169.3    

*compare to 90 data points  
 

EXAMPLE 5. PARKINSON’S 

The data presented in Table A8 are the mean off-time reduction in patients given dopamine 

Agonists as adjunct therapy in Parkinson’s disease.  The data available are the mean, standard 
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deviation and number of patients in each trial arm, for 7 studies of five different drugs: placebo, 

coded 1, and five active drugs coded 2 to 5.  The network diagram is presented in Figure A5. 

The authors are grateful to Jeroen Jansen of Mapi Values for giving us access to this data. 

 

Table A8  Parkinson’s example: study names, treatments compared, mean off-time reduction with its 

standard deviation, total number of patients in each trial arm; treatment differences and standard error of 

the differences; where treatment 1 is a placebo and treatments 2-5 are active drugs. 

Study Treatment y sd n diff se(diff) 

1 1 -1.22 3.7 54 

-0.31 0.668 3 -1.53 4.28 95 

2 1 -0.7 3.7 172 

-1.7 0.383 2 -2.4 3.4 173 

3 1 -0.3 4.4 76   

2 -2.6 4.3 71 -2.3 0.718 

4 -1.2 4.3 81 -0.9 0.695 

4 3 -0.24 3 128 

-0.35 0.442 4 -0.59 3 72 

5 3 -0.73 3 80 

0.55 0.555 4 -0.18 3 46 

6 4 -2.2 2.31 137 

-0.3 0.274 5 -2.5 2.18 131 

7 4 -1.8 2.48 154 

-0.3 0.320 5 -2.1 2.99 143 

 

 

Figure A5 Parkinson network: each edge represents a treatment, connecting lines indicate pairs of 

treatments which have been directly compared in randomised trials. The numbers on the lines indicate the 

numbers of trials making that comparison and the numbers by the treatment names are the treatment 

codes used in the modelling. 

 

The model for this type of data is outlined in Section 3.4. The WinBUGS code for random 

effects is given in program 5(a) and the fixed effects code is given in program 5(b).   

  

Treatment 5

Placebo

(Treatment 1)

Treatment 3

Treatment 4

Treatment 2

2

1

1
2

1
2
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Program 5(a):  Normal likelihood, identity link, Random Effects (Parkinson’s example) 

# Normal likelihood, identity link 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns){    #   LOOP THROUGH STUDIES 

    w[i,1] <- 0    # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0    # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)   # vague priors for all trial baselines 

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)    # calculate variances 

        prec[i,k] <- 1/var[i,k]    # set precisions 

        y[i,k] ~ dnorm(theta[i,k],prec[i,k])  # normal likelihood 

        theta[i,k] <- mu[i] + delta[i,k]  # model for linear predictor 

        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]    #Deviance contribution 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])  #  summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {    # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud[i,k])  # trial-specific LOR distributions 

        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]    # mean of treat effects distributions (with multi-arm trial correction) 

        taud[i,k] <- tau *2*(k-1)/k   # precision of treat effects distributions (with multi-arm trial correction) 

        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment for multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)   # cumulative adjustment for multi-arm trials 

      } 

  }    

totresdev <- sum(resdev[])   #Total Residual Deviance 

d[1]<-0      # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

sd ~ dunif(0,5)    # vague prior for between-trial SD.  

tau <- pow(sd,-2)     # between-trial precision = (1/between-trial variance) 

}      # *** PROGRAM ENDS  

 

Additional code to monitor all treatment contrasts and rank treatments can be added as before. 

Given values for the mean, -0.73, and precision, 21, of the outcome on Treatment 1, from 

external sources, absolute effects, and the absolute treatment effect, could be monitored by 

adding the following code: 

 

A ~ dnorm(-.73,21) 

for (k in 1:nt) { T[k] <- A + d[k]  } 

 

The maximum number of arms is 3, so 3 vectors are needed for the treatment indicators, t[,1] 

t[,2], t[,3]; the continuous outcomes y[,] ; and their standard errors se[,] ; and finally the number of 

arms, na[]. 

# Data (Parkinson’s example) 

list(ns=7, nt=5) 

 

t[,1] t[,2] t[,3] y[,1] y[,2] y[,3] se[,1] se[,2] se[,3] na[] 

1 3 NA -1.22 -1.53 NA 0.504 0.439 NA 2 

1 2 NA -0.7 -2.4 NA 0.282 0.258 NA 2 

1 2 4 -0.3 -2.6 -1.2 0.505 0.510 0.478 3 

3 4 NA -0.24 -0.59 NA 0.265 0.354 NA 2 

3 4 NA -0.73 -0.18 NA 0.335 0.442 NA 2 

4 5 NA -2.2 -2.5 NA 0.197 0.190 NA 2 

4 5 NA -1.8 -2.1 NA 0.200 0.250 NA 2 

END 
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# Initial Values  

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d=c( NA, 0,0,0,0), sd=1, mu=c(0, 0, 0, 0, 0,    0, 0)) 

#chain 2 

list(d=c( NA, -1,-3,-1,1), sd=4, mu=c(-3, -3, -3, -3, -3,    -3, -3)) 

#chain 3 

list(d=c( NA, 2,2,2,2), sd=2, mu=c(-3, 5, -1, -3, 7,    -3, -4)) 

Program 5(b):  Normal likelihood, identity link, Fixed Effects (Parkinson’s example) 

# Normal likelihood, identity link 

# Fixed effects model for multi-arm trials 

model{       # *** PROGRAM STARTS 

for(i in 1:ns){     #   LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)      # vague priors for all trial baselines 

    for (k in 1:na[i]) {     #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)     # calculate variances 

        prec[i,k] <- 1/var[i,k]      # set precisions 

        y[i,k] ~ dnorm(theta[i,k],prec[i,k])    # normal likelihood 

        theta[i,k] <- mu[i] + d[t[i,k]] - d[t[i,1]]    # model for linear predictor 

        dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]    #Deviance contribution 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])     #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }    # vague priors for treatment effects 

}         # *** PROGRAM ENDS  

 

# Initial Values  

#chain 1 

list(d=c( NA, 0,0,0,0), mu=c(0, 0, 0, 0, 0,    0, 0)) 

#chain 2 

list(d=c( NA, -1,-3,-1,1), mu=c(-3, -3, -3, -3, -3,    -3, -3)) 

#chain 3 

list(d=c( NA, 2,2,2,2), mu=c(-3, 5, -1, -3, 7,    -3, -4)) 

RESULTS 

Results (based on 3 chains: 100,000 iterations after a burn-in of 50,000) are presented in Table 

A9. The random and fixed effects model both fit the data well, and since the random effects 

model has a higher DIC (due to having a higher effective number of parameters) the FE model 

should be preferred. The difference in mean of symptoms for each of the treatments compared 

to placebo and the absolute mean reduction in symptoms (assuming a baseline treatment effect 

as detailed above) are given in Table A9. 
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Table A9 Parkinson example: posterior mean, standard deviation (sd), median and 95% Credible interval 

(CrI) for both the fixed and random effects models for the treatment effects of Treatments 2 to 5 (d12 to d15) 

relative to Placebo, absolute effects of Placebo (T1) and treatments 2 to 5 (T2 to T5), heterogeneity parameter 

τ and model fit statistics for different data types. 

