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EXECUTIVE SUMMARY 

In this document we describe methods to detect inconsistency in a network meta-analysis. 

Inconsistency can be thought of as a conflict between “direct” evidence on a comparison 

between treatments B and C, and “indirect” evidence gained from AC and AB trials. Like 

heterogeneity, inconsistency is caused by effect-modifiers, and specifically by an imbalance 

in the distribution of effect modifiers in the direct and indirect evidence. Checking for 

inconsistency therefore logically comes alongside a consideration of the extent of 

heterogeneity and its sources, and the possibility of adjustment by meta-regression or bias 

adjustment (see TSD31). We emphasise that while tests for inconsistency must be carried out, 

they are inherently underpowered, and will often fail to detect it. Investigators must therefore 

also ask whether, if inconsistency is not detected, conclusions from combining direct and 

indirect evidence can be relied upon. 

After an introduction outlining the document, Section 2 begins by defining inconsistency as a 

property of “loops” of evidence, and the Inconsistency Degrees of Freedom, which is 

approximately the number of independent loops of evidence. The relation between 

inconsistency and heterogeneity is explained, followed by a description of the difficulties 

created by multi-arm trials. In Section 3 we set out Bucher’s original approach to assessing 

consistency in 3-treatment “triangular” networks, in larger “circuit” structures, and its 

extension to certain special structures where independent tests for inconsistencies can be 

created. Section 4 looks at detection of inconsistency in the general case, and we describe 

methods suitable for more complex networks. The first is the repeated use of the Bucher 

method to all the evidence loops in the network: this is a sound approach if it fails to detect 

inconsistencies, but may be difficult to interpret if inconsistencies are found. A second 

method is to compare the standard network consistency model to an “inconsistency”, or 

unrelated mean effects, model. This is proposed as an efficient way of detecting 

inconsistency: sample WinBUGS code to implement fixed and random effects inconsistency 

models in a Bayesian framework is given in the Appendix, and results for two illustrative 

examples are provided. Section 4 closes with some comments on the relative merits of 

Bayesian and Frequentist methods with particular reference to sensitivity to prior 

distributions.  

In Section 5 we review steps that can be taken to minimise the risk of drawing incorrect 

conclusions from indirect comparisons and network meta-analysis, which are the same steps 

that will minimise heterogeneity in pair-wise meta-analysis, and suggest some empirical 
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indicators that can provide reassurance. The question of how to respond to inconsistency is 

discussed in Section 6. Finally, the document ends with a set of brief summary statements 

and recommendations (Section 7). 
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1. INTRODUCTION 

If pair-wise meta-analysis combines information from multiple trials comparing treatments A 

and B, network meta-analysis, also referred to as mixed treatment comparisons, or multiple 

treatment meta-analysis, combines information from randomised comparisons A vs B, A vs 

C, B vs C, A vs D and so on.2-7 These methods all have the important property that they 

preserve randomisation.8 Given a connected network of comparisons, network meta-analysis 

produces an internally coherent set of estimates of the efficacy of any treatment in the 

network relative to any other. A key assumption of network meta-analysis is that of evidence 

consistency. The requirement, in effect, is that in every trial i in the network, regardless of the 

actual treatments that were compared, the true effect δiXY of treatment Y relative to treatment 

X, is the same for every trial in a Fixed Effects (FE) model, i.e. δiXY = dXY, or exchangeable 

between-trials in a Random Effects (RE) model, i.e. δiXY ~ Normal(dXY, σ
2). From this 

assumption the “consistency equations” can be deduced.7,9,10 These assert, for example, that 

for any three treatments X, Y, Z, the fixed effects, or mean effects in a RE model, are related, 

as follows: dYZ = dXZ – dXY.  

Where doubts have been expressed about network meta-analysis, these have focussed on the 

consistency equations. This is because, unlike the exchangeability assumptions from which 

they are derived, which are notoriously difficult to verify, the consistency equations offer a 

clear prediction about relationships in the data that can be statistically tested. Note that 

consistency concerns the relation between the treatment contrasts, as distinct from 

heterogeneity, which concerns the variation between trials within each contrast (we use the 

term “contrast” to refer to a pair-wise comparison between two treatments). 

Systematic empirical work on the validity of the consistency assumption has been limited, 

although it remains an active area. Song et al.11 identified 44 datasets with triangle networks 

and used the Bucher method,12 described in Section 3.1, to explore the existence of conflict 

between “direct” evidence on A vs B trials and “indirect” evidence inferred from AC and BC 

trials (see TSD29). There were three cases where statistically significant inconsistencies (at 

p<0.05) were detected. However, the difference between the direct and indirect evidence was 

described by the authors as being clinically significant in only one of these cases. In this 

instance the doses used in the direct evidence were dissimilar to the doses used in the indirect 

evidence and the authors report that the inconsistency was resolved when the comparison was 

restricted to a similar range of doses. This example suggests a close relationship between 

between-trial heterogeneity and inconsistency between “direct” and “indirect” evidence. It is 
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also an example of a type of heterogeneity that might be removed by meta-regression 

(described in TSD31). We return to these issues in later sections, but it should be understood 

that the logical place for an enquiry into consistency is alongside a consideration of 

heterogeneity and its causes, and where appropriate the reduction of heterogeneity through 

covariate adjustment (meta-regression) and bias adjustment (see TSD31).  

The first objective of this technical support document is to suggest robust methods for 

detection of inconsistency in evidence networks. However, it is important to note that failure 

to detect inconsistency does not imply consistency. As with other interaction effects, the 

evidence required to confidently rule out any but the most glaring inconsistency is seldom 

available, and in many cases, such as Indirect Comparisons, there is no way of testing the 

consistency assumptions at all. A second objective, therefore, is to clarify the measures that 

can be taken to minimise the risk of drawing incorrect conclusions from indirect comparisons 

and network meta-analysis, and to suggest some empirical indicators that might help assess 

what that risk might be. 

The document takes the following form: firstly we discuss the effect of network structure on 

the number of potential inconsistencies, and we define Inconsistency Degrees of Freedom 

(ICDF) as the number of independent “loops” of evidence. We then discuss the relation 

between heterogeneity and inconsistency and the impact of multi-arm trials on the definitions 

of these terms. Section 3 then outlines Bucher’s original approach to assessing consistency in 

3-treatment, “triangular” networks of evidence12 and how it can be extended to larger loops 

of evidence and to certain special structures. We then turn to the general case (Section 4), 

where it is not possible to carry out independent tests for each set of inconsistencies. First we 

consider the repeat application of the Bucher method to every triangle or closed loop in the 

network (Section 4.1). In Section 4.2 we propose a more general method, suitable for 

assessing consistency in any network, which compares the consistency model, on which a 

network meta-analysis suitable for coherent decision making must be based, to an 

“inconsistency model” (or unrelated mean effects model), in which the constraints forced by 

the consistency equations are removed. The latter is equivalent to having separate, unrelated, 

meta-analyses for every pair-wise contrast but with a common variance parameter in RE 

models. Sample code using the WinBUGS package13 for fixed and random effects 

inconsistency models in a Bayesian Markov Chain Monte Carlo (MCMC) framework, is set 

out in the Appendix. In Section 4.3 we briefly review other methods for detecting 

inconsistency and the relative merits of Bayesian and Frequentist approaches. 
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In the remaining sections we suggest methods for avoiding inconsistency and note their 

relation to methods for avoiding heterogeneity (Section 5); we examine the question of how 

to respond to inconsistency if it is detected (Section 6); finally, we end with a set of brief 

summary comments and recommendations (Section 7).  

The document should be seen as an adjunct to TSD2,9 which sets out a generalised linear 

modelling framework for network meta-analysis, indirect comparisons and pair-wise meta-

analysis. TSD29 explained how the same core model could be applied with different 

likelihoods and linking functions. It should be understood that this carries over entirely to the 

Bayesian models developed for inconsistency. 

 

2. NETWORK STRUCTURE: LOOPS, MULTI-ARM TRIALS, AND 

THE NUMBER OF INCONSISTENCIES. 

2.1.   EVIDENCE LOOPS 

We strongly recommend that the first step in checking for inconsistency should be to examine 

network diagrams carefully, as the structure can reveal particular features that may assist in 

the choice of analysis method. For example, it may be useful to use different line styles to 

highlight multi-arm trials, or to include information on the number of trials informing each 

comparison in the network diagram. 

