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Abstract

Prior manual studies of rumours suggested that crowd stance can give insights into the actual
rumour veracity. Even though numerous studies of automatic veracity classification of social
media rumours have been carried out, none explored the effectiveness of leveraging crowd stance
to determine veracity. We use stance as an additional feature to those commonly used in earlier
studies. We also model the veracity of a rumour using variants of Hidden Markov Models (HMM)
and the collective stance information. This paper demonstrates that HMMs that use stance and
tweets’ times as the only features for modelling true and false rumours achieve F1 scores in the
range of 80%, outperforming those approaches where stance is used jointly with content and user
based features.

1 Introduction

Social media are rife with rumours, which are fast-spreading, unverified pieces of information (Zubiaga et
al., 2018). With fake news and misinformation now widely recognised as a major problem for journalists,
media, online platforms, and citizens, automatic rumour detection and analysis has become a hot research
topic too. Rumour analysis research has focused on Twitter in particular, as it has established itself as
the go-to social platform for real-time news (Hu et al., 2012). Twitter’s unmoderated nature is also the
perfect ground for spreading rumours (Qazvinian et al., 2011). A key focus of prior work on rumour
analysis has been rumour stance classification, where the stance of each tweet on a given rumour is
classified as supporting, denying, questioning or commenting on the rumour (Procter et al., 2013).

Our work builds on the hypothesis that, as rumours evolve over time, so does the stance expressed by
the public towards those rumours. In the early stages of a rumour, its actual veracity tends to be unknown.
However, as new evidence emerges over time, Twitter users take more pronounced and continuously
evolving stance towards the information asserted in the rumour. For instance, in the early stages of a
rumour supporting tweets might prevail, simply due to the lack of information to the contrary. However,
when authoritative sources or reliable evidence emerge either for or against the rumour, a similar trend
tends to be observed in the collective rumour stances. This was first noted in a manual analysis by
Mendoza et al. (2010), who found that true rumours tended to be affirmed more than 90% of the time,
whereas false rumours were challenged (questioned or denied) 50% of the time. This encourages the use
of crowd (or collective) stance as a feature in an automatic rumour veracity classifier.

A rumour consists of a source tweet and several other tweets that responded to the source one—the
source tweet contains the rumour. Each of those responding tweets is associated with a particular stance
(supporting, denying, questioning or commenting). In this work we make use of the stances of those
responding tweets to judge the veracity of the rumour. We refer to the stances of those tweets as crowd
or collective stance.

Hidden Markov Models (HMM) are well known for their application in temporal pattern recognition.
By regarding the individual stances over a rumour’s lifetime as an ordered sequence of observations, we
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can then model the actual veracity of a rumour by the hidden part of the HMM. The general assumption is
that true and false rumours would have different patterns in the stance distribution over time. Therefore,
after training models for true and false rumours, we can build a binary veracity classifier by comparing
sequence occurrence probabilities for the two cases.

This paper investigates whether and to what extent rumour veracity classification can be predicted on
the basis of crowd stance. While there is a body of work on automatic veracity classification such as
(Castillo et al., 2011; Kwon et al., 2013; Vosoughi, 2015; Wu et al., 2015; Ma et al., 2015; Lukasik et al.,
2016), only few have applied stance information as a feature (Liu et al., 2015; Enayet and El-Beltagy,
2017), and none of these studies investigated the collective power of the crowd as a source of stance
information, which can then be used as a feature in rumour veracity classification. Here we argue that
the content of the posts is not necessarily helpful towards determining the veracity of a story, as the
content can be either misleading or inaccurate. We believe it is the aggregation of stances which can
provide useful information to determine the veracity. Despite the fact that some of the users will be
inevitably mistaken, and sharing the wrong stance, we argue that the aggregation of stances will correct
itself towards being a useful feature for veracity classification. The novel contribution of this paper
is in demonstrating that collective stance together with the tweets’ time as features can indeed boost
performance results. We demonstrate that HMM using only stance and time features achieve an F1 score
of around 80%, rendering significantly better results than traditional rich feature engineered approaches
that entails stance as additional feature. We also show that our HMM are indeed applicable in case of
early rumour detection.