 FE model RE model 

 mean sd median CrI mean sd median CrI 

 Arm-level data: Example 5 

d12 -1.81 0.33 -1.81 (-2.46,-1.16) -1.85 0.54 -1.84 (-2.91,-0.85) 

d13 -0.47 0.49 -0.47 (-1.43,0.49) -0.50 0.66 -0.50 (-1.78,0.75) 

d14 -0.52 0.48 -0.52 (-1.46,0.43) -0.53 0.65 -0.53 (-1.77,0.71) 

d15 -0.82 0.52 -0.82 (-1.84,0.22) -0.83 0.80 -0.83 (-2.35,0.69) 

T1 -0.73 0.22 -0.73 (-1.16,-0.30) -0.73 0.22 -0.73 (-1.16,-0.30) 

T2 -2.54 0.40 -2.54 (-3.32,-1.76) -2.58 0.58 -2.57 (-3.72,-1.50) 

T3 -1.21 0.53 -1.20 (-2.25,-0.15) -1.23 0.70 -1.23 (-2.57,0.10) 

T4 -1.25 0.53 -1.25 (-2.28,-0.21) -1.26 0.69 -1.26 (-2.57,0.05) 

T5 -1.55 0.57 -1.55 (-2.66,-0.43) -1.57 0.83 -1.56 (-3.14,0.02) 

τ - - - - 0.40 0.43 0.28 (0.01,1.55) 

res
D * 13.3    13.6    

pD 11.0    12.4    

DIC 24.3    26.0    

 Trial-level data (differences): Example 7 

d12 -1.81 0.33 -1.81 (-2.47,-1.16) -1.85 0.54 -1.84 (-2.92,-0.84) 

d13 -0.48 0.49 -0.48 (-1.43,0.47) -0.50 0.66 -0.49 (-1.79,0.75) 

d14 -0.52 0.48 -0.52 (-1.46,0.42) -0.53 0.65 -0.53 (-1.79,0.72) 

d15 -0.82 0.52 -0.82 (-1.84,0.20) -0.83 0.81 -0.83 (-2.38,0.69) 

T1 -0.73 0.22 -0.73 (-1.16,-0.30) -0.73 0.22 -0.73 (-1.16,-0.30) 

T2 -2.54 0.40 -2.54 (-3.33,-1.76) -2.58 0.58 -2.57 (-3.72,-1.49) 

T3 -1.21 0.53 -1.21 (-2.25,-0.17) -1.23 0.70 -1.22 (-2.59,0.10) 

T4 -1.25 0.53 -1.25 (-2.28,-0.22) -1.26 0.69 -1.26 (-2.59,0.06) 

T5 -1.55 0.56 -1.55 (-2.66,-0.44) -1.56 0.83 -1.56 (-3.17,0.01) 

τ     0.41 0.44 0.28 (0.01,1.56) 

res
D † 6.3    6.6    

pD 4.0    5.5    

DIC 10.3    12.1    

 Arm and Trial-level data (shared parameter model): Example 8 

d12 -1.81 0.33 -1.81 (-2.46,-1.16) -1.85 0.54 -1.83 (-2.91,-0.86) 

d13 -0.48 0.49 -0.48 (-1.43,0.48) -0.51 0.66 -0.50 (-1.79,0.75) 

d14 -0.52 0.48 -0.52 (-1.47,0.41) -0.54 0.65 -0.54 (-1.78,0.70) 

d15 -0.82 0.52 -0.82 (-1.85,0.20) -0.84 0.80 -0.84 (-2.35,0.69) 

T1 -0.73 0.22 -0.73 (-1.16,-0.30) -0.73 0.22 -0.73 (-1.16,-0.30) 

T2 -2.54 0.40 -2.54 (-3.32,-1.77) -2.57 0.58 -2.57 (-3.71,-1.49) 

T3 -1.21 0.53 -1.21 (-2.25,-0.17) -1.23 0.70 -1.23 (-2.58,0.09) 

T4 -1.26 0.53 -1.25 (-2.29,-0.23) -1.27 0.68 -1.27 (-2.58,0.05) 

T5 -1.56 0.57 -1.56 (-2.67,-0.45) -1.57 0.83 -1.57 (-3.14,0.02) 

τ     0.40 0.43 0.28 (0.01,1.53) 

res
D ‡ 9.3    9.6    

pD 7.0    8.5    

DIC 16.3    18.1    

* compare to 15 data points; † compare to 8 data points; ‡ compare to 11 data points   
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EXAMPLE 6. PSORIASIS 

In an HTA report to evaluate the effectiveness of treatments for moderate to severe chronic 

plaque psoriasis,52 16 trials, comparing 8 treatments were identified: Supportive care (coded 

1); Etanercept 25 mg (2); Etanercept 50 mg (3); Efalizumab (4); Ciclosporin (5); Fumaderm 

(6); Infliximab (7) and Methotrexate (8). The network diagram is presented in Figure A6. Each 

trial reported the number of patients in mutually exclusive categories representing the 

percentage improvement in symptoms as measured by the PASI score. Different trials reported 

on different categories defining 3 cut-points, 50, 75 and 90% improvement, in addition to the 

scale’s lower and upper bounds (0 and 100% improvement, respectively). In the code below, 

we define: C=1 representing 0% improvement (the scale’s lower bound); C=2 representing 

50% improvement; C=3 representing 75% improvement; and C=4 representing 90% 

improvement. The data is presented in Table A10.  

 

Figure A6 Psoriasis network: each edge represents a treatment, connecting lines indicate pairs of 

treatments which have been directly compared in randomised trials. The numbers on the lines indicate the 

numbers of trials making that comparison and the numbers by the treatment names are the treatment 

codes used in the modelling. One trial compared two arms of Ciclosporin with Placebo and another 

compared two arms of Infliximab with placebo – these comparisons are not represented in the network. 

 
The model for this type of data is outlined in Section 3.6. The likelihood contribution of each 

trial is multinomial and this can be used to model the data directly in WinBUGS. However, 

since the reported categories are different in different studies and overlap, it is helpful to re-

write the multinomial likelihood as a series of conditional Binomials.  
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So, for a trial i reporting the number of patients rikj in category j=1,…,Ji-1, we can write 

rikj ~ Binomial(qikj, Nikj)  j=1,…,Ji-1 

where  

 

( )

( )

( )

1

2

  Pr PASI score in category 1 of trial 

  Pr PASI score in category 2 of trial  |  not in category 1

  Pr PASI score in category  of trial  |  not in categories 1, 2, , 1

ik

ik

ikj

q i

q i

q j i j

=

=

…

= … −
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ikj ik ikuu
N n r

−

=

= −∑ . 

Noting that the lower and upper bounds of each mutually exclusive category are defined by the 

cut-points above and the scale’s lower and upper bounds, for arm k of trial i we can define qikj 

as the probability of belonging to category j, in arm k of trial i, 

qikj = Pr(PASI score in category j) = Pr(Lj< PASI score < Uj) 

where Lj and Uj define the lower and upper bounds of the interval defining category j. So, for 

example, for arm 1 of study 1 in Table A10 category 1 is 0-50% improvement so 

q111 = Pr(having less than 50% improvement in PASI score) = Pr(0< PASI score < 50). 