We begin by considering networks that consist only of two-arm trials, starting with a 

triangular network ABC (Figure 1(a)), where each edge represents the direct evidence 

comparing the treatments it connects. If we take treatment A as our reference treatment, a 

consistency model (TSD29) has two basic parameters, say dAB and dAC, but we have data on 

three contrasts dAB, dAC and dBC. The latter, however is not an independent parameter, but is 

wholly determined by the two other parameters through the consistency equations. Setting 

aside the question of the number of trials informing each pair-wise contrast, we can see that 

there are two independent parameters to estimate and three sources of data. This generates 

one degree of freedom with which to detect inconsistency. More generally, we can define the 

“inconsistency degrees of freedom” (ICDF) as the number of pair-wise contrasts on which 

there is data, N minus the number of basic parameters, the latter being one less than the 

number of treatments, nt.7 Thus if all trials are two-arm trials, the ICDF can be calculated 

from the number of treatments, nt, and the number of contrasts, N, on which there is  
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evidence as  

 ( )ICDF 1N nt= − −  

This accords with the common sense notion of “inconsistency”, which has been at the heart 

of both previous methodological work14 and empirical work,11 which views it as a property of 

“loops” of evidence. Every additional independent loop in a network of two-arm trials 

represents one additional ICDF, and one further way in which potential inconsistency can be 

realised.  

 

Figure 1 Possible treatment networks: treatments are represented by letters, lines connecting two 

treatments indicate that a comparison between these treatments has been made (in one or more RCTs).  

 

The “square” network in Figure 1(b) consists of AB, AC, BD and CD trials. Here we have 1 

inconsistency degree of freedom, as there are N=4 independent pieces of evidence, nt=4 

treatments, and therefore nt-1=3 parameters in a consistency model, giving ICDF=4-(4-1)=1.  

In Figure 1(c) there are N=9 contrasts on which there is evidence, nt=7 treatments and 

therefore 6 parameters, giving ICDF=3. Note that the ICDF is equal to the number of 

independent loops. In Figure 1(c) there are two separate structures where inconsistency could 

be detected, first the triangle EFG, and second the square ABCD. In the square, one could 

count a total of 3 loops: ABC, BCD, and ABCD. However, there are only two independent 

loops in this second part of the structure, because if we know all the edges of any two loops, 

we would immediately know the edges of the third. Therefore there can be only two 

inconsistencies in the ABCD square. 

b) N= 4, nt=4, ICDF=1

A

B

D

C

A

B

D

C

a) N= 3, nt=3, ICDF=1

c) N= 9, nt=7, ICDF=3 d) N= 6, nt=4, ICDF=3

A

B

C

D

A

B

C

D

A

B

CA

B

C

A

B

D

C

E

F

G

A

B

D

C

E

F

G



12 

 

Similarly, in Figure 1(d) one can count a total of 7 loops: four three-treatment loops (ACD, 

BCD, ABD, ABC), and three four-treatment loops (ABCD, ACDB, CABD). But there are 

only three independent loops, and one can confirm that with N=6, nt=4, and ICDF=3. It is not 

possible to specify which loops are independent, only how many there are.  

 

2.2.   HETEROGENEITY VERSUS INCONSISTENCY 

Although we have characterised heterogeneity as between-trial variation within treatment 

contrasts, and inconsistency as variation between contrasts, the difference is subtle. 

Eventually, all heterogeneity in relative treatment effects is a reflection of an interaction 

between the treatment effect and a trial level variable (see TSD31). To put it another way, 

heterogeneity reflects the presence of effect-modifiers. If we now consider the case of a 

triangular network (Figure 1(a)), if the effect-modifiers are present in the AB and AC trials, 

but not the BC trials, then we may observe “inconsistency”. However, if the effect modifiers 

are more evenly balanced across the network, then it is more likely that we will not find 

inconsistency.  

One might try to distinguish an imbalance occurring by chance from one due to an inherent 

inconsistency. Suppose, for example, patients in BC trials are inherently different because 

they cannot take treatment A, and this is in addition associated with a different treatment 

effect. These patients have perhaps already failed on A, or have had adverse side-effects, or 

they have markers that counter-indicate A. At the other extreme, it might be that the 

inconsistency was just the result of chance, in which the BC trials just happened to be those 

with an effect modifier. But between these extremes one might imagine that the BC trials are 

just more likely to concern patients who could not take A. In either case, heterogeneity and 

inconsistency are both reflections of a treatment effect modifier. Inconsistency is a special 

case of heterogeneity where there is an association between the effect modifier and the set of 

treatment contrasts. There is an immediate implication that inconsistency due to a chance 

imbalance in the distribution of effect modifiers, should become increasingly less likely to 

occur as the number of trials on each contrast increases.  

Inconsistency checking is closely related to cross-validation for outlier detection (see TSD31). 

However, in the presence of heterogeneity, cross-validation is based on the predictive 

distributions of effects, while the concept of inconsistency between "direct" and "indirect" 

evidence refers to inconsistency in expected (i.e. mean) effects and is therefore based on the 

posterior distributions of the mean effects. This will frequently result in a situation where, in 



13 

 

a triangular loop, in which one edge consists of a singleton trial, we may find inconsistency in 

the expected effects, while cross-validation fails to show that the singleton trial is an outlier. 

Of course, technically there is no reason why inconsistency checks cannot be made on the 

predictive distributions of the treatment effects, and this may be desirable if inference is to be 

based on the predictive treatment effects from a network meta-analysis. See TSD31 for 

further details. 

 

2.3.   MULTI-ARM TRIALS 

When multi-arm trials are included in the network, that is trials with more than two arms, the 

definition of inconsistency becomes more complex. A 3-arm trial provides evidence on all 

three edges of an ABC triangle, and yet it cannot be inconsistent. In other words, although 

trial i estimates three parameters, δi,ΑΒ, δi,AC, δi,BC, only two are independent because δi,BC = 

δi,AC – δi,AB. There can therefore be no inconsistency within a 3-arm trial. Similarly, if all the 

evidence was from 3-arm trials on the same three treatments, there could be no inconsistency 

in the network, only between-trials heterogeneity. 

The difficulty in defining inconsistency comes when we have both 2- and 3-arm trial 

evidence, for example AB, AC, BC and ABC trials. This raises two questions. The first 

question is: do we wish to consider evidence from an ABC trial as potentially inconsistent 

with evidence from an AB trial? Although one of the very first treatments of these data 

structures3 did regard this as a form of inconsistency, it appears that in practice AB evidence 

from AB, ABC, and ABD studies has been synthesised without any special consideration 

being given to the presence of the further arms. In systematic reviews and meta-analyses of 

AB evidence, when multi-arm trials are available, only the AB arms are included and any 

further arms discarded. In all the published meta-analyses and systematic reviews, the issue 

of whether the presence of multiple arms might be associated with greater heterogeneity, i.e. 

inconsistency, has never been raised. For this reason, in everything that follows, 

inconsistency will be used only to refer to evidence loops, and loops of evidence that are 

potentially inconsistent can only arise from structures in which there are three distinct trials 

or sets of trials.  

A second issue is parameterisation. AB, AC and BC evidence arises from 3 separate sources 

and can be inconsistent. But suppose there are also ABC trials? We know that these can 

contribute independent evidence on only two treatment effects, but it is not clear which two to 
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choose. One way to see what the implications are is to consider between-trial heterogeneity. 

If we are interested in the heterogeneity of the AB, AC and BC effects, we might begin by 

looking at each set of two-arm trials separately. But how should the 3-arm trials be used? 

They contribute further information on between-trials heterogeneity, but strictly speaking, 

they can only provide independent information on two of the three contrasts. Clearly, the 

choice will have an impact on both estimates of between-trial heterogeneity and the detection 

of inconsistency.  

Thus, where there are mixtures of 2-arm and multi-arm trials, our definition of inconsistency 

as arising in loops creates inherent technical difficulties that cannot, as far as is known, be 

avoided. We return to the issue as we explain approaches to detecting inconsistency. The 

solutions we suggest are simple and practical, and, while still not entirely satisfactory, they 

are predicated on the assumption that the majority of trials are 2-arm trials and there is 

unlikely to be any material impact on detection of inconsistency. Conversely, if the 

proportion of multi-arm trials becomes higher, the distinction between heterogeneity and 

inconsistency, conceptualised as systematic differences between “direct” and “indirect” 

evidence, becomes harder to draw and less relevant.  

 

3. NETWORKS WITH INDEPENDENT TESTS FOR INCONSISTENCY 

A key consideration in consistency assessment in networks of evidence is whether 

independent tests for inconsistency can be constructed. Below we show how to construct 

independent tests, and explain the circumstances where this is possible. Section 4 sets out 

methods for the more general case which can be applied to any network. However, the 

methods in the following section should be used wherever possible as they provide the 

simplest, most complete, and easiest to interpret analyses of inconsistency possible.  

