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EXECUTIVE SUMMARY 
This document sets out software options for evidence synthesis that are compatible with 

probabilistic cost-effectiveness analysis, which is the preferred methodology for the NICE 

reference case. Four possibilities are discussed: 

1. Evidence synthesis by Bayesian posterior estimation, and posterior sampling. Other 

parameters of the cost-effectiveness models can be incorporated into the same 

software platform. Bayesian Markov chain Monte Carlo simulation methods with 

WinBUGS software are the most popular choice. 

2. Evidence synthesis by Bayesian posterior estimation. Posterior samples are exported 

to another package where the other parameters are generated and the cost-

effectiveness model evaluated. 

3. Frequentist methods of parameter estimation followed by forward Monte Carlo 

simulation from the maximum likelihood estimates and their variance-covariance 

matrix 

4. Bootstrap re-sampling – a frequentist simulation approach to parameter estimation. 

When multiple parameters are estimated from the same synthesis model, we emphasise the 

need to choose a method that propagates the parameter correlation structure through the cost-

effectiveness model. A table is provided that shows the possible approaches and the 

restrictions on their use. 

Software packages for evidence synthesis are listed. Technical issues relating to software are 

covered in an Appendix. Finally we mention software suitable for transferring data between 

different software packages, and software that provides user-friendly interface for integrated 

software platforms. These offer investigators a flexible way of examining alternative 

scenarios. 
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Abbreviations and Definitions 

CEA  cost-effectiveness analysis 

FE  Fixed effects 
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VCV  variance-covariance 
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1. INTRODUCTION 

Probabilistic methods in decision analysis were introduced in the 1980s.1,2 Their defining 

feature is that they allow for a full expression of the uncertainty in model parameters. There 

are two main reasons for advocating probabilistic methods in decision making. The first is 

that they can provide a form of sensitivity analysis which allows investigators to easily see 

the joint impact of the uncertainty in multiple parameters on the expected costs, benefits and 

on decision uncertainty. For this reason use of these methods is often called probabilistic 

sensitivity analysis. A second reason is that, faced with uncertainty in the vector/matrix of 

model parameters θ , decision makers generally choose the decision option, D, that delivers 

the highest expected net benefit. In other words, the decision maker selects decision D*, such 

that: 

 * [ ( , )]
D

D Max E NB D θ θ  (1) 

This “expectation” requires an integration of the net benefit function, ( , )NB D θ  over the joint 

distribution of parameters θ . There are a wide range of methods for achieving this 

integration, and the appropriate choice of method depends on the algebraic structure of the 

net benefit function. It must be emphasised that the expected Net Benefit is not the same as 

the Net Benefit at the expected value of the parameters, except in the cases where Net Benefit 

is linear in all its parameters, and there are no correlations between parameters. This is 

relatively rare, as most evidence synthesis is performed on log or logit scales, and many cost-

effectiveness analysis (CEA) models include Markov models, which are notoriously non-

linear. Further, modern methods of evidence synthesis tend to generate estimates of several 

parameters from a common dataset, in most cases leading to correlations between parameters. 

It is therefore essential that software solutions are adopted that ensure that the complex 

uncertainty structure in parameter estimates is faithfully propagated through the decision 

model.3 This document provides guidance on the appropriate choice of software to deliver 

probabilistic cost-effectiveness analysis in any situation.  

Monte Carlo (MC) simulation from the joint parameter distribution is not only the simplest 

way to evaluate the expected Net Benefit, but for any form of model it also delivers other 

crucial tools of probabilistic CEA such as: plots of the cost-effectiveness plane, cost-

effectiveness acceptability curves and estimates of the probability that a decision is cost-

effective.4,5 MC simulation is also the easiest approach to Expected Value of Information 

analysis.6-8 Probabilistic methods have been recommended in a range of leading textbooks 
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and tutorial papers, and are the preferred option for submissions to re-imbursement agencies 

such as the National Institute of Health and Clinical Excellence (NICE) in the UK. We 

therefore recommend MC simulation-based approaches for all analyses, even for strictly 

linear models.  