Letting pikc denote the probability of achieving a PASI score of at least c, in arm k of trial i, for 

c=50, 75, 90 we model 

πikc = Pr(PASI score > c) = Φ(θik+zc) 

where θik is the linear predictor and Φ is the standard normal cumulative distribution function. 

Cut- points z50, z75 and z90 have been coded z1, z2 and z3, respectively, in the code below. We 

set z1=0 and give independent, non-informative priors to z2 and z3. 

The “fixed effect” model above assumes that the distance on the standard normal scale between 

category boundaries are the same in every trial and for every treatment. An alternative might 

be that they differ between trials, but that within a trial the distances between categories are the 

same. This leads us to a “random effects” model in which for each trial i, zic varies around a 

mean  

 2
~ ( , )

ic c z
z N v σ . 

The mean and variance are then given vague priors in the usual way. One interpretation of this 

model, which can be used with a Fixed or Random treatment effects, is that there may be 
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differences between trials in the way that the underlying symptoms are scored, in this case on 

the PASI scale.  

It can be shown that, for j=1,…,Ji-1 

 
11

Pr(PASI )
1 1

Pr(PASI )

j

j

ikCj

ikj

j ikC

C
q

C

π

π

++
>

= − = −

>

 

Using these relationships simplifies the code and makes it general for any number of categories 

and cut-off points.  
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Table A10 Psoriasis example: study names, treatments compared, total number of patients with different percentage improvement and total number of patients in 

each trial arm, where Supportive Care = treatment 1, Etanercept 25mg = 2, Etanercept 50 mg = 3, Efalizumab = 4, Ciclosporin = 5, Fumaderm = 6, Infliximab = 7, 

Methotreaxate = 8.52 

    

Outcomes presented in 

arm 1 for each category 

total number 

of patients in 

arm 1 

Outcomes presented in arm 2 

for each category 

total number 

of patients in 

arm 2 

Outcomes presented in 

arm 3 for each category 

total number 

of patients in 

arm 3 

    Trials presenting outcomes in 4 categories 

 arm 1 arm 2 arm 3 

0-50 50–75 75–90 90-100 
n[,1] 

0-50 50–75 75–90 90-100 
n[,2] 

0-50 50–75 75–90 

90-

100 
n[,3] 

Trial t[,1] t[,2] t[,3] 

1.Elewski 2004 1 2 3 175 12 5 1 193 70 59 46 21 196 44 54 56 40 194 

2.Gottlieb 2003 1 2  49 5 1 0 55 17 23 11 6 57      

3.Lebwohl 2003 1 4  103 13 5 1 122 112 68 42 10 232      

4.Leonardi 2003 1 2 3 142 18 5 1 166 68 39 36 19 162 43 40 45 36 164 

    Trials presenting outcomes in 3 categories 

 t[,1] t[,2] t[,3] 0-50 50–75 75-100   0-50 50–75 75-100   0-50 50–75 75-100   

5.Gordon 2003 1 4  161 18 8  187 153 118 98  369      

    Trials presenting outcomes in 2 categories (PASI 50) 

Trial t[,1] t[,2] t[,3] 0-50 50-100    0-50 50-100    0-50 50-100    

6.ACD2058g 1 4  145 25   170 63 99   162      

7.ACD2600g 1 4  230 33   263 216 234   450      

8.Guenther 1991 1 5  10 1   11 0 12   12      

9.IMP24011 1 4  226 38   264 245 284   529      

    Trials presenting outcomes in 2 categories (PASI 75) 

Trial t[,1] t[,2] t[,3] 0-75 75-100    0-75 75-100    0-75 75-100    

10.Altmeyer 1994 1 6  50 1   51 37 12   49      

11.Chaudari 2001 1 7  9 2   11 2 9   11      

12.Ellis 1991 1 5 5 25 0   25 16 9   25 7 13   20 

13.Gottlieb 2004 1 7 7 48 3   51 28 71   99 12 87   99 

14.Heydendael 2003 5 8  12 30   42 17 26   43      

15.Meffert 1997 1 5  41 2   43 37 4   41      

16.Van Joost 1988 1 5  10 0   10 3 7   10      
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The WinBUGS code for random effects is given in program 6(a) and the fixed effects code is 

given in program 6(b).  

Program 6(a): Conditional Binomial likelihood, probit link, Random Effects (Psoriasis 

example) 

# Binomial likelihood, probit link (different categories) 

# Random effects model for multi-arm trials 

model{     # *** PROGRAM STARTS 

for(i in 1:ns){     #   LOOP THROUGH STUDIES 

    w[i,1] <- 0        # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0                # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)   # vague priors for all trial baselines 

    for (k in 1:na[i]) {                # LOOP THROUGH ARMS 

        p[i,k,1] <- 1                   # Pr(PASI >0) 

        for (j in 1:nc[i]-1) {        # LOOP THROUGH CATEGORIES 

            r[i,k,j] ~ dbin(q[i,k,j],n[i,k,j])   # binomial likelihood 

            q[i,k,j] <- 1-(p[i,k,C[i,j+1]]/p[i,k,C[i,j]]) # conditional probabilities 

             theta[i,k,j] <- mu[i] + delta[i,k] + z[C[i,j+1]-1]  # linear predictor 

            rhat[i,k,j] <-  q[i,k,j] * n[i,k,j]    # predicted number events  

            dv[i,k,j] <- 2 * (r[i,k,j]*(log(r[i,k,j])-log(rhat[i,k,j]))  #Deviance contribution of each category 

    +(n[i,k,j]-r[i,k,j])*(log(n[i,k,j]-r[i,k,j]) - log(n[i,k,j]-rhat[i,k,j]))) 

          } 

        dev[i,k] <- sum(dv[i,k,1:nc[i]-1])   # deviance contribution of each arm 

        for (j in 2:nc[i])  {   # LOOP THROUGH CATEGORIES 

            p[i,k,C[i,j]] <- 1 - phi.adj[i,k,j]     # link function 

# adjust link function phi(x) for extreme values that can give numerical errors 

# when x< -5, phi(x)=0, when x> 5, phi(x)=1: use only if needed 

            phi.adj[i,k,j] <- step(5+theta[i,k,j-1]) 

                   * (step(theta[i,k,j-1]-5)  

                      + step(5-theta[i,k,j-1])*phi(theta[i,k,j-1]) ) 

          } 

      } 

    for (k in 2:na[i]) {            # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) 

        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]  # mean of LHR distributions, with multi-arm trial correction 

        taud[i,k] <- tau *2*(k-1)/k   # precision of LHR distributions (with multi-arm trial correction) 

        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # adjustment, multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)  # cumulative adjustment for multi-arm trials 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])         #  summed residual deviance contribution for this trial 

  }    

z[1] <- 0                          # set z50=0 

for (j in 2:Cmax-1) {    # Set priors for z, for any number of categories 

    z.aux[j] ~ dunif(0,5)          # priors  

    z[j] <- z[j-1] + z.aux[j]      # ensures z[j]~Uniform(z[j-1], z[j-1]+5) 

 } 

totresdev <- sum(resdev[])        #Total Residual Deviance 

d[1] <- 0           # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

sd ~ dunif(0,5)                   # vague prior for between-trial SD 

tau <- pow(sd,-2)         # between-trial precision = (1/between-trial variance) 

}                                        # *** PROGRAM ENDS 

 

Additional code to monitor all treatment contrasts and rank treatments can be added as before. 