 

3.1.   BUCHER METHOD FOR SINGLE LOOPS OF EVIDENCE 

The first and simplest method for testing consistency of evidence is due to Bucher et al.12 It is 

essentially a “two-stage” method. The first stage is to separately synthesise the evidence in 

each pair-wise contrast; the second stage is a test of whether direct and indirect evidence are 

in conflict. A “direct” estimate of the C vs. B effect, ˆ Dir

BC
d , is to be compared to an “indirect” 

estimate, ˆ Ind
BC

d , formed from the AB and AC direct evidence  
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 ˆ ˆ ˆInd Dir Dir

BC AC AB
d d d= −  (1) 

We assume that the direct estimates can either be estimates from individual trials, or they can 

be from pair-wise meta-analyses, whether fixed or random effects.  Attaching to each direct 

estimate is a variance, for example Var( ˆ Dir

BC
d ). As the direct estimates are statistically 

independent we have 

 ˆ ˆ ˆ( ) ( ) ( )
Ind Dir Dir

BC AC AB
Var d Var d Var d= +   

An estimate of the inconsistency,ω, can be formed by simply subtracting the direct and 

indirect estimates:  

 
ˆ ˆˆ   

ˆ ˆ ˆ ˆ ˆˆVar( ) Var( ) Var( ) Var( ) Var( ) Var( )

Dir Ind

BC BC BC

Dir Ind Dir Dir Dir

BC BC BC BC AB AC

d d

d d d d d

ω

ω

= −

= + = + +

  

An approximate test of the null hypothesis that there is no inconsistency can be obtained by 

referring 
ˆ

  
ˆVar( )

BC

BC

BC

z

ω

ω

=  to the standard normal distribution. Box 1 provides a worked 

example.  

It is easy to confirm that it makes no difference whether we compare the direct BC evidence 

to the indirect evidence formed through AB and AC, or compare the direct AB evidence to 

the indirect AC and BC, or the AC with the AB and BC. The absolute values of the 

inconsistency estimates will be identical, and will always have the same variance. This agrees 

with the intuition that, in a single loop, there can only be one inconsistency, as discussed 

above. Needless to say, the method can only be applied to 3 independent sources of data. 

Three-arm trials cannot be included: because they are internally consistent they will reduce 

the chances of detecting inconsistency (see Section 4.3 for further notes). 
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Box 1 

Meta-analyses of (direct) randomised controlled trial evidence on three treatments for 

virologic suppression in patients with HIV15 produced the following estimates on the log 

odds ratio (OR) scale, corresponding to the network in Figure 1(a): 

 ln(OR) standard error of ln(OR) 

ˆDir
AB

d  2.79 0.56 

ˆDir
AC

d  1.42 0.34 

ˆDir
BC

d  0.47 0.10 

The indirect estimate for the relative effect of treatment C vs B was 

ˆ 1.42 2.79 1.37
Ind

BC
d = − = −  with 2 2ˆ( ) 0.56 0.34 0.429

Ind

BC
Var d = + = . Comparing this to the 

direct estimate ˆ 0.47
Dir

BC
d = , we have inconsistency estimate ˆ 0.47 ( 1.37) 1.84

BC
ω = − − =  

with 2ˆ( ) 0.10 0.429
BC

Var ω = + . Then, 1.84 =2.78  
0.439

BC
z =  indicating there is 

evidence of inconsistency (p-value < 0.01). 

Box 1 Worked example: calculating Bucher’s inconsistency estimate and approximate test for 

inconsistency. 

 

This method generalises naturally to the “square” network in Figure 1(b) which, like the 

triangle and any other simple “circuit” structure, has ICDF=1. An indirect estimate of any 

edge can be formed from the remaining edges, and the variance of the inconsistency term is 

the sum of the variances of all the comparisons. As the number of edges in the loop increases 

it becomes less and less likely that a real inconsistency will be detected due to the higher 

variance calculated for the inconsistency estimate. 

 

3.2.   EXTENSION OF BUCHER METHOD TO NETWORKS WITH MULTIPLE LOOPS 

Figure 2 shows an example of a Cochrane Overview of Reviews16,17 where there is data on 10 

contrasts involving 8 treatments for childhood enuresis, and therefore ICDF=3. The special 

feature of this network is that all the inconsistencies can be seen as concerning estimates of 

the Alarm vs No treatment effect. In particular, there are four independent estimates of this 

parameter: one direct estimate and three indirect estimates via Psychological therapy, 

Imipramine and Dry bed training, respectively. In this situation an approximate chi-square (

2
χ ) test of inconsistency can be constructed on 3 degrees of freedom16 which is an extension 

of the Bucher method – see Box 2. 
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Figure 2 Enuresis treatment network
16
: lines connecting two treatments indicate that a comparison 

between these treatments has been made (in one or more RCTs). 

 

Figure 1(c) represents a further pattern where the inconsistency analysis can be broken down 

into separate independent elements. Here there are a total of three independent loops and we 

anticipate ICDF=3. This is confirmed by observing that there are 9 contrasts on which there 

is evidence, 7 treatments, and therefore 6 parameters to estimate. In this case, one 

inconsistency relates to the loop EFG where there are two sources of evidence on any edge, 

while the other concerns the edge BC, on which there are 3 independent sources of evidence, 

one direct and two indirect. The most convenient way to analyse inconsistency in this 

structure is to break the problem down into the two separate and unrelated components. First, 

inconsistency in the EFG “triangle” can be examined using the simple Bucher approach 

(Section 3.1). Second, consistency between the three sources of evidence on the BC edge can 

be examined by calculating a statistic to refer to a 2

2
χ  distribution, as described in Box 2. 

These two tests provide a complete analysis of the inconsistency in this network.  

The Bucher method for triangle structures, and its extension to larger loops and to 2
χ tests, 

are all based on two-arm trials. Inclusion of multi-arm trials will lower the power of these 

tests to detect inconsistency. Our suggestion is that they are excluded entirely.  

  

No treatment Alarm

Psychological  

Therapy

Imipramine Dry bed training

Desmopressin
Diclofenac Dry bed training

+ Alarm

No treatment Alarm

Psychological  

Therapy

Imipramine Dry bed training

Desmopressin
Diclofenac Dry bed training

+ Alarm
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Box 2 

To analyse the potential inconsistencies in the network in Figure 2, we consider the 

evidence on each of the relevant edges obtained from separate FE pair-wise meta-

analyses, on the log relative risk (RR) scale: 

   Direct estimates 

Control Treatment 
Number of 

RCTs 
ln(RR) variance of ln(RR) 

No treatment Alarm 14 -0.968 0.006 

No treatment Psychological Therapy 3 -0.371 0.012 

Alarm Psychological Therapy 3 0.386 0.038 

No treatment Imipramine 11 -0.261 0.001 

Alarm Imipramine 3 0.315 0.009 

No treatment Dry Bed Training 2 -0.198 0.012 

Alarm Dry Bed Training 3 -0.285 0.071 

We need to compare the direct estimate of the relative effect of Alarm vs No treatment, 

1

ˆ 0.968d = −  with the three possible indirect estimates, 
2 3 4

ˆ ˆ ˆ, ,d d d , given below:  

 ln(RR) variance of ln(RR) 

Direct estimate of Alarm vs No treatment effect 

   -0.968 0.006 

Indirect estimates of Alarm vs No treatment effect 

via Psychological Therapy -0.757 0.050 

via Imipramine -0.576 0.010 

via Dry Bed Training 0.087 0.083 

Given 4 independent estimates 
1 2 3 4

ˆ ˆ ˆ ˆ, , ,d d d d  of the relative treatment effect of Alarm vs 

No treatment, and their variances V1, V2, V3 and V4, an average treatment effect dɶ  is 

estimated by inverse variance weighting as 
4 4

1 1

ˆ 0.776
i i ii i

d wd w
= =

= = −∑ ∑ɶ , where 

wi=1/Vi, i=1,2,3,4. An approximate 2
χ  statistic, is given by ( )

4 2

1

ˆ 18.8
i i

i

T w d d

=

= − =∑ ɶ . 

Referring T to a 2

3
χ  distribution (the degrees of freedom are given by the number of 

independent estimates minus 1) suggests that there is evidence of inconsistency (p-value < 

0.01). For more details see Caldwell et al.16 

Box 2 Worked example: chi-square test for inconsistency in the enuresis network.
16
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4. METHODS FOR GENERAL NETWORKS  

4.1.   REPEAT APPLICATION OF THE BUCHER METHOD 

Figure 1(d) shows a 4 treatment network in which there is data on every contrast and 3 

possible inconsistencies. The difference between the networks in Figure 1(d) and Figure 1(c) 

is that in the former there are four three-treatment loops (ACD, BCD, ABD, ABC), and three 

four-treatment loops ABCD, ACDB, CABD, but we have already noted that the loops are not 

statistically independent. The further difficulty is that it is not possible to construct a set of 

independent tests to examine the 3 inconsistencies.  