2 Related Work

The veracity classification task aims to determine whether a given rumour can be confirmed as true,
debunked as false, or in some cases its truth value is yet to be resolved (i.e. unknown). Related work has
tackled the problem in a supervised fashion by applying state-of-the-art machine learning algorithms on
features extracted from rumour datasets. One of the key differences between the approaches is the set of
features proposed to tackle the problem. The pioneering paper of Castillo et al. (2011) proposed message,
user, topic and propagation-based features. In most subsequent studies these features have been used as
baselines. Following these feature sets, Kwon et al. (2013) and Kwon et al. (2017) proposed a new set
of feature categories: temporal, structural and linguistic and showed their importance in fighting with
rumours. Other than Twitter, the Chinese microblogging platform Sina Weibo has been also analysed for
rumours. For this Yang et al. (2012) proposed client and location-based features and showed that these
help to increase prediction accuracy.

Liu et al. (2015) used the approaches reported by Yang et al. (2012) and Castillo et al. (2011) as base-
line systems and compared them against a new approach based on verification features, which include
stance of individual tweets, rather than collective stance. Ma et al. (2015) adapted features from earlier
studies and proposed to model them over time. Wu et al. (2015) extracted features from message prop-
agation trees. Three categories of features were considered: message, user and report-based. The idea
of message propagation was also investigated by Wang and Terano (2015). Vosoughi (2015) tackled ve-
racity classification using three categories of features (linguistic, user oriented and temporal propagation
related) and speech recognition inspired machine learning approaches, such as Dynamic Time Wrapping
and Hidden Markov Models.

Chen et al. (2016) treated rumour veracity classification as an anomaly detection problem where false
rumours are regarded as anomalies. Several features related to the content, crowd opinion and post
propagation were used. Chang et al. (2016) put the emphasis on the characteristics of users who post the
rumours to determine the veracity. Unlike previous studies, Tong et al. (2017) aimed at blocking rumours
rather than detecting them or marking tweets as true or false. Motivated by the fact that later corrections
are not as effective, the authors argued that the first post seen by a user is influential for their future
opinion and thus it is important to show users rumours only once they are confirmed to be true. Based on
this they proposed a reverse-tuple based randomised algorithm to block rumours. The algorithm aimed
at producing positive seeds to be shown to users first.
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Rumour veracity classification has also been studied in the RumourEval shared task at SemEval 2017
(Derczynski et al., 2017a). Subtask B consisted in determining if each of the rumours in the dataset were
true, false or remained unverified. It considered two different settings, one closed where participants
could not make use of external knowledge bases and another open where use of external resources was
allowed. Participants viewed the task either as a three-way (Enayet and El-Beltagy, 2017; Wang et al.,
2017; Singh et al., 2017) or two-way (Chen et al., 2017; Srivastava et al., 2017), single tweet classification
task. The winning system (Enayet and El-Beltagy, 2017) added features more specific to the distribution
of stance labels in the tweets replying to the source tweet (percentage of reply tweets classified as either
support, deny or query). The survey paper of Zubiaga et al. (2018) provides an extensive summary of
current work on rumour verification but also related task such as detection of rumours as well as stance
classification of messages involved in rumours.

In this work we propose to use stance only to tackle the rumour verification task. As highlighted
earlier, we aim to capture collective stance information for veracity classification. First we investigate
the impact of using sequences of individual stances only. In our second approach, we integrate stance
and time information into a unified model. Both approaches are based on modelling the state-changes
of stances using HMM. Thus the most related studies to ours are Ma et al. (2015) because they model
features over time, Vosoughi (2015) due to the use of HMM as well as Chang et al. (2016), Liu et
al. (2015) and Enayet and El-Beltagy (2017) because they add the reactions (stances) of the users as
additional feature. However, we differ from those because we rely only on the power of collective
stance, model this using HMM and apply this model to predict the veracity of rumours.

3 Dataset

The rumour dataset used in this paper (Zubiaga et al., 2016) is the only rumour stance and veracity
classified tweet dataset which is publicly available. The authors identified rumours associated with major
news events as well as tweets associated with those rumours and then annotated each of the tweets for
stance and the rumours for their overall veracity. The dataset consists of rumours that emerged during
eight different events. However, three of these events evoked less than five rumours consisting of five or
more tweets. Therefore, we limit our experiments to the events detailed in Table 1.