Given values for the mean, 1.097, and precision, 123, of the effects on Treatment 1 on the 

probit scale, from external sources, absolute effects, and absolute probabilities T[j,k] of having 
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over 50, 75 or 90% improvement (j=1,2,3 respectively) on treatment k, could be monitored as 

follows: 

 

A ~ dnorm(1.097,123) 

# calculate prob of achieving PASI50,75,90 on treat k 

for (k in 1:nt) {  

    for (j in 1: Cmax-1) {  T[j,k] <- 1 - phi(A + d[k] + z[j]) } 

  } 

 

The data structure again consists of a list specifying the number of treatments nt, number of 

studies ns and total number of categories Cmax, with the main body of data in a vector format. 

Both data components need to be loaded into WinBUGS for the program to run. Three columns 

are required for each arm variable since there are four three-arm trials: t[,1], t[,2] and t[,3] are the 

treatment codes; na[] represents the number of arms and nc[] the number of cut-offs in that trial; 

C[,1], C[,2], C[,3], C[,4] represent the cut-offs used to define the categories reported in each trial – 

four columns are needed as the maximum number of cut-offs given in a trial is four – these cut-

offs are coded 1 to 4 as described above; then r[,k,j] the number of events for the k-th treatment, 

in category j given the number of events in categories 1 to j-1; then n[,k,1] represents the total 

number of individuals in trial arm k, n[,k,2] represents the total number of individuals in trial arm 

k, which were not in category 1 of that trial and n[,k,3] represents the total number of individuals 

in trial arm k, which were not in categories 1 or 2 of that trial. So, for example, for the first trial 

in Table A10, Elewski 2004, 193 patients were included in arm 1 of the trial. These patients 

were split between the four categories as follows: 175 out of 193 patients had between 0 and 

50% improvement, leaving 18 patients who could belong to any of the other categories, thus 

r111=173, n111=193; 12 out of 18 patients had between 50 and 75% improvement, leaving 6 

patients who could belong to any of the other categories, thus r112=12, n112=193-175=18; 5 out 

of 6 patients had between 75 and 90% improvement, leaving 1 patient (who necessarily had 

over 90% improvement), thus r113=5, n112=18-12=6. All other nikj were similarly calculated for 

the other trials. 

Note that for trials reporting j categories, r and n only need to be defined for the first j-1 

categories with the remaining columns coded NA, and some of the data given below is 

redundant. 

 

# Data (Psoriasis example) 

list(ns=16, nt=8, Cmax=4)    

 
t[,1] t[,2] t[,3] na[] nc[] C[,1] C[,2] C[,3] C[,4] r[,1,1] r[,1,2] r[,1,3]

 n[,1,1] n[,1,2] n[,1,3] r[,2,1] r[,2,2] r[,2,3] n[,2,1] n[,2,2] n[,2,3] r[,3,1] r[,3,2]

 r[,3,3] n[,3,1] n[,3,2] n[,3,3] # Trial Year 
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1 2 3 3 4 1 2 3 4 175 12 5 193

 18 6 70 59 46 196 126 67 44 54 56 194

 150 96 # Elewski 2004 

1 2 NA 2 4 1 2 3 4 49 5 1 55

 6 1 17 23 11 57 40 17 NA NA NA NA

 NA NA # Gottlieb 2003 

1 4 NA 2 4 1 2 3 4 103 13 5 122

 19 6 112 68 42 232 120 52 NA NA NA NA

 NA NA # Lebwohl 2003 

1 2 3 3 4 1 2 3 4 142 18 5 166

 24 6 68 39 36 162 94 55 43 40 45 164

 121 81 # Leonardi 2003 

1 4 NA 2 3 1 2 3 NA 161 18 8 187

 26 8 153 118 98 369 216 98 NA NA NA NA

 NA NA # Gordon 2003 

1 4 NA 2 2 1 2 NA NA 145 25 NA 170

 25 NA 63 99 NA 162 99 NA NA NA NA NA

 NA NA # ACD2058g 2004 

1 4 NA 2 2 1 2 NA NA 230 33 NA 263

 33 NA 216 234 NA 450 234 NA NA NA NA NA

 NA NA # ACD2600g 2004 

1 5 NA 2 2 1 2 NA NA 10 1 NA 11

 1 NA 0 12 NA 12 12 NA NA NA NA NA

 NA NA # Guenther 1991 

1 4 NA 2 2 1 2 NA NA 226 38 NA 264

 38 NA 245 284 NA 529 284 NA NA NA NA NA

 NA NA # IMP24011 2004 

1 6 NA 2 2 1 3 NA NA 50 1 NA 51

 1 NA 37 12 NA 49 12 NA NA NA NA NA

 NA NA # Altmeyer 1994 

1 7 NA 2 2 1 3 NA NA 9 2 NA 11

 2 NA 2 9 NA 11 9 NA NA NA NA NA

 NA NA # Chaudari 2001 

1 5 5 3 2 1 3 NA NA 25 0 NA 25

 0 NA 16 9 NA 25 9 NA 7 13 NA 20

 13 0 # Ellis 1991 

1 7 7 3 2 1 3 NA NA 48 3 NA 51

 3 NA 28 71 NA 99 71 NA 12 87 NA 99

 87 0 # Gottlieb 2004 

5 8 NA 2 2 1 3 NA NA 12 30 NA 42

 30 NA 17 26 NA 43 26 NA NA NA NA NA

 NA NA # Heydendael 2003 

1 5 NA 2 2 1 3 NA NA 41 2 NA 43

 2 NA 37 4 NA 41 4 NA NA NA NA NA

 NA NA # Meffert 1997 

1 5 NA 2 2 1 3 NA NA 10 0 NA 10

 0 NA 3 7 NA 10 7 NA NA NA NA NA

 NA NA # Van Joost 1988 

END 
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# Initial Values  

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d = c(NA,0,0,0,0,0,0,0), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0),  sd = 1, z.aux=c(NA, 0.66,1.3)) 

 

#chain 2 

list(d = c(NA,0,0,1,0,0,2,0), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0),  sd = 1.5, z.aux=c(NA, 0.5,1)) 

 

#chain 3 

list(d = c(NA,1,1,1,1,1,1,1), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0),  sd = 3, z.aux=c(NA, 0.1,2)) 

 

The parameters to monitor are the same as in Example 1. We may in addition want to monitor 

node z to obtain the posterior summaries for the different cut-off points. 