Another approach is to apply the Bucher method to each of the seven loops in the network in 

turn, which has the advantage of being simple to implement. However, when this is done, the 

number of loops, and hence the number of tests, will far exceed the number of inconsistencies 

that the network can actually have. For example in a network where N=14, nt=6 and 

ICDF=9,18 the Bucher method was applied to every three-way, four-way and five-way loop 

leading to 20 tests of inconsistency, none of which suggested that inconsistency might be 

present. In another example19 N=42, nt=12 and ICDF=31 is the maximum number of 

inconsistencies. However, repeated use of the Bucher method on each of the three-way loops 

in this network gives 70 estimates of inconsistency for the response outcome and 63 estimates 

for the acceptability outcome. In total six loops showed statistically significant inconsistency 

and the authors concluded that this was compatible with chance as 133 separate tests for 

inconsistency were performed. However, this conclusion could be questioned on the grounds 

that the 133 tests were not independent – there could not be more than 62 independent tests, 

and even this assumes that the two outcomes are unrelated.  

Each application of the Bucher test is a valid test at its stated significance level. If no 

inconsistencies are found, at say p<0.05, when applying the test to all loops in the network, 

one can correctly claim to have failed to reject the null hypothesis of no inconsistency at this 

level, or higher. This is not necessarily very reassuring because of the inherently high 

variance of indirect evidence, especially in multi-sided loops. (The situation is analogous to 

concluding “no difference” from a small, under-powered trial). This is a problem common to 

all methods for detecting inconsistency, of course, not just the Bucher approach. 

Difficulties in the interpretation of statistical tests arise if any of the loops show significant 

inconsistency, at say a p<0.05 level. One cannot immediately reject the null hypothesis at this 

level because a certain degree of multiple testing has taken place, and adjustment of 
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significance levels would need to be considered. However, because the tests are not 

independent, calculating the correct level of adjustment becomes a complex task. Further, in 

networks with multiple treatments, the total number of triangular, quadrilateral, and higher 

order loops may be extremely large.  

The presence of multi-arm trials again causes complications. Our suggestion is that when a 

test on a loop ABC is being constructed, evidence from 3-arm ABC trials is excluded. 

However, ABC evidence on AB should be included when testing, for example, the ABD 

loop. Similarly ABCD trials would be excluded from tests on the ABCD loop, but included in 

studies of the ABCE, BCDE loops, and so on. 

 

4.2.   INCONSISTENCY MODEL 

Instead of the repeat application of the Bucher method, in complex networks where 

independent tests cannot be constructed, we propose that the standard consistency model that 

was presented in TSD29 is compared with an inconsistency model. In the consistency model a 

network with nt treatments, A, B, C,… defines nt-1 “basic” parameters20 dAB, dAC,… which 

estimate the effects of all treatments relative to treatment A, chosen as the reference 

treatment. Prior distributions are placed on these parameters. All other contrasts are derived 

“functional” parameters, which can be defined as functions of the basic parameters by 

making the consistency assumption.  

In the inconsistency model proposed here, each of the N contrasts for which evidence is 

available, represents a separate, unrelated, basic parameter to be estimated: no consistency is 

assumed. So, for a network such as that in Figure 1(b), the consistency model would estimate 

three relative treatment effect parameters, dAB, dAC, dAD, from evidence on four contrasts 

(ICDF=1). The functional parameter dCD =dAD - dAC is defined from the basic parameters. The 

inconsistency model would estimate 4 relative treatment effect parameters, dAB, dAC, dBD, dCD, 

from the evidence on these 4 contrasts, without assuming any relationship between the 

parameters. Similarly for the network in Figure 1(d), the consistency model would estimate 

three relative treatment effect parameters, dAB, dAC, dAD, from evidence on six contrasts 

(ICDF=3), while the inconsistency model would estimate 6 unrelated relative treatment effect 

parameters, dAB, dAC, dAD, dBC, dBD, dCD. 

More formally, suppose we have a set of M trials comparing nt=4 treatments, A, B, C and D 

in any connected network. In a RE model the study-specific treatment effects for a study  
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comparing a treatment X to another treatment Y, δi,XY, are assumed to follow a normal 

distribution  

 2

,
~ ( , )   for  1,...,

i XY XY
N d i Mδ σ =  (2) 

In a consistency model, nt-1=3 basic parameters are given vague priors: dAB, dAC, dAD 

~N(0,1002), and the consistency equations define all other possible contrasts as: 

 

BC AC AB

BD AD AB

CD AD AC

d d d

d d d

d d d

= −

= −

= −

 (3) 

In a RE inconsistency model, each of the mean treatment effects in equation (2) is treated as a 

separate (independent) parameter to be estimated, sharing a common variance σ2. So, for the 

network in Figure 1(d), the six treatment effects are all given vague priors: dAB, dAC, dAD, dBC, 

dBD, dCD ~ N(0,100
2).  

In a FE inconsistency model no shared variance parameter needs to be considered. The 

inconsistency model is then equivalent to performing completely separate pairwise meta-

analysis of the data. However, fitting an inconsistency model to all the data has the advantage 

of easily accommodating multi-arm trials as well as providing a single global measure of 

model fit.  

When multi-arm trials are included in the evidence, the inconsistency model can have 

different parameterisations depending on which of the multiple contrasts defined by a multi-

arm trial are chosen (see Section 2.3). For example, a three-arm trial ABC can inform the AB 

and AC independent effects, or it can be chosen to inform the AB and BC effects (if B was 

the reference treatment), or the AC and BC effects (with C as reference). The code presented 

in the Appendix arbitrarily chooses the contrasts relative to the “first” treatment in the trial. 

Thus, ABC trials inform the AB and AC contrasts, BCD trials inform BC and BD etc. Choice 

of parameterisation will affect parameter estimates, and the tests of inconsistency. The 

presence of multi-arm trials also complicates calculation of the ICDF. Because ICDF 

corresponds to the number of independent loops, if a loop is formed from a multi-arm trial 

alone, it is not counted as an independent loop and must therefore be discounted from the 

total ICDF.7 

4.2.1. Smoking Cessation Example 

Twenty-four studies, including two three-arm trials, compared four smoking cessation 

counselling programs and recorded the number of individuals with successful smoking 
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cessation at 6-12 months. All possible contrasts were compared, forming the network in 

Figure 1(d), where A= no intervention, B= self-help, C= individual counselling and D= group 

counselling. This dataset has been previously analysed by Hasselblad4 and Lu and Ades7 

among others. The consistency model, with either random or fixed effects, can be fitted using 

the code presented TSD29 (Programs 1(c) and 1(d) in the Appendix, respectively). 

We now contrast the previous results with a RE inconsistency model estimating six 

independent mean treatment effects, as described in the previous section. The code is 

presented in the Appendix. Both the consistency and inconsistency models have a shared 

variance for the random effects distributions. Results for both models are presented in Table 

1, along with residual deviance and DIC, measures of model fit21 introduced in TSD2.9 These 

are based on 100,000 iterations on three chains after a burn-in period of 20,000 for the 

consistency model and 100,000 iterations on three chains after a burn-in of 30,000 for the 

inconsistency model. The heterogeneity estimates, the posterior means of the residual 

deviance and the DICs are very similar for both models, although both are lower for the 

consistency model. Comparison between the deviance and DIC statistics of the consistency 

and inconsistency models provides an “omnibus” test of consistency.  

Plotting the posterior mean deviance of the individual data points in the inconsistency model 

against their posterior mean deviance in the consistency model (Figure 3) provides 

information that can help identify the loops in which inconsistency is present. We expect 

each data point to have a posterior mean deviance contribution of about 1, with higher 

contributions suggesting a poorly fitting model.21 In this example, the contributions to the 

deviance are very similar and close to 1, for both models. Two points have a higher than 

expected posterior mean deviance – these are the arms of two trials which have a zero cell – 

but the higher deviance is seen in both consistency and inconsistency models. In general, 

trial-arms with zero cells will have a high posterior mean of the residual deviance as the 

model will never predict a zero cell exactly. The parameter estimates are also similar for both 

models and there is considerable overlap in the 95% credible intervals. This suggests no 

evidence of inconsistency in the network. 
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Table 1 Smoking example: Posterior summaries from Random Effects consistency and inconsistency 

models. Mean, standard deviation (sd), 95% Credible Interval (CrI) of relative treatment effects, and 

median of between-trial standard deviation (σ) on the log-odds scale; and posterior mean of the residual 

deviance (resdev), pD and DIC. 