The document confines itself to the question of which computational approaches correctly 

preserve the properties of the evidence synthesis within a probabilistic cost-effectiveness 

analysis. No advice is given on the relative merits of cohort models compared to individual 

patient simulation. Indeed, no advice is given in this document on how to choose the best 

model, it is restricted to providing guidance on how to implement the model of choice. 

This document is organised as follows. The main body of the document (Section 2) sets out 

the different analysis options. These include Bayesian Markov chain Monte Carlo (MCMC) 

methods (2.1, 2.2), and frequentist methods, either sampling from maximum likelihood 

estimates and their variance-covariance (VCV) matrices (2.3), or bootstrapping (2.4). We 

then provide a brief summary of software tools that can be used to help interface between 

different software, and review some recent developments in user-friendly “front ends”, to 

assist the integrated use of multiple software platforms. These offer ways in which 

investigators can conduct scenario analyses, not just with individual parameters but also with 

different datasets or different synthesis models and quickly see the impact on cost-

effectiveness results. 

 

2. EMBEDDING EVIDENCE SYNTHESIS IN PROBABILISTIC CEA  

2.1.   BAYESIAN POSTERIOR SIMULATION: ONE-STAGE APPROACH 

When estimation of the synthesis parameters is via sampling from a Bayesian posterior 

distribution of the relevant parameters, this can be integrated with the CEA as a single 

process within a single programming package, in what has been referred to as 

“Comprehensive Decision Analysis”.9-11 

Bayesian MCMC simulation,12 using WinBUGS,13 OpenBUGS14 or other MCMC packages, 

provides the obvious example. The advantage of this approach is that it not only estimates a 

Bayesian posterior distribution, but that it is simulation-based, so that its outputs are perfectly 

compatible with the MC sampling approach that has become the standard modelling method 

in so many areas of science. Samples from the joint posterior distribution can be put directly 

through the decision analysis, so that Net Benefit and other outputs can be evaluated for each 
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set of parameter samples, without requirements for assumptions about its distributional form. 

Distributions of additional parameters and costs can be readily incorporated.  

Development of MCMC algorithms and sampling schemes is a specialised area of research. 

Although users need not have a detailed knowledge of the precise working of MCMC 

software, a good understanding of the fundamentals and of Bayesian data analysis is 

essential. For completeness it is worth mentioning that a broad range of non-MCMC 

simulation-based Bayesian updating schemes have also been proposed, including the Sample 

Importance Re-sampling algorithm,15 Bayesian Melding,16,17 and Bayesian Monte Carlo.18 

All these have the same properties as Bayesian MCMC in that they all feature both Bayesian 

estimation and sampling from joint posterior distributions. The latter two were specifically 

designed for evidence synthesis.   

 

2.2.   BAYESIAN POSTERIOR SIMULATION: TWO-STAGE APPROACH 

If investigators have a preferred software for CEA, either general software packages such as 

R, STATA, SAS, or spread-sheet or decision tree packages such as EXCEL or TreeAGE, a 

further option is to take the posterior samples from the Bayesian MCMC, or other posterior 

sampling scheme, and use them as input to the CEA package. This has the same technical 

properties as the Bayesian one-stage approach since the full posterior distribution is 

preserved. From WinBUGS, the CODA output, which lists all values generated from the full 

posterior distribution, can be exported into a spreadsheet-based program such as EXCEL, 

using BUS – BUGS Utility for Spreadsheets.19 When using the CODA output it is important 

that the correlations in the parameter estimates are preserved. This is done by ensuring that 

all parameter values are sampled from the same MCMC iteration. If the CODA output is in 

spreadsheet format, for example in EXCEL, this would correspond to sampling all the 

parameter values in one row, each time. The CODA output can also be converted to the freely 

available statistical software R20 for convergence diagnostics, further analysis and plotting 

using add-on packages such as BOA – Bayesian Output Analysis Program21 or CODA – 

Convergence Diagnostics and Output Analysis.22 

 