Program 6(b): Conditional Binomial likelihood, probit link, Fixed Effects (Psoriasis 

example) 

# Binomial likelihood, probit link (different categories) 

# Fixed effects model for multi-arm trials 

model{                                  # *** PROGRAM STARTS 

for(i in 1:ns){                        #   LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)   # vague priors for all trial baselines 

    for (k in 1:na[i]) {                # LOOP THROUGH ARMS 

        p[i,k,1] <- 1                   # Pr(PASI >0) 

        for (j in 1:nc[i]-1) {          # LOOP THROUGH CATEGORIES 

            r[i,k,j] ~ dbin(q[i,k,j],n[i,k,j])   # binomial likelihood 

            q[i,k,j] <- 1-(p[i,k,C[i,j+1]]/p[i,k,C[i,j]]) # conditional probabilities 

            theta[i,k,j] <- mu[i] + d[t[i,k]] - d[t[i,1]] + z[C[i,j+1]-1]  # linear predictor 

            rhat[i,k,j] <-  q[i,k,j] * n[i,k,j]    # predicted number events  

            dv[i,k,j] <- 2 * (r[i,k,j]*(log(r[i,k,j])-log(rhat[i,k,j]))  #Deviance contribution of each category 

    +(n[i,k,j]-r[i,k,j])*(log(n[i,k,j]-r[i,k,j]) - log(n[i,k,j]-rhat[i,k,j]))) 

          } 

        dev[i,k] <- sum(dv[i,k,1:nc[i]-1])   # deviance contribution of each arm 

        for (j in 2:nc[i])  {   # LOOP THROUGH CATEGORIES 

            p[i,k,C[i,j]] <- 1 - phi.adj[i,k,j]     # link function 

# adjust phi(x) for extreme values that can give numerical errors 

# when x< -5, phi(x)=0, when x> 5, phi(x)=1: use only if needed 

            phi.adj[i,k,j] <- step(5+theta[i,k,j-1]) 

                   * (step(theta[i,k,j-1]-5)  

                      + step(5-theta[i,k,j-1])*phi(theta[i,k,j-1]) ) 

          } 

      } 

    resdev[i] <- sum(dev[i,1:na[i]])         #  summed residual deviance contribution for this trial 

  }    

z[1] <- 0                          # set z50=0 

for (j in 2:Cmax-1) {    # Set priors for z, for any number of categories 

    z.aux[j] ~ dunif(0,5)          # priors  

    z[j] <- z[j-1] + z.aux[j]      # ensures z[j]~Uniform(z[j-1], z[j-1]+5) 

 } 

totresdev <- sum(resdev[])        #Total Residual Deviance 

d[1] <- 0           # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

}                                        # *** PROGRAM ENDS  

 

# Initial Values  

#chain 1 

list(d = c(NA,0,0,0,0,0,0,0), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0), z.aux=c(NA, 0.66,1.3) 

 

#chain 2 

list(d = c(NA,0,0,1,0,0,2,0), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0), z.aux=c(NA, 0.5,1) ) 
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#chain 3 

list(d = c(NA,1,1,1,1,1,1,1), mu = c(0,0,0,0,0,     0,0,0,0,0,     0,0,0,0,0,     0), z.aux=c(NA, 0.1,2)) 

RESULTS 

Results for the fixed and random effects models are presented in Table A11 (results based on 

3 chains: 100,000 iterations after a burn-in of 40,000 and 50,000 for the FE and RE models, 

respectively). From the residual deviance and DIC we conclude that the random effects model 

should be preferred as it is a better fit to the data and has a smaller DIC. The treatment effects 

relative to Supportive care (treatment 1) are all below zero which suggests that all treatments 

are better than Supportive care at increasing the probability of a reduction in symptoms on the 

probit scale. The absolute probabilities of achieving a reduction on at least 50, 75 or 90% in 

symptoms show that, for example, there is on average 0% probability of achieving at least a 

90% reduction in symptoms with Supportive care, but this probability is on average 37% with 

Infliximab. A model which assumes the cut-points differ between trials and come from a 

common distribution was also fitted and gave very similar results. 

Table A11 Psoriasis example: posterior mean, standard deviation (sd), median and 95% Credible interval 

(CrI) for the fixed and random effects models for the treatment effects, on the probit scale, of Etanercept 

25 mg (d12), Etanercept 50 mg (d13), Efalizumab (d14), Ciclosporin (d15) , Fumaderm (d16) , Infliximab (d17), 

and Methotrexate (d18) relative to Supportive Care; absolute probabilities of achieving at least 50, 70 or 

90% relief in symptoms for each treatment; heterogeneity parameter τ and model fit statistics. 

 FE model RE model 

 mean sd median CrI mean sd median CrI 

d12 -1.51 0.10 -1.51 (-1.70,-1.32) -1.53 0.24 -1.52 (-2.05,-1.03) 

d13 -1.92 0.10 -1.92 (-2.12,-1.72) -1.93 0.28 -1.92 (-2.51,-1.35) 

d14 -1.19 0.06 -1.19 (-1.30,-1.08) -1.19 0.18 -1.19 (-1.56,-0.81) 

d15 -1.92 0.34 -1.90 (-2.62,-1.30) -2.04 0.43 -2.00 (-3.02,-1.30) 

d16 -1.49 0.49 -1.46 (-2.55,-0.63) -1.49 0.62 -1.46 (-2.81,-0.33) 

d17 -2.33 0.26 -2.33 (-2.87,-1.84) -2.32 0.38 -2.32 (-3.06,-1.55) 

d18 -1.61 0.44 -1.60 (-2.50,-0.77) -1.74 0.64 -1.70 (-3.14,-0.59) 

τ - - - - 0.31 0.23 0.26 (0.01,0.88) 

  



92 

 

Probability of achieving at least 50% relief in symptoms (PASI50) 

Supportive Care  0.14 0.02 0.14 (0.10,0.18) 0.14 0.02 0.14 (0.10,0.18) 

Etanercept 25 mg 0.66 0.05 0.66 (0.56,0.75) 0.66 0.09 0.66 (0.46,0.83) 

Etanercept 50 mg 0.79 0.04 0.79 (0.71,0.86) 0.79 0.08 0.80 (0.59,0.92) 

Efalizumab 0.54 0.04 0.54 (0.45,0.62) 0.54 0.08 0.54 (0.38,0.69) 

Ciclosporin 0.78 0.10 0.79 (0.57,0.94) 0.81 0.10 0.82 (0.57,0.97) 

Fumaderm 0.64 0.16 0.64 (0.31,0.93) 0.63 0.20 0.64 (0.22,0.96) 

Infliximab 0.88 0.05 0.89 (0.76,0.96) 0.87 0.08 0.89 (0.67,0.98) 

Methotrexate 0.68 0.15 0.69 (0.37,0.92) 0.70 0.18 0.73 (0.30,0.98) 

Probability of achieving at least 75% relief in symptoms (PASI75) 

Supportive Care  0.03 0.01 0.03 (0.02,0.05) 0.03 0.01 0.03 (0.02,0.05) 

Etanercept 25 mg 0.37 0.05 0.37 (0.28,0.47) 0.38 0.09 0.37 (0.20,0.58) 

Etanercept 50 mg 0.53 0.05 0.53 (0.42,0.63) 0.53 0.11 0.53 (0.30,0.75) 