 
Network meta-analysis*  
(consistency model) 

Inconsistency Model 

 Mean/Median sd CrI Mean/Median sd CrI 

dAB 0.49 0.40 (-0.29, 1.31) 0.34 0.58 (-0.81, 1.50) 

dAC 0.84 0.24 (0.39, 1.34) 0.86 0.27 (0.34, 1.43) 

dAD 1.10 0.44 (0.26, 2.00) 1.43 0.88 (-0.21, 3.29) 

dBC 0.35 0.41 (-0.46, 1.18) -0.05 0.74 (-1.53, 1.42) 

dBD 0.61 0.49 (-0.34, 1.59) 0.65 0.73 (-0.80, 2.12) 

dCD 0.26 0.41 (-0.55, 1.09) 0.20 0.78 (-1.37, 1.73) 

σ 0.82 0.19 (0.55, 1.27) 0.89 0.22 (0.58, 1.45) 

resdev† 54.0   53.4   

pD 45.0   46.1   

DIC 99.0   99.5   
* dBC, dBD, dCD calculated using the consistency equations 

† compare to 50 data points 

 

 

Figure 3 Plot of the individual data points’ posterior mean deviance contributions for the consistency 

model (horizontal axis) and the inconsistency model (vertical axis) along with the line of equality. 
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4.2.2. Thrombolytic Treatments Example 

The number of deaths in 30 or 35 days and the number of patients in each treatment arm from 

a dataset consisting of 50 trials comparing 8 thrombolytic drugs: streptokinase (SK, coded 1), 

alteplase (t-PA, 2), accelerated alteplase (Acc t-PA, 3), streptokinase plus alteplase (SK+t-

PA, 4), reteplase (r-PA, 5), tenocteplase (TNK, 6), urokinase (UK, 8), anistreptilase (ASPAC, 

9); and per-cutaneous transluminal coronary angioplasty (PTCA, 7), following acute 

myocardial infarction were included. This is a set of treatments defined in two comprehensive 

systematic reviews,22,23 except that the trials involving either ASPAC or UK were excluded 

from the original analysis because these treatments were no longer available in the United 

Kingdom. Network meta-analyses of different subsets of this network have been previously 

studied2,7 and consistency in the complete network has been previously assessed.24 

 

Figure 4 Thrombolytics example network: lines connecting two treatments indicate that a comparison 

between these treatments (in one or more RCTs) has been made. The triangle highlighted in bold 

represents comparisons that have only been made in a three-arm trial. 

 

Figure 4 represents the treatment network, where each edge represents a direct comparison of 

the two treatments being connected. We can see that not all treatment contrasts have been 

compared in a trial, as there are treatment pairs which are not connected. There are 9 

treatments in total and information on 16 pairwise comparisons, which would suggest an 

ICDF of eight. However, there is one loop, SK, Acc t-PA, SK+t-PA (highlighted in bold) 

SK (1)

UK (8)

PTCA (7)

TNK (6)

r-PA (5)
SK + t-PA (4)

Acc t-PA (3)

t-PA (2)

ASPAC (9)
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which is only informed by a three-arm and therefore cannot contribute to the number of 

possible inconsistencies. Discounting this loop gives ICDF=7.7 

A FE network meta-analysis (consistency model) with a binomial likelihood and logit link 

(see TSD29) was fitted to the data, taking SK as the reference treatment, i.e. the eight 

treatment effects relative to SK are the basic parameters and have been estimated, while the 

remaining relative effects were obtained from the consistency assumptions. A FE 

inconsistency model was also fitted which estimated 15 independent mean treatment effects 

(code presented in the Appendix). Results for the 15 contrasts on which there is information 

for both models are presented in Table 2, along with measures of model fit. These are based 

on 50,000 iterations on two chains after a burn-in period of 50,000 for the consistency model 

and 50,000 iterations on three chains after a burn-in of 20,000 for the inconsistency model. 

Table 2 Thrombolitics example: Posterior summaries, mean, standard deviation (sd) and 95% Credible 

Interval (CrI) on the log-odds ratio scale for treatments Y vs X for contrasts that are informed by direct 

evidence; and posterior mean of the residual deviance (resdev), pD and DIC, for the FE network meta-

analysis and inconsistency models. 

treatments 
Network meta-analysis*  
(consistency model) 

Inconsistency Model 

X Y mean sd CrI mean sd CrI 

SK t-PA 0.002 0.030 (-0.06,0.06) -0.004 0.030 (-0.06,0.06) 

SK Acc t-PA -0.177 0.043 (-0.26,-0.09) -0.158 0.049 (-0.25,-0.06) 

SK SK + t-PA -0.049 0.046 (-0.14,0.04) -0.044 0.047 (-0.14,0.05) 

SK r-PA -0.124 0.060 (-0.24,-0.01) -0.060 0.089 (-0.23,0.11) 

SK PTCA -0.476 0.101 (-0.67,-0.28) -0.665 0.185 (-1.03,-0.31) 

SK UK -0.203 0.221 (-0.64,0.23) -0.369 0.518 (-1.41,0.63) 

SK ASPAC 0.016 0.037 (-0.06,0.09) 0.005 0.037 (-0.07,0.08) 

t-PA PTCA -0.478 0.104 (-0.68,-0.27) -0.544 0.417 (-1.38,0.25) 

t-PA UK -0.206 0.221 (-0.64,0.23) -0.294 0.347 (-0.99,0.37) 

t-PA ASPAC 0.013 0.037 (-0.06,0.09) -0.290 0.361 (-1.01,0.41) 

Acc t-PA r-PA 0.054 0.055 (-0.05,0.16) 0.019 0.066 (-0.11,0.15) 

Acc t-PA TNK 0.005 0.064 (-0.12,0.13) 0.006 0.064 (-0.12,0.13) 

Acc t-PA PTCA -0.298 0.098 (-0.49,-0.11) -0.216 0.119 (-0.45,0.02) 

Acc t-PA UK -0.026 0.221 (-0.46,0.41) 0.146 0.358 (-0.54,0.86) 

Acc t-PA ASPAC 0.193 0.056 (0.08,0.30) 1.405 0.417 (0.63,2.27) 

resdev† 105.9   99.7   

pD 58   65   

DIC 163.9   164.7   
* All relative treatment effects not involving SK were calculated using the consistency equations 

† compare to 102 data points 
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Although the inconsistency model has a lower posterior mean of the residual deviance and 

hence is a better fit to the data, the DICs are very similar for both models. This is because the 

inconsistency model has seven more parameters than the network meta-analysis model, as 

can be seen in the difference in the values of pD. A plot of the individual data points’ 

posterior mean deviance contribution in each of the two models is presented in Figure 5. In 

this example, four data points show a much lower value of the posterior mean deviance in the 

inconsistency model, suggesting that a consistency model does not fit these points well. 

These four points corresponding to the two arms of trials 44 and 45, which were the only two 

trials comparing Acc t-PA to ASPAC. Comparing the posterior estimates of the treatment 

effects of ASPAC vs Acc t-PA in Table 2 we can see that these differ between the 

consistency and inconsistency models with no overlap in the 95% credible intervals. The fact 

that the two trials on this contrast give similar results to each other, which are in conflict with 

the remaining evidence, support the notion that there is a systematic inconsistency. 

 

Figure 5 Plot of the individual data points’ posterior mean deviance contributions for the consistency 

model (horizontal axis) and the inconsistency model (vertical axis) along with the line of equality. Points 

which have a better fit in the inconsistency model have been marked with the trial number. 
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4.3.   OTHER METHODS FOR DETECTING INCONSISTENCY  

4.3.1. Variance measures of inconsistency 

In the inconsistency models described above a different basic parameter represents each 

contrast. For example, in the four treatment network in Figure 1(d) we have a 6-parameter 

model to estimate, rather than the 3 parameter consistency model. One can re-parameterise 

the 6 parameter inconsistency model so that instead of 6 treatment effect parameters (dAB, 

dAC, dAD, dBC, dBD, dCD) we have (dAB, dAC, dAD, ωBC, ωBD, ωCD) where: 

 

( )

( )

( )

BC BC AC AB

BD BD AD AB

CD CD AD AC

d d d

d d d

d d d

ω

ω

ω

= − −


= − −
 = − −

  

The , ,

BC BD CD
ω ω ω parameters are the “inconsistencies” between the “direct” and “indirect” 

evidence on these three edges. However, rather than considering the three inconsistency 

parameters as unrelated, we might assume that they all come from a random distribution, for 

example 2
~ (0, )

XY
N

ω
ω σ . This model has been proposed in other contexts by both Lumley,14 

who named the additional variance term “incoherence variance” and by Lu and Ades7 who 

named it “inconsistency variance”. Both authors suggest that this additional between-contrast 

variance can serve as a measure of inconsistency. We do not recommend this however, 

because measures of variance will have very wide credible intervals unless the ICDF is 

extremely high. Even then, large numbers of large trials on each contrast would be required 

to obtain a meaningful estimate. Furthermore, where there is a single loop (ICDF=1) it should 

be impossible to obtain any estimate of 2

ω
σ . In spite of this a number of published 

applications of the Lumley14 model have reported estimates of inconsistency variance in 

networks consisting of only a single loop,25,26 and it seems likely that the model has not 

always been implemented in a way that takes account of the number of inconsistencies. See 

Salanti et al.27 for further comments on this issue. 