2.3.   FREQUENTIST ESTIMATION WITH MONTE CARLO SAMPLING 

If evidence synthesis can be performed using frequentist software (which may use a variety 

of methods of estimation including, methods of moments, iterative weighted least-squares or 
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(restricted) maximum likelihood ((RE)ML)), a two-stage approach is also possible. The first 

step is estimation, which produces parameter estimates and their variance-covariance (VCV) 

matrix. In the second step, these are used to populate a multivariate normal distribution which 

can be used for forward MC sampling (in the same or in a different package) along with the 

other CEA parameters. When single parameters are of interest, such as in simple pair-wise 

meta-analysis, this may be the simplest option as only one variance needs to be estimated 

(there is no VCV matrix). In such situations it is particularly easy to find the treatment effect 

parameter and its variance using either specific meta-analysis software or implementing 

meta-analysis routines in standard statistical software packages. A systematic and 

comprehensive review of all software options capable of evidence synthesis is beyond the 

scope of this document, but noteworthy options are described below and more detailed 

reviews and comparisons are available elsewhere.23-26 

2.3.1. Stand-alone meta-analysis packages  

Numerous packages have been developed over the years, but probably those which include 

the most extensive and up-to-date feature sets, are  

 Comprehensive meta-analysis (commercial);27  

 Meta-Analyst (free);26 

 MIX,28 which is an add-on to EXCEL (commercial and free versions available); 

 RevMan,29 which is the official software of the Cochrane Collaboration (free). 

 EXCEL: Simple meta-analysis can be carried out with a small amount of 

programming. 

2.3.2. General statistical packages with support for meta-analysis  

While it would be possible to program most standard meta-analysis models in any reasonably 

powerful statistics package, probably the most extensive freely available software routines 

which allow meta-analysis to be conducted and numerous graphical outputs produced are 

available for STATA30 and for R, such as the meta31 and rmeta32 packages.  

Although all the above options will conduct pair-wise meta-analysis, not all have the 

capability to do meta-regression,33 which may be a decisive factor in choosing between them. 

2.3.3.  Software for network meta-analysis   

Specific comments on frequentist software options for network meta-analysis can be found in 

TSD2.34 For indirect comparison networks, separate syntheses can be carried out for AB 
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trials, and AC trials. Then the estimates obtained and their variances can be entered into the 

simulation package used for CEA, and the relative cost-effectiveness of A, B and C readily 

determined (covariances are not involved). Although this is an acceptable approach in 

principle, the Bayesian MCMC approach to indirect comparisons (see TSD234) may be 

preferable in cases where one or more of the pair-wise comparisons is represented by a very 

small number of trials. This is because, MCMC has the flexibility to allow “shared variance” 

Random Effects (RE) models, while with conventional methods it may be necessary to have 

some estimates from RE models and others from Fixed Effects (FE) models, which seems a 

less natural solution.  

In many cases the use of frequentist estimates and their VCV matrix with RE models is likely 

to produce parameter distributions with a little less uncertainty, because Bayesian methods 

take uncertainty in variance parameters into account. The extent of the difference is unlikely 

to be critical, although investigators should always check that posterior distributions of 

variance parameters are sensible.   

2.3.4. Parameterisation of treatment effects 

Whatever software is used, model parameterisation requires care, as a number of apparently 

innocuous variations may give very different or wrong results. To date, a few coding 

problems have come to light and these are set out in the Appendix. 

 

2.4.   FREQUENTIST ESTIMATION WITH BOOTSTRAPPING 

The final option of estimation and then Bootstrapping,35 has been used from time to time in 

cost-effectiveness analysis.36 In its original form, bootstrapping is a technique in which one 

generates a series of “new” datasets by repeatedly re-sampling with replacement from the 

original data, each time producing a new set of parameters estimates. This stream of estimates 

can then be treated in the same way as samples from Bayesian posterior distributions. 

However, this procedure is not always straightforward, particularly with small sample sizes 

and zero cells.  