Efalizumab 0.25 0.03 0.25 (0.19,0.33) 0.26 0.06 0.25 (0.14,0.40) 

Ciclosporin 0.52 0.13 0.52 (0.28,0.79) 0.56 0.15 0.56 (0.28,0.88) 

Fumaderm 0.37 0.17 0.35 (0.11,0.76) 0.38 0.20 0.35 (0.06,0.83) 

Infliximab 0.68 0.10 0.68 (0.48,0.85) 0.67 0.13 0.68 (0.37,0.89) 

Methotrexate 0.41 0.16 0.40 (0.14,0.75) 0.46 0.21 0.44 (0.10,0.90) 

Probability of achieving at least 90% relief in symptoms (PASI90) 

Supportive Care  0.00 0.00 0.00 (0.00,0.01) 0.00 0.00 0.00 (0.00,0.01) 

Etanercept 25 mg 0.13 0.03 0.13 (0.08,0.19) 0.14 0.06 0.13 (0.05,0.28) 

Etanercept 50 mg 0.23 0.04 0.23 (0.16,0.32) 0.24 0.09 0.23 (0.09,0.45) 

Efalizumab 0.07 0.02 0.07 (0.04,0.11) 0.07 0.03 0.07 (0.03,0.15) 

Ciclosporin 0.24 0.11 0.22 (0.08,0.49) 0.28 0.14 0.26 (0.08,0.65) 

Fumaderm 0.15 0.12 0.11 (0.02,0.46) 0.16 0.15 0.12 (0.01,0.57) 

Infliximab 0.38 0.10 0.37 (0.19,0.60) 0.37 0.14 0.37 (0.13,0.67) 

Methotrexate 0.17 0.11 0.14 (0.03,0.44) 0.21 0.17 0.17 (0.02,0.69) 

res
D * 74.9    63.0    

pD 25.0    33.3    

DIC 99.9    96.2    

* compare with 58 data points 

 

EXAMPLE 7. PARKINSON’S DIFFERENCE (TREATMENT DIFFERENCES AS 

DATA) 

We now assume that the data available for the Parkinson’s example were not the mean off-time 

reduction for patients in each arm of the trial, but rather the differences in off-time reduction, 

and their standard errors, between the intervention and control arms for each trial, as presented 

in the last two columns of Table A8. The data available are therefore the differences, their 

standard errors and the treatments compared in each trial, coded as before. 

Random and fixed effects models were fitted, as outlined in Section 3.4. The code is given 

below. As explained in Section 5.1 the coding for the likelihood has been modified to allow 

for the 3-arm trial. This requires users to set up the data file with all two-arm trials first, then 

3-arm trials, then – if any were present – 4-arm trials, and so on. 
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Program 7(a):  Normal likelihood, identity link, treatment differences, Random Effects 

(Parkinson’s Differences) 

# Normal likelihood, identity link, trial-level data given as treatment differences 

# Random effects model for multi-arm trials 

model{     # *** PROGRAM STARTS 

for(i in 1:ns2) {    # LOOP THROUGH 2-ARM STUDIES 

    y[i,2] ~ dnorm(delta[i,2],prec[i,2])   # normal likelihood for 2-arm trials 

    resdev[i] <- (y[i,2]-delta[i,2])*(y[i,2]-delta[i,2])*prec[i,2]  #Deviance contribution for trial i 

  } 

for(i in (ns2+1):(ns2+ns3)) {          # LOOP THROUGH 3-ARM STUDIES 

    for (k in 1:(na[i]-1)) {       # set variance-covariance matrix 

        for (j in 1:(na[i]-1)) {  Sigma[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k)   } 

      } 

    Omega[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma[i,,])  #Precision matrix 

# multivariate normal likelihood for 3-arm trials    

    y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega[i,1:(na[i]-1),1:(na[i]-1)])  

#Deviance contribution for trial i 

    for (k in 1:(na[i]-1)){     # multiply vector & matrix 

        ydiff[i,k]<- y[i,(k+1)] - delta[i,(k+1)] 

        z[i,k]<- inprod2(Omega[i,k,1:(na[i]-1)], ydiff[i,1:(na[i]-1)]) 

      } 

    resdev[i]<- inprod2(ydiff[i,1:(na[i]-1)], z[i,1:(na[i]-1)]) 

  } 

for(i in 1:(ns2+ns3)){     # LOOP THROUGH ALL STUDIES 

    w[i,1] <- 0        # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0                # treatment effect is zero for control arm 

    for (k in 2:na[i]) {                #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)      # calculate variances 

        prec[i,k] <- 1/var[i,k]         # set precisions 

      } 

    for (k in 2:na[i]) {    # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud[i,k])    # trial-specific treat effects distributions 

        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]   # mean of treat effects distributions (with multi-arm trial correction) 

        taud[i,k] <- tau *2*(k-1)/k    # precision of treat effects distributions (with multi-arm trial correction) 

        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])   # adjustment for multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)  # cumulative adjustment for multi-arm trials 

      } 

  }    

totresdev <- sum(resdev[])              #Total Residual Deviance 

d[1]<-0           # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }  # vague priors for treatment effects 

sd ~ dunif(0,5)         # vague prior for between-trial SD 

tau <- pow(sd,-2)       # between-trial precision = (1/between-trial variance) 

}                                        # *** PROGRAM ENDS  

 

Additional code to monitor all treatment contrasts and rank treatments can be added as before. 

Given values for the mean, meanA=-0.73, and precision, precA=21, of the effects on Treatment 

1, from external sources, absolute effects, could be monitored as follows: 

 

A ~ dnorm(meanA,precA) 

for (k in 1:nt) { T[k] <- A + d[k]  } 

 

If trials with four or more arms were included, a further multivariate normal likelihood 

statement would need to be added and the corresponding variance-covariance and precision 

matrices built (Sigma2 and Omega2, say). So, for example if ns4 4-arm trials were available, we 
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would add the following lines of code to the above, taking care to change all the relevant loops 

to go through all trials: 

for(i in (ns2+ns3+1):(ns2+ns3+ns4)) {         # LOOP THROUGH 4-ARM STUDIES 

    for (k in 1:(na[i]-1)) {       # set variance-covariance matrix 

        for (j in 1:(na[i]-1)) {  Sigma2[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k)   } 

      } 

    Omega2[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma2[i,,])  #Precision matrix 

# multivariate normal likelihood for 4-arm trials    

    y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega2[i,1:(na[i]-1),1:(na[i]-1)])  

  } 

 

If no multi-arm trials are included, the code simplifies to: 

# Normal likelihood, identity link, trial-level data given as treatment differences 

# Random effects model for two-arm trials 

model{     # *** PROGRAM STARTS 

for(i in 1:ns2) {    # LOOP THROUGH 2-ARM STUDIES 

    y[i,2] ~ dnorm(delta[i,2],prec[i,2])   # normal likelihood for 2-arm trials 

    var[i,2] <- pow(se[i,2],2)      # calculate variances 

    prec[i,2] <- 1/var[i,2]         # set precisions 

    dev[i,2] <- (y[i,2]-delta[i,2])*(y[i,2]-delta[i,2])*prec[i,2]  #Deviance contribution 

    delta[i,2] ~ dnorm(md[i,2],tau)    # trial-specific treat effects distributions 

    md[i,2] <-  d[t[i,2]] - d[t[i,1]]     # mean of treat effects distributions 

  }    

totresdev <- sum(dev[,2])              #Total Residual Deviance 

d[1]<-0           # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }  # vague priors for treatment effects 

sd ~ dunif(0,5)         # vague prior for between-trial SD 

tau <- pow(sd,-2)       # between-trial precision = (1/between-trial variance) 