4.3.2. Node-Splitting 

A more sophisticated approach, which needs to be implemented in a Bayesian MCMC 

framework, is “node splitting”.24 This technique allows the user to split the information 

contributing to estimates of a parameter (node), say, dXY into two distinct components: the 

“direct” based on all the XY data (which may come from XY, XYZ, WXY trials) and the 

“indirect” based on all the remaining evidence. The process can be applied to any contrast 
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(node) in the network, and in networks of any complexity. Like the inconsistency model 

suggested above, which can be seen as a node-splitting approach in which a number of nodes 

are split at the same time, a shared variance term solves the difficulties created in a RE model 

when some contrasts are supported by only one or two trials. Node-splitting is a powerful and 

robust method that can be recommended as a further option for inconsistency analysis in 

complex networks. Node splitting can also generate intuitive graphics showing the difference 

between the “direct”, “indirect” and the combined information. However, node-split models 

are not easy to parameterise, especially when multi-arm trials are present since, as with other 

inconsistency models, there may be more than one possible parameterisation. Furthermore, 

care should be taken to ensure that the split nodes refer to contrasts involved in generating 

potential inconsistencies. 

4.3.3. Bayesian and Frequentist approaches compared 

Compared to the Bayesian methods, applications of the Bucher approach is conceptually 

simpler and relatively easy to apply, although it requires two “stages”. Bayesian approaches 

have the advantage of being “one-stage”: there is no need to summarise the findings on each 

contrast first.  The two-stage approach introduces a particular difficulty in sparse networks 

where the evidence on some contrasts may be limited to a small number of trials. This is that 

the decision as to whether to fit a Random Effects model must be taken for each contrast 

separately, and if there is only one study only a “Fixed Effect” analysis is available, even 

when there is clear evidence of heterogeneity on other contrasts. The likelihood of detecting 

an inconsistency, therefore, will be highly sensitive to the pattern of evidence. Caldwell et 

al.16 present an example where the choice of Fixed or Random Effects summaries in the first 

stage determines whether inconsistency is detected in the second. Interestingly, the 

inconsistency model with its shared variance parameter offers a way “smoothing” the 

estimates of between-trial heterogeneity. 

But sparse data also shows up drawbacks in the Bayesian methods, especially when a RE 

analysis is used in the underlying model. The difficulty is that the greater the degree of 

between-trials heterogeneity, the less likely it is for inconsistency to be detectable. The 

particular difficulty with Bayesian methods is that there is seldom enough data to estimate the 

between-trials variation. The practice of using vague prior distributions for the between-trials 

variation, combined with a lack of data, will generate posteriors which allow an 

unrealistically high variance. This, in turn, is likely to mask all but the most obvious signs of 

inconsistency. 
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In the smoking cessation example presented above, the posterior estimates show a high level 

of between-trials variation. Against this background only an exceptionally striking 

inconsistency could be detected. In the thrombolytic example, we used a FE analysis, but we 

have obtained very similar results with a RE model.7,24 However, in this dataset, the extent of 

between-trials variation is unusually low, so that the inconsistency stands out (Figure 5). Our 

advice is to scrutinise the posterior distribution of the between-trials standard deviation from 

a consistency model, before embarking on an analysis of inconsistency based on Bayesian 

models. If the data has failed to rule out unrealistic values, consideration should be given to 

using informative priors, based on expert opinion or meta-epidemiological data (see TSD2,9 

Section 6.2 and TSD31).  

 

5. MEASURES TO AVOID INCONSISTENCY 

While it is essential to carry out tests for inconsistency, the issue should not be considered in 

an overly mechanical way. Detection of inconsistency, like the detection of any statistical 

interaction, requires far more data than is needed to establish the presence of a treatment 

effect. Investigators will therefore nearly always fail to reject the null hypothesis of 

consistency. But this is not an indication that there is no inconsistency. Although a high level 

of heterogeneity increases the risk of inconsistency, it also lowers the chances that it will be 

detected. For this reason, even when inconsistency is not detected, and when, as with indirect 

comparisons, it cannot be detected because ICDF=0, the question that must always be asked 

is:  “How reliable are conclusions based on indirect evidence or network meta-analysis?” A 

full consideration of this issue, which is still an area of active research interest, is beyond the 

scope of this document. However, below we outline measures that can help avoid 

inconsistency, and suggest some further empirical indicators that can provide some 

reassurance about the risk of inconsistency.  

 

5.1.   AVOIDING HETEROGENEITY 

As discussed in Section 2.2, the mechanisms that potentially could create “bias” in indirect 

comparisons appear be to identical to those that cause heterogeneity in pair-wise meta-

analysis. Thus, to ensure conclusions based on indirect evidence are sound, we must attend to 

the direct evidence on which they are based, as is clear from equation (1), repeated here: 

ˆ ˆ ˆInd Dir Dir

BC AC AB
d d d= − . This states that if the direct estimates of the AB and AC effects are 
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unbiased estimates of the treatment effects in the target population, the indirect estimate of 

the BC effect must be unbiased as well. Conversely, any bias in the direct estimates, for 

example due to effect-modifying covariates arising from the patients not being drawn from 

the target population, will be passed on to the indirect estimates in equal measure. The term 

“bias” in this context must be seen broadly, comprising both internal and external threats to 

validity. This implies that if direct evidence on AB is based on trials conducted on a different 

patient population, and that a treatment effect modifier is present, what some may regard as 

an “incorrect generalisation” from the AB trials to draw inferences about the target 

population can be considered as (external) bias which will be inherited by any indirect 

estimates based on this data. 

Thus, it seems that to a large extent the question “are conclusions based on indirect evidence 

reliable?” should be considered alongside the question “are conclusions based on pair-wise 

meta-analysis reliable?” Any steps that can be taken to avoid between-trial heterogeneity will 

be effective in reducing the risk of drawing incorrect conclusions from both pair-wise meta-

analysis, indirect comparisons and network meta-analysis alike. Fortunately, the decision 

making context is likely to have already eliminated the great majority of potentially 

confounding factors. The most obvious sources of potential heterogeneity of effect, such as 

differences in dose or differences in co-therapies, will already have been eliminated in the 

scope, which is likely to restrict the set of trials to specific doses and co-therapies.  

Clear cases where direct and indirect evidence are in conflict are rare in the literature.11 

Where inconsistency has been evident, it illustrates the danger introduced by heterogeneity, 

and in particular by the practice of trying to combine evidence on disparate treatment doses 

or treatment combinations within meta-analyses, often termed “lumping”, as noted in the 

Introduction. The material used to illustrate the Bucher method for detecting inconsistency in 

Box 115 is a further example. Here, there were substantial, and independently recognised, 

differences in efficacy between the treatment combinations appearing in the direct evidence 

and those in the indirect evidence. It has been shown that if this is addressed, the difference 

between indirect and direct evidence is no longer statistically significant.28  

In spite of all the limits on heterogeneity resulting from the narrow scope required to make a 

decision, there is still the potential for treatment effect modifiers to be present in trials, and 

unrecognised. Results may not have been broken down by confounding variables, and their 

distribution over the sample may not have been recorded. Among typical variables that 

frequently appear as effect modifiers are age, severity at baseline, and previous treatments, all 
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of which may be further confounded with each other. Investigators should make themselves 

aware of potential confounders, both within the network of evidence, and in previous 

literature, and consider the potential role of bias adjustment and meta-regression (see TSD31), 

prior to synthesis and consistency checking. 

 

5.2.   EMPIRICAL INDICATIONS OF HETEROGENEITY 

The above discussion suggests that the risk of inconsistency is greatly reduced if between-

trial heterogeneity is low. Empirical assessment of heterogeneity can therefore provide some 

reassurance, or can alert investigators to the risk of inconsistency. Tests of homogeneity in 

the pair-wise comparisons, using I2 29 or 2
χ  measures, can be used for this purpose (see 

TSD31). Posterior summaries of the distribution of the between trials standard deviation, may 

be more useful because the extent of between-trial heterogeneity can be compared to the size 

of the mean treatment effects. A second useful indicator is the between-trials variation in the 

trial “baselines”. If a large number of trials include comparisons with a reference treatment, 

perhaps placebo or a standard, and these arms all have similar proportions of events, hazards 

etc, then this suggests that the trial populations are relatively homogeneous and that there will 

be little heterogeneity in the treatment effects. If, on the other hand, the baselines are highly 

heterogeneous, while not meaning that the relative effects are also heterogeneous, it does at 

least constitute a warning that there is a potential risk of heterogeneity in the relative effects. 