There are, nonetheless, a very wide range of variant bootstrap procedures which can mitigate 

these and other problems. In the parametric bootstrap, for example a model is fitted to the 

data by maximum likelihood and is then used to generate a series of datasets with the same 

size and structure as the original. The analysis procedure is applied to each of these datasets 
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to generate a stream of parameter values. Data analysis based on resampling is a rich area 

with an extensive literature. Readers are referred to texts for further information.35,37,38 

 

2.5.   SUMMARY OF METHODS AND RESTRICTIONS ON THEIR USE 

Table 1 summarises the methods and the restrictions on their use. Readers are referred to the 

text for further explanation. 

 

Table 1 Summary of methods and their properties and restrictions 

Estimation Output to CEA Sotware Restrictions 
Bayesian MCMC None: CEA within MCMC 

Software 
None 

Bayesian MCMC MCMC chains exported None 
Bayesian MCMC Posterior means, variances, 

correlations 
None, but assumes multi-
variate normality in posterior 
distribution 

Bayesian MCMC Posterior means and 
variances 

Only suitable if no correlation 
between parameters* 

Estimation by non-Bayesian 
(frequentist) methods 

Parameter estimates and 
Variance-Covariance matrix 

None, but assumes multi-
variate normality of treatment 
effect estimates 

Estimation by non-Bayesian 
(frequentist) methods 

Parameter estimates and their 
variances 

Only suitable if no correlation 
between parameters* 

Estimation by non-Bayesian 
(frequentist) methods 

Bootstrap resampling None, but special methods are 
necessary for sparse data 

* Users should ensure that the data structure and analysis methods do not imply correlations between parameters, before 
using these methods.  
 

3. USE OF MULTIPLE SOFTWARE PLATFORMS 

In recent years interfaces have become available that let different software applications 

communicate with each other. These facilities allow for the integration of the components of 

a CEA which may have been conducted in different packages. The motivations and 

advantages of an integrated approach across software applications are potentially 

multifaceted. Firstly, it allows multidisciplinary teams who have different software skills and 

preferences to produce an integrated analysis. For example, statisticians may wish to use 

general statistical software, whereas decision modellers may wish to use EXCEL or specific 

decision modelling software. It also allows the best software for each component of the 

analysis to be used therefore producing an “optimal” mix. For example, if a network meta-

analysis is required, WinBUGS may be the best software to implement this in, but it has 
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limited graphical capabilities. Therefore, it may be desirable to present the results of the 

synthesis in a package with advanced graphical capability such as R. Furthermore, the 

original dataset may have been prepared in spreadsheet software such as EXCEL. Although 

use of multiple pieces of software to conduct different components of the analysis is common 

historically, few have been integrated.  

Section 3.1 gives details of how to allow communication between different platforms, with 

the primary aim of transferring data between them. Section 3.2 explains how different 

software can be used to fully integrate data input, analysis and the display of results using 

multiple packages, into a single step. 

 

3.1.   COMMUNICATION BETWEEN SOFTWARE PACKAGES 

To facilitate communication, transparency and future data updates, it is good practice to keep 

all data collected for the analysis, including all annotations and details of any corrections, in a 

single file, for example an EXCEL workbook with multiple worksheets. If the analysis is to 

be carried out in WinBUGS, data columns can be copied directly from spreadsheet software 

into WinBUGS and pasted by selecting Paste Special from the WinBUGS Edit menu and 

choosing the Plain text option. Alternatively, XL2BUGS39 is an EXCEL add-in which 

converts EXCEL data into WinBUGS vector format, and BAUW40 converts data in text 

format into WinBUGS vector or matrix format.  

If data is stored in R, R2WinBUGS41 can be used to convert R objects into WinBUGS list data 

using the bugs.data function.  

See http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml for details. 