}                                        # *** PROGRAM ENDS  

 

The data structure is similar to that of Example 5 but we now have to specify the number of 

two-arm trials ns2 and the number of three-arm trials ns3.  The maximum number of arms is 3, 

so 3 vectors are needed for the treatment indicators, t[,1] t[,2], t[,3]; for a trial with 3 treatment 

arms, two treatment differences will be available, so 2 vectors of differences (the continuous 

outcomes) y[,]  and their standard errors se[,] are needed; and finally the number of arms, na[] and 

V[] the variance of the baseline treatment in that trial (needed to adjust for the correlation in 

multi-arm trials – note that this variable only need to have values assigned when there are multi-

arm trials), with NA denoting a missing observation. Note that any three-arm trials need to 

appear at the end of the column format data. 

 

# Data (Parkinson’s example – trial-level data: treatment differences) 

list(ns2=6, ns3=1, nt=5)    

 

t[,1] t[,2] t[,3] y[,2] y[,3] se[,2]  se[,3]  na[]  V[] 

1 3 NA -0.31 NA 0.668089651 NA         2  NA 

1 2 NA -1.7 NA 0.382640605 NA     2  NA 

3 4 NA -0.35 NA 0.441941738 NA     2  NA 

3 4 NA 0.55 NA 0.555114559 NA     2  NA 

4 5 NA -0.3 NA 0.274276316 NA     2  NA 

4 5 NA -0.3 NA 0.320087245 NA     2  NA 

1 2 4 -2.3 -0.9 0.71774604 0.694988091      3  0.254736842 

END 
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# Initial Values  

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d=c( NA, 0,0,0,0), sd=1) 

#chain 2 

list(d=c( NA, -1,-3,-1,1), sd=4) 

#chain 3 

list(d=c( NA, 2,2,2,2), sd=2) 

 

The parameters to monitor are the same as in Example 5. 

Program 7(b):  Normal likelihood, identity link, treatment differences, Fixed Effects 

(Parkinson’s Differences) 

# Normal likelihood, identity link, trial-level data given as treatment differences 

# Fixed effects model  

model{     # *** PROGRAM STARTS 

for(i in 1:ns2) {     # LOOP THROUGH 2-ARM STUDIES 

    y[i,2] ~ dnorm(delta[i,2],prec[i,2])   # normal likelihood for 2-arm trials 

    resdev[i] <- (y[i,2]-delta[i,2])*(y[i,2]-delta[i,2])*prec[i,2]  #Deviance contribution for trial i 

  } 

for(i in (ns2+1):(ns2+ns3)) {          # LOOP THROUGH MULTI-ARM STUDIES 

    for (k in 1:(na[i]-1)) {       # set variance-covariance matrix 

        for (j in 1:(na[i]-1)) {  Sigma[i,j,k] <- V[i]*(1-equals(j,k)) + var[i,k+1]*equals(j,k)  } 

      } 

    Omega[i,1:(na[i]-1),1:(na[i]-1)] <- inverse(Sigma[i,,])  #Precision matrix 

# multivariate normal likelihood for 3-arm trials    

    y[i,2:na[i]] ~ dmnorm(delta[i,2:na[i]],Omega[i,1:(na[i]-1),1:(na[i]-1)])  

#Deviance contribution for trial i 

    for (k in 1:(na[i]-1)){     # multiply vector & matrix 

        ydiff[i,k]<- y[i,(k+1)] - delta[i,(k+1)] 

        z[i,k]<- inprod2(Omega[i,k,1:(na[i]-1)], ydiff[i,1:(na[i]-1)]) 

      } 

    resdev[i]<- inprod2(ydiff[i,1:(na[i]-1)], z[i,1:(na[i]-1)]) 

  } 

for(i in 1:(ns2+ns3)){                        # LOOP THROUGH ALL STUDIES 

     for (k in 2:na[i]) {                #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)      # calculate variances 

        prec[i,k] <- 1/var[i,k]         # set precisions 

        delta[i,k] <-  d[t[i,k]] - d[t[i,1]] 

      } 

  }    

totresdev <- sum(resdev[])              #Total Residual Deviance 

d[1]<-0           # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }  # vague priors for treatment effects 

}      # *** PROGRAM ENDS   

 

# Initial Values  

#chain 1 

list(d=c( NA, 0,0,0,0)) 

#chain 2 

list(d=c( NA, -1,-3,-1,1)) 

#chain 3 

list(d=c( NA, 2,2,2,2)) 

RESULTS 

Results (based on 3 chains: 100,000 iterations after a burn-in of 50,000) are presented in Table 

A9 and are the same as the results obtained using the model in Example 5. 



96 

 

EXAMPLE 8. PARKINSON’S SHARED PARAMETERS (MIXED TREATMENT 

DIFFERENCE AND ARM-LEVEL DATA) 

To illustrate a meta-analysis with a shared parameter model (Section 4) we will assume that 

the data available for the Parkinson’s example were the mean off-time reduction for patients in 

each arm of the trial for the first three trials, but only the differences between the intervention 

and control arms (and their standard errors) were available for the remaining trials (Table A8).   

Random and fixed effects models were fitted. The code below consists of a combination of the 

code used in Example 5, for the arm-level data, and the code used in Example 7, for the trial 

level data. 

Program 8(a): Normal likelihood, identity link, shared parameter model, Random Effects 

(Parkinson’s shared parameters) 

# Normal likelihood, identity link, Arm and Trial-level data (treatment differences) 

# Random effects model for multi-arm trials 

model{      # *** PROGRAM STARTS 

for(i in 1:ns.a){     # LOOP THROUGH STUDIES WITH ARM DATA 

    w.a[i,1] <- 0     # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0       # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,.0001)      # vague priors for all trial baselines 

    for (k in 1:na.a[i]) {    #  LOOP THROUGH ARMS 

        var.a[i,k] <- pow(se.a[i,k],2)    # calculate variances 

        prec.a[i,k] <- 1/var.a[i,k]     # set precisions 

        y.a[i,k] ~ dnorm(theta[i,k],prec.a[i,k])   # normal likelihood 

        theta[i,k] <- mu[i] + delta[i,k]     # model for linear predictor 

        dev[i,k] <- (y.a[i,k]-theta[i,k])*(y.a[i,k]-theta[i,k])*prec.a[i,k]    #Deviance contribution 

      } 

    resdev[i] <- sum(dev[i,1:na.a[i]])     #  summed residual deviance contribution for this trial 

    for (k in 2:na.a[i]) {      # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(md[i,k],taud.a[i,k])  # trial-specific LOR distributions 