This is an observation that has been made in the context of pair-wise synthesis. Heterogeneity 

in baselines can be examined via a Bayesian synthesis (see TSD530).  

 

6. RESPONSE TO INCONSISTENCY 

There has been little work on how to respond to inconsistency when it is detected in a 

network. It would appear to be a reasonable principle that decisions should be based on 

models that are internally coherent, that is models in which dYZ = dXZ – dXY, and that these 

models should fit the data. If the data cannot be fitted by a coherent model, then some kind of 

adjustment must be made. Any adjustment in response to inconsistency is post hoc, which 

emphasises the importance of identifying potential causes of heterogeneity of effect at the 

scoping stage, and potential internal biases in advance of synthesis.  

One possible cause of inconsistency is a poor choice of scale of measurement, which can also 

lead to increased heterogeneity.31 It is not always obvious whether to model treatment effects 
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on a risk difference, logit, or complementary log log scale. In TSD29 we emphasise that the 

choice of which scale was most appropriate is essentially an empirical one, although there is 

seldom enough evidence to decide on the basis of goodness of fit. Our experience, however, 

is that measurement scales that lead to a higher I2 statistic also show more inconsistency on 

the measures described in Section 4.  

Inconsistency in one part of the network does not necessarily imply that the entire body of 

evidence is to be considered suspect. However, inconsistency is a property of “loops”, not 

individual contrasts. In a triangle structure, it is not possible to identify which contrast is 

“deviant”. In the Enuresis example (Figure 2), we are essentially looking at four different 

estimates of a single contrast. If three agree and the fourth is different, it might be considered 

that three estimates have been “corroborated” and that the fourth is “deviant”. In this 

particular instance, an examination of the different estimates (Box 2) does not suggest any 

such simple interpretation, and it would be necessary to review all these studies. It would be 

advisable, in fact, to always reconsider the entire network if inconsistency is located in any 

part of it, as the inconsistency throws doubt on the trial inclusion criteria and the potential 

presence of effect modifiers. Both are issues that might affect the entire network. 

In the absence of corroboration, it is important to appreciate that once inconsistency is 

detected, there is little that statistical science can offer as remediation. For example it might 

be that the statistical analysis shows up one particular trial as having a bad fit within a 

consistency model. Very likely the poor statistical fit might disappear if this trial is removed, 

or if the observed treatment effect in the trial is adjusted. However, it is highly likely that a 

consistent network of evidence can also be obtained by removing or making adjustments to 

other trials. Worse, each different adjustment might be equally effective in reducing 

inconsistency, but each represents a very different interpretation of the evidence, and each 

produces very different estimates. There are clear examples of this in the literature on multi-

parameter evidence synthesis in epidemiology applications.32,33 The essential point is that 

inconsistency is not a property of individual studies, but of loops of evidence, and it may not 

always be possible to isolate which loop is “responsible” for the detected inconsistency, let 

alone which edge.7 Where several alternative adjustments are available, a sensitivity analysis 

is essential. 

The decision of how to address inconsistency cannot therefore be determined by statistical 

methods. A thorough review of the entire evidence base by clinical epidemiologists is 

required. This may result in the identification of one or more trials that are “different” in 



33 

 

some way, where, for example, a treatment-modifying covariate (e.g. dose) is present, or 

suspected. Investigators must then make a series of decisions: how might these factors relate 

to the target population for the decision? Are there specific trials that should not be included 

in the evidence base? Should the treatment effects observed in some trials be regarded as 

“biased” and adjusted in some way (see TSD31) and if so, what data is available on which 

this adjustment can be based? A final option, of course, if there seems to be no explanation 

for an apparent inconsistency or heterogeneity, is to consider it a chance finding. 

 

7. SUMMARY AND CONCLUSIONS 

7.1.   CHOICE OF METHOD 

• Choice of method should be guided by the evidence structure.  

• If it is possible to construct independent tests, then the Bucher test or its extensions to 

larger “circuit” structures and to chi-square tests represent the most simple and complete 

approach. 

• In more complex networks, a repeated application of the Bucher method to all the 

possible loops produces interpretable results as long as no “significant” inconsistencies 

are found. If inconsistencies are found, correction for multiple testing is needed, but it is 

difficult to specify how this should be done.  

• Within a Bayesian framework a consistency model can be compared to an 

“inconsistency” model. Analyses of residual deviance can provide an “omnibus” test of 

global inconsistency, and can also help locate it. 

• Node splitting24 is another effective method for comparing direct evidence to indirect 

evidence in complex networks. 

• Measures of inconsistency variance7 or incoherence variance14 are not recommended as 

indicators of inconsistency  

 

7.2.   PLACE OF INCONSISTENCY TESTING IN EVIDENCE SYNTHESIS. 

Logically, inconsistency testing should come after an examination of heterogeneity, and after 

adjustment for known causes of heterogeneity through meta-regression or bias adjustment 

(see TSD31).  



34 

 

7.3.   RESPONSE TO INCONSISTENCY 

Decisions should be based on coherent models that fit the data. Careful examination of 

different sources of evidence may reveal that some estimates are “corroborated” and others 

not. If inconsistency is detected, the entire network of evidence should be reconsidered from 

a clinical epidemiology viewpoint with respect to the presence of potential effect modifiers.  
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APPENDIX: WINBUGS CODE FOR ILLUSTRATIVE EXAMPLES 

Below we set out code to fit random and fixed effects inconsistency models to any network 

with a binomial likelihood and logit link function. The program codes are printed here, but 

are also available as WinBUGS system files from http://www.nicedsu.org.uk. Users are 

advised to download the WinBUGS files from the website instead of copying and pasting 

from this document. In TSD29 a generalised linear model framework was introduced, with 

explanations of how the code for the binomial/logit model could be adapted for other 

likelihoods and link functions, including Poisson/log, Normal/identity and other models. The 

inconsistency models below can be adapted in exactly the same way.  

The code below is fully general and will work for any number of multi-arm trials with any 

number of arms. It is suitable for networks where there is information on all possible 

treatment contrasts (such as in the Smoking example presented in Section 4.2.1) or where 

there is information on just a subset of possible contrasts (such as in the Thrombolytic 

treatments example presented in Section 4.2.2). However, in the latter case, the WinBUGS 

output for contrasts that have no information will be redundant, i.e. the posterior distribution 

will be equal to the prior and no inferences can be made on these contrasts. We therefore 

recommend a careful consideration of the network structure before looking at the WinBUGS 

output from the code below. 

SMOKING CESSATION: RE MODEL, BINOMIAL LIKELIHOOD 

# Binomial likelihood, logit link, inconsistency model 

# Random effects model 

model{                        # *** PROGRAM STARTS 

for(i in 1:ns){               # LOOP THROUGH STUDIES 

    delta[i,1]<-0             # treatment effect is zero in control arm 

    mu[i] ~ dnorm(0,.0001)    # vague priors for trial baselines 

    for (k in 1:na[i])  {     # LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 

        logit(p[i,k]) <- mu[i] + delta[i,k]   # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 

          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    

      } 

   resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {  # LOOP THROUGH ARMS 

        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  # trial-specific LOR distributions 

      } 

  }    

totresdev <- sum(resdev[])     # Total Residual Deviance 

for (c in 1:(nt-1)) {     # priors for all mean treatment effects 

    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  

  }   

sd ~ dunif(0,5)     # vague prior for between-trial standard deviation 

var <- pow(sd,2)    # between-trial variance 

tau <- 1/var        # between-trial precision 

}     # *** PROGRAM ENDS 
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# Data (Smoking example)  

# nt=no. treatments, ns=no. studies 

list(nt=4,ns=24 ) 

 

r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[] 