 

3.2.   INTEGRATED USE OF SOFTWARE PLATFORMS 

Integrated platforms reduce the need to copy data and intermediate results from one 

screen/system to another, and thereby reduce the risk of transcription errors. Further 

advantages of integrating the analysis (which also exist if the Bayesian one-stage approach is 

conducted since in that approach the analysis is integrated by definition) include facilitating 

the modification and updating of any aspect of the analysis, conducting sensitivity analyses 

and, more generally, promoting transparency. For example, if a new trial is reported that is to 

be added to the evidence synthesis, then in an integrated approach the CEA would 

automatically be updated. This goes some way to ensuring the appropriate uncertainty is 
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propagated through to the decision model. If part of this integrated approach is the inclusion 

of a user-friendly interface, then this can also make the exploration of the synthesis and CEA 

accessible to non-technical experts including clinical experts and even NICE decision makers 

themselves, allowing them to interrogate the analysis.  

To this end, a Transparent Interactive Decision Interrogator (TIDI)42 which integrated 

syntheses conducted in WinBUGS with graphical displays and the decision model conducted 

in R and a “point and click” interface in EXCEL was developed for a recent Single 

Technology Appraisal (STA) at NICE. This pilot “proof of concept” initiative allowed 

members of the appraisal committee to request re-runs of the CEA using alternative 

parameter values in real time in the committee meetings. 

Several (freely available) code routines have been developed for commonly used packages in 

Health Technology Assessment which allow them to communicate with other packages and 

these can be utilised in the creation of integrated analyses. For example, RExcel,43 an add-on 

to EXCEL, provides communication between EXCEL and R and R2WinBUGS is one of 

several packages which allow the controlling of WinBUGS through R. Thus, if both of these 

linking packages are used in combination, then WinBUGS can be controlled through EXCEL 

(via R), and a Visual Basic interface can be written in EXCEL to facilitate this (which is the 

software setup used in the TIDI project described above). Similar control of WinBUGS 

through STATA44 and several other packages is also possible, as is the embedding of 

OpenBUGS in R through rbugs45 and the linking of many packages to each other.  
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APPENDIX: PARAMETERISATION OF THE BASELINE TERM IN 

NETWORK META-ANALYSIS MODELS 
Two ways of specifying network meta-analysis models have appeared in the literature. The 

main area of difficulty lies in the precise way in which the relative effects have been 

parameterised, particularly in RE models. One way to write the model for binomial data is: 

 ,

2
, 1 1

2

~ Binomial( , )
logit( )                if 
logit( )      if 

~ ( , )

~ (0,100 )

ik ik ik
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Here, for trial i and treatment k the numerators rik are have binomial distributions with 

parameter pik and denominator nik. A logistic regression model says that, for a trial comparing 

treatments X and Y, the linear predictor consists of the “baseline” term i  if the treatment is 

X, and the baseline plus a relative treatment effect ,i i XY   if the treatment is Y. The key 

point is that the actual treatment that i  refers to can be any treatment (except the last one). 

The trial-specific relative effects are from distributions, whose means can be expressed in 

terms of the mean treatment effects relative to treatment 1 (through the consistency relations). 

The baseline terms are usually given vague priors.46-50 

In (2) it is clear that the term i  refers to treatment X, but it is also clear that this is not 

necessarily treatment 1. In this formulation, one arm of a two arm trial informs a trial-specific 

“baseline”, while the other informs the baseline plus a treatment effect. 

Another way of writing a network model that has appeared in certain submissions to NICE51 

contains this modification: 
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 (3) 

In a general sense, this is the same model, except that here the i  terms represent Treatment 

1 in every trial. In a trial that includes Treatment 1, this parameterisation is adequate, as ,1i X  

(the effect of X relative to itself) is zero. However, if any trial does not include treatment 1, 

then the model parameters cannot all be identified because there are three parameters to be 

estimated from only two arms. Another way of writing an MTC model that has appeared 

recently52 has this same property. Models specified in this way should not be accepted unless 
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the reference treatment is the same treatment in every trial, and therefore appears in every 

trial. 

The instability caused by this parameterisation can be avoided if a model is placed on the 

baseline terms, i.e. 2~ ( , )i mN m   rather than 2~ (0,100 )i N . However, this solution has a 

number of further difficulties and is not recommended (see TSD553). 

 

 

 

 