Event Rumours True / False

Charlie Hebdo 46 24 / 22
Ferguson Riots 34 02 / 32
Germanwings Crash 12 02 / 10
Ottawa Shooting 31 20 / 11
Sydney Siege 50 33 / 17

Total 173 81 / 92

Table 1: Rumours in five events. Each rumour has at least 10 tweets.

Each of the remaining events consists of several rumours and each rumour of several tweet threads. In
the data set each tweet is identified by its unique ID, is associated with exactly one event and a unique
rumour ID, has a time stamp and is assigned a stance label. Possible stances σ are supporting, denying,
questioning and commenting. Rumours are marked with their veracity values (true or false).

4 Method: HMM for Veracity Classification

A Hidden Markov Model is a stochastic model in which the system is presumed to be a Markov process
including unobservable hidden states. The hidden system undergoes discrete state changes which trigger
the emission of observable signals. Based on these signals the hidden states’ properties can be learnt.



3363

4.1 Model Generation

More formally, a HMM describes two random processes

{Xt}t∈N and {Yt}t∈N (1)

of which only the latter is directly observable. A HMM is defined as a 5-tupel

λ = {S,E,A,B, π} (2)

where S = {s1; . . . ; sn} is the set of N possible hidden states, E = {e1; . . . ; em} is the alphabet of
possible observations—i.e. the system’s emissions, A ∈ Rn×n is the hidden state transition matrix
where aij denotes the probability of the system changing from state i to j, B ∈ Rn×m is the emission
probability matrix where bi(ej) denotes the probability of observing emission ej ∈ {Y }when the system
is in state si and finally the starting state probability vector π ∈ Rn, where pi = P (X1 = si).

For rumour classification we consider tweets related to five events (see Section 3). Consequently, for
classification the system λ is defined as follows:

State Space S
Since there is no a-priori solution to determine the optimal size of S (Rabiner, 1990) we consider various
hidden state counts N = {n ∈ N | 1 ≤ n ≤ 15} and repeat calculations accordingly.

Observation Alphabet E
Unlike prior veracity classification approaches, we do not consider the tweets’ textual content. Instead,
classification is based on stance information alone. Therefore, we set the observation alphabet to

E = {support, deny, question, comment} (3)

Transition Probabilities
Transition matrix A, emission matrixB and start state probability vector π are chosen at random. Baum-
Welch parameter optimization algorithm is used with 10 iterators to learn models’ final properties. To
avoid particularly suboptimal start value configurations and local optima 100 configurations are tested
for every n ∈ N . The best performing model is kept while the others are discarded.

4.2 Class Assignment ε

Training data (see Section 5 for details) is used to learn model λfalse for false and model λtrue for true
rumours. For all remaining rumours εi (i.e. the testing data) their respective class C(εi) is assigned as
follows:

C(εi) = argmax
c∈{false,true}

P (εi|λc) (4)

In (4) the expression P (εi|λc) is calculated by using the Forward-Algorithm for Hidden Markov Models.

4.3 Multi Spaced HMM Including Tweet Time

As described above, the data set contains tweets’ time stamps which are used to build ordered sequences
of tweets beginning with the first reply to a rumourous tweet and ending with the last, while the actual
distance in time between tweets is disregarded.

Therefore, a straightforward extension of the classification framework is the inclusion of actual posting
times. Since basic HMM implementations do not support combining discrete (stance) and continuous
(time) emissions into a unified model, we applied Multi Spaced Hidden Markov Models (MSHMM) for
this purpose.

MSHMM were introduced by Tokuda et al. (2002) and originally used in speech synthesis tasks.
While HMM use probability matrices in the discrete case or one dimensional distribution functions in
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the continuous case, MSHMM use multi spaced observation probability distributions where the sample
space Ω contains G spaces:

Ω =
G⋃
g=1

Ωg (5)

Each Ωg is a n-dimensional real space Rng with a space index g. Furthermore, each space has a proba-
bility wg, where

G∑
g=1

wg = 1 (6)

and an observation probability density function

Ng(x), x ∈ R1, where
∫
Ng(x)dx = 1 (7)

Established algorithms for HMM can be adapted to multi spaced observation probability functions in-
cluding Baum-Welch-, Viterbi- and Forward-Backward-Algorithm.