9 140 23 140 10 138 1 3 4 3  # trial 1 ACD 

11 78 12 85 29 170 2 3 4 3 # trial 2 BCD 

75 731 363 714 NA 1 1 3 NA 2 # 3 

2 106 9 205 NA 1 1 3 NA 2 # 4 

58 549 237 1561 NA 1 1 3 NA 2 # 5 

0 33 9 48 NA 1 1 3 NA 2 # 6 

3 100 31 98 NA 1 1 3 NA 2 # 7 

1 31 26 95 NA 1 1 3 NA 2 # 8 

6 39 17 77 NA 1 1 3 NA 2 # 9 

79 702 77 694 NA 1 1 2 NA 2 # 10 

18 671 21 535 NA 1 1 2 NA 2 # 11 

64 642 107 761 NA 1 1 3 NA 2 # 12 

5 62 8 90 NA 1 1 3 NA 2 # 13 

20 234 34 237 NA 1 1 3 NA 2 # 14 

0 20 9 20 NA 1 1 4 NA 2 # 15 

8 116 19 149 NA 1 1 2 NA 2 # 16 

95 1107 143 1031 NA 1 1 3 NA 2 # 17 

15 187 36 504 NA 1 1 3 NA 2 # 18 

78 584 73 675 NA 1 1 3 NA 2 # 19 

69 1177 54 888 NA 1 1 3 NA 2 # 20 

20 49 16 43 NA 1 2 3 NA 2 # 21 

7 66 32 127 NA 1 2 4 NA 2 # 22 

12 76 20 74 NA 1 3 4 NA 2 # 23 

9 55 3 26 NA 1 3 4 NA 2 # 24 

END 

 

#Initial values 

# chain 1 

list(sd=1,  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0),  

d = structure(.Data = c(NA,0,0,0,     NA, NA,0,0,      NA,NA,NA,0), .Dim = c(3,4))) 

 

# chain 2 

list(sd=1.5,  mu=c(0,2,0,-1,0,  0,1,0,-1,0,  0,0,0,10,0,  0,10,0,0,0,  0,-2,0,0), 

d = structure(.Data = c(NA,-2,0,5,     NA, NA,0,2,      NA,NA,NA,5), .Dim = c(3,4))) 

 

# chain 3 

list(sd=3,  mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0), 

d = structure(.Data = c(NA,-3,-3,-3,     NA, NA,-3,-3,      NA,NA,NA,-3), .Dim = c(3,4))) 

THROMBOLYTIC TREATMENTS: FE MODEL, BINOMIAL LIKELIHOOD 

# Binomial likelihood, logit link, inconsistency model 

# Fixed effects model  

model{                        # *** PROGRAM STARTS 

for(i in 1:ns){               # LOOP THROUGH STUDIES 

    mu[i] ~ dnorm(0,.0001)    # vague priors for trial baselines 

    for (k in 1:na[i])  {     # LOOP THROUGH ARMS 

        r[i,k] ~ dbin(p[i,k],n[i,k])      # binomial likelihood 

        logit(p[i,k]) <- mu[i] + d[t[i,1],t[i,k]]   # model for linear predictor 

        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  

        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 

          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    

      } 

   resdev[i] <- sum(dev[i,1:na[i]])  # summed residual deviance contribution for this trial 

  }    

totresdev <- sum(resdev[])     # Total Residual Deviance 

for (k in 1:nt) { d[k,k] <- 0 }   # set effects of k vs k to zero 

for (c in 1:(nt-1)) {     # priors for all mean treatment effects 
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    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  

  }   

} # *** PROGRAM ENDS 

 

# Data (Thrombolytic treatments example)  

#nt=no. treatments, ns=no. studies;  

list(nt=9,ns=50) 

 

r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[] # study ID 

1472 20251 652 10396 723 10374 1 3 4 3 # 1 

9 130 6 123 NA NA 1 2 NA 2 # 2 

5 63 2 59 NA NA 1 2 NA 2 # 3 

3 65 3 64 NA NA 1 2 NA 2 # 4 

887 10396 929 10372 NA NA 1 2 NA 2 # 5 

1455 13780 1418 13746 1448 13773 1 2 9 3 # 6 

7 85 4 86 NA NA 1 2 NA 2 # 7 

12 159 7 157 NA NA 1 2 NA 2 # 8 

10 135 5 135 NA NA 1 2 NA 2 # 9 

4 107 6 109 NA NA 1 4 NA 2 # 10 

285 3004 270 3006 NA NA 1 5 NA 2 # 11 

11 149 2 152 NA NA 1 7 NA 2 # 12 

1 50 3 50 NA NA 1 7 NA 2 # 13 

8 58 5 54 NA NA 1 7 NA 2 # 14 

1 53 1 47 NA NA 1 7 NA 2 # 15 

4 45 0 42 NA NA 1 7 NA 2 # 16 

14 99 7 101 NA NA 1 7 NA 2 # 17 

9 41 3 46 NA NA 1 7 NA 2 # 18 

42 421 29 429 NA NA 1 7 NA 2 # 19 

2 44 3 46 NA NA 2 7 NA 2 # 20 

13 200 5 195 NA NA 2 7 NA 2 # 21 

2 56 2 47 NA NA 2 7 NA 2 # 22 

3 55 1 55 NA NA 3 7 NA 2 # 23 

10 94 3 95 NA NA 3 7 NA 2 # 24 

40 573 32 565 NA NA 3 7 NA 2 # 25 

2 61 3 62 NA NA 3 7 NA 2 # 26 

16 419 20 421 NA NA 3 7 NA 2 # 27 

5 69 3 71 NA NA 3 7 NA 2 # 28 

5 75 5 75 NA NA 3 7 NA 2 # 29 

59 782 52 790 NA NA 3 7 NA 2 # 30 

5 81 2 81 NA NA 3 7 NA 2 # 31 

16 226 12 225 NA NA 3 7 NA 2 # 32 

8 66 6 71 NA NA 3 7 NA 2 # 33 

522 8488 523 8461 NA NA 3 6 NA 2 # 34 

356 4921 757 10138 NA NA 3 5 NA 2 # 35 

13 155 7 169 NA NA 3 5 NA 2 # 36 

10 203 7 198 NA NA 1 8 NA 2 # 37 

3 58 2 52 NA NA 1 9 NA 2 # 38 

3 86 6 89 NA NA 1 9 NA 2 # 39 

3 58 2 58 NA NA 1 9 NA 2 # 40 

13 182 11 188 NA NA 1 9 NA 2 # 41 

2 26 7 54 NA NA 3 8 NA 2 # 42 

12 268 16 350 NA NA 3 8 NA 2 # 43 

5 210 17 211 NA NA 3 9 NA 2 # 44 

3 138 13 147 NA NA 3 9 NA 2 # 45 

8 132 4 66 NA NA 2 8 NA 2 # 46 

10 164 6 166 NA NA 2 8 NA 2 # 47 

6 124 5 121 NA NA 2 8 NA 2 # 48 

13 164 10 161 NA NA 2 9 NA 2 # 49 

7 93 5 90 NA NA 2 9 NA 2 # 50 

END 

 

# Initial values 

# chain 1 
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list(mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0, 

           0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0),  

d = structure(.Data = c(NA,0,0,0,0,0,0,0,0,    NA,NA,0,0,0,0,0,0,0,     NA,NA,NA,0,0,0,0,0,0,     NA,NA,NA,NA,0,0,0,0,0,    

NA,NA,NA,NA,NA,0,0,0,0,    NA,NA,NA,NA,NA,NA,0,0,0,    NA,NA,NA,NA,NA,NA,NA,0,0,   NA,NA,NA,NA,NA,NA,NA,NA,0,     

NA,NA,NA,NA,NA,NA,NA,NA,NA),  .Dim = c(9,9)) ) 

 

# chain 2 

list(mu=c(0,0,10,0,-1,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0, 

           0,0,0,0,0,  3,0,0,-2,0,  0,0,-1,0,0,  0,-0.5,5,0.5,0.5,  0,0,0,2,0), 

d = structure(.Data = c(NA,0,1,0,0,-2,0,0,0,    NA,NA,0,0,2,0,0,-2,0,     NA,NA,NA,0,0,0,0,0,0,     NA,NA,NA,NA,0,0,0,0,0,    

NA,NA,NA,NA,NA,0,0,1,0,    NA,NA,NA,NA,NA,NA,0,0,-2,    NA,NA,NA,NA,NA,NA,NA,0,0,   NA,NA,NA,NA,NA,NA,NA,NA,0,     

NA,NA,NA,NA,NA,NA,NA,NA,NA),  .Dim = c(9,9))  ) 

 

# chain 3 

list(mu=c(0,0,10,0,5,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0, 

           0,0,0,0,0,  3,0,0,-2,0,  0,0,-8,0,0,  0,-0.5,5,0.5,0.5,  0,0,0,2,0), 

d = structure(.Data = c(NA,0,1,0,0,-5,0,5,0,    NA,NA,0,0,3,0,0,-2,0,     NA,NA,NA,0,0,0,0,0,0,     NA,NA,NA,NA,0,0,0,0,0,    

NA,NA,NA,NA,NA,0,-5,1,0,    NA,NA,NA,NA,NA,NA,0,0,-4,    NA,NA,NA,NA,NA,NA,NA,0,0,   NA,NA,NA,NA,NA,NA,NA,NA,0,     

NA,NA,NA,NA,NA,NA,NA,NA,NA),  .Dim = c(9,9))  ) 

 

 