# mean of LOR distributions, with multi-arm trial correction 

        md[i,k] <-  d[t.a[i,k]] - d[t.a[i,1]] + sw.a[i,k]  

        taud.a[i,k] <- tau *2*(k-1)/k   # precision of LOR distributions (with multi-arm trial correction) 

        w.a[i,k] <- (delta[i,k] - d[t.a[i,k]] + d[t.a[i,1]])  # adjustment, multi-arm RCTs 

        sw.a[i,k] <- sum(w.a[i,1:k-1])/(k-1)   # cumulative adjustment for multi-arm trials 

      } 

  } 

for(i in 1:ns.t){     # LOOP THROUGH STUDIES WITH TRIAL DATA 

    w[i,1] <- 0       # adjustment for multi-arm trials is zero for control arm 

    delta[i+ns.a,1] <- 0      # treatment effect is zero for control arm 

    for (k in 2:na[i]) {     #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)     # calculate variances 

        prec[i,k] <- 1/var[i,k]     # set precisions 

        y[i,k] ~ dnorm(delta[i+ns.a,k],prec[i,k])   # normal likelihood 

        dev[i+ns.a,k] <- (y[i,k]-delta[i+ns.a,k])*  #Deviance contribution 

                         (y[i,k]-delta[i+ns.a,k])* prec[i,k] 

      } 

    resdev[i+ns.a] <- sum(dev[i+ns.a,2:na[i]])   #  summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {      # LOOP THROUGH ARMS 

        delta[i+ns.a,k] ~ dnorm(md[i+ns.a,k],taud[i,k])     # trial-specific LOR distributions 

        md[i+ns.a,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]   # mean of LOR distributions, with multi-arm trial correction 

        taud[i,k] <- tau *2*(k-1)/k    # precision of LOR distributions (with multi-arm trial correction) 

        w[i,k] <- (delta[i+ns.a,k] - d[t[i,k]] + d[t[i,1]])  # adjustment, multi-arm RCTs 

        sw[i,k] <- sum(w[i,1:k-1])/(k-1)   # cumulative adjustment for multi-arm trials 
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      } 

  }    

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

sd ~ dunif(0,5)       # vague prior for between-trial SD 

tau <- pow(sd,-2)      # between-trial precision = (1/between-trial variance) 

}        # *** PROGRAM ENDS  

 

Additional code to monitor all treatment contrasts, rank treatments and obtain absolute 

treatment effects can be added as before.  

The data structure for this code consists of three parts. First, a list giving the number of studies 

with arm-level information, ns.a, the number of studies with trial-level information, ns.t, and the 

number of treatments, nt.  Two sections of column format data follow: one with the arm-level 

data, with the structure described for program 5(a), and another with the trial-level data and the 

same structure described for program 7(a).  All three data components need to be loaded into 

WinBUGS for the program to run. Note that, because two separate sets of data are being read 

into WinBUGS, the variable names referring to the arm-level data have the added suffix .a, to 

distinguish them from the trial-level data.  

# Data (Parkinson’s example: Arm and Trial-level data) 

list(ns.a=3, ns.t=4, nt=5)    

 

# Arm-level data 

t.a[,1] t.a[,2] t.a[,3] y.a[,1] y.a[,2] y.a[,3] se.a[,1] se.a[,2] se.a[,3] na.a[] # study 

1 3 NA -1.22 -1.53 NA 0.504 0.439 NA 2 # 1 

1 2 NA -0.7 -2.4 NA 0.282 0.258 NA 2 # 2 

1 2 4 -0.3 -2.6 -1.2 0.505 0.510 0.478 3 # 3 

END 

 

# Trial-level data 

t[,1] t[,2] y[,2] se[,2] na[] # study 

3 4 -0.35 0.441941738 2 # 4 

3 4 0.55 0.555114559 2 # 5 

4 5 -0.3 0.274276316 2 # 6 

4 5 -0.3 0.320087245 2 # 7 

END 

 

# Initial Values  

# Initial values for delta can be generated by WinBUGS. 

#chain 1 

list(d=c( NA, 0,0,0,0), sd=1, mu=c(0, 0, 0)) 

#chain 2 

list(d=c( NA, -1,-3,-1,1), sd=4, mu=c(-3, -3, -3)) 

#chain 3 

list(d=c( NA, 2,2,2,2), sd=2, mu=c(-3, 5, -1)) 

 

The parameters to monitor are the same as in Example 5. 
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Program 8(b):  Normal likelihood, identity link, shared parameter model, Fixed Effects 

(Parkinson’s shared parameters) 

# Normal likelihood, identity link, Arm and Trial-level data (treatment differences) 

# Fixed effects model 

model{        # *** PROGRAM STARTS 

for(i in 1:ns.a){      # LOOP THROUGH STUDIES WITH ARM DATA 

    mu[i] ~ dnorm(0,.0001)     # vague priors for all trial baselines 

    for (k in 1:na.a[i]) {      #  LOOP THROUGH ARMS 

        var.a[i,k] <- pow(se.a[i,k],2)    # calculate variances 

        prec.a[i,k] <- 1/var.a[i,k]     # set precisions 

        y.a[i,k] ~ dnorm(theta[i,k],prec.a[i,k])   # normal likelihood 

        theta[i,k] <- mu[i] + d[t.a[i,k]] - d[t.a[i,1]]   # model for linear predictor 

        dev[i,k] <- (y.a[i,k]-theta[i,k])*(y.a[i,k]-theta[i,k])*prec.a[i,k]    #Deviance contribution 

      } 

    resdev[i] <- sum(dev[i,1:na.a[i]])     #  summed residual deviance contribution for this trial 

  } 

for(i in 1:ns.t){      # LOOP THROUGH STUDIES WITH TRIAL DATA 

    for (k in 2:na[i]) {     #  LOOP THROUGH ARMS 

        var[i,k] <- pow(se[i,k],2)      # calculate variances 

        prec[i,k] <- 1/var[i,k]    # set precisions 

        y[i,k] ~ dnorm(theta[i+ns.a,k],prec[i,k])   # normal likelihood 

        theta[i+ns.a,k] <- d[t[i,k]] - d[t[i,1]]     # model for linear predictor 

        dev[i+ns.a,k] <- (y[i,k]-theta[i+ns.a,k])*  #Deviance contribution 

                         (y[i,k]-theta[i+ns.a,k])* prec[i,k] 

      } 

    resdev[i+ns.a] <- sum(dev[i+ns.a,2:na[i]])   #  summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])     #Total Residual Deviance 

d[1]<-0       # treatment effect is zero for reference treatment 

for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects 

}       # *** PROGRAM ENDS  

 

# Initial Values  

#chain 1 

list(d=c( NA, 0,0,0,0), mu=c(0, 0, 0)) 

#chain 2 

list(d=c( NA, -1,-3,-1,1), mu=c(-3, -3, -3)) 

#chain 3 

list(d=c( NA, 2,2,2,2), mu=c(-3, 5, -1)) 

 

RESULTS 

Results (based on 3 chains: 100,000 iterations after a burn-in of 20,000 and 50,000 for the FE 

and Re models, respectively) are presented in Table A9 and are the same as the results obtained 

using the model in Example 5. 