For classification of tweets including their time stamps a MSHMM λ′ is defined. Here each stance
σ is assigned its own 1-dimensional real space Ωσ = R1σ , while space weights wσ are determined by
stances’ occurrence counts. Space probability density functions are learned based on the timestamps
which have been pre-processed to represent only the time elapsed since the start of the rumour until a
replying tweet occurred.

Accordingly, observation alphabet of MSHMM λ′ is defined as a random vector o = (X,x), where X
is a space index (i.e. a stance) and x ∈ R1 the processed timestamp.

Multi spaced observation probability of o is defined as

b(o) =
∑
g∈X

wgNg(x) (8)

Additionally, state set S, state transition matrix A and starting state probability vector π of system λ′ are
defined analogue to system λ.

5 Evaluation Settings

To evaluate the performance of the classification framework leave-one-event-out cross validation was
performed, following the methodology of Lukasik et al. (2015). This means that we train on n − 1
events (on all rumours within these events) and test it on an unseen nth event (on all rumours within this
event). We use F1 score to measure classifier performance and compare our results against two baselines.
The first one does not make use of stance, whereas the second one integrates stance as one of a set of
features. These two baselines have been selected to simulate the impact of collective stance i.e., that
collective stance have positive impact on rich traditional feature engineered approaches. However, our
results (see Section 6) show that it is important how this collective stance information is used to judge
the veracity of rumours. We describe these baselines in more details next.

5.1 Stance Unaware Baseline: B1
As described in Section 2, prior work on tweet veracity classification investigated a wide range of features
and classification methods. Most influential is the feature set proposed by Castillo et al. (2011), which
we have adopted for training a classification model. We experimented with various classifiers such as
simple decision trees, k-nn, etc. but achieved best performance with Random Forests, more precisely,
we use a range of 33 different features varying from syntactical, semantic, indicator, user-specific and
message-specific categories. Details of our features can be obtained from (Aker et al., 2017b).

5.2 Stance Aware Baseline: B2
Following the approach of Liu et al. (2015), we integrate stance as several features, additional to those
used in the first baseline. Since there are four different stance classes, the following additional feature(s)
are used:
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Relative-Stance-Score
Percentage of supporting, denying, questioning, and commenting stances extracted from tweets within a
rumour. To obtain this feature we count e.g. how many individual tweets express support for the rumour
and divide it by the total number of tweets. We have in total four features, one of each class. Similar to
above, we use Random Forest as the machine learning algorithm.

6 Results

Table 2 details a performance comparison for both our systems, as well as B1 and B2. For completeness
we also include a simplistic majority-vote baseline on event level. Using system λ we achieved an F1

score of 0.756 across the 5 events including 173 rumours. The multi spaced system λ′ shows superior
performance with an F1 score of 0.804. Both our systems significantly outperform both baselines’ F1

scores of 0.553 and 0.557 respectively.

System Precision Recall F1

B1 0.650 0.481 0.553∗

B2 0.661 0.481 0.557∗

λ 0.747 0.765 0.756∗

λ′ 0.690 0.963 0.804∗

majority-vote 0.059 0.025 0.035∗

Table 2: Overall classification scores.

* indicates significant difference to B1 and B2 (Tukey’s HSD p < 0.05)

Breaking down the results into precision and recall, we can observe that system λ achieves the highest
precision score of 0.747, outperforming both baselines (0.650 and 0.661) as well as system λ′. The
latter also gives results slightly more precise than the baselines (0.690). Regarding recall system λ′

outperforms all other systems by a great margin achieving a score of 0.963. System λ has also much
higher recall of 0.765 comparing to the baseline score of 0.481 for B1 and B2.

Additionally, we look at the individual results for each event (Table 3). It can be seen that the per-
formance varies substantially across events and classifiers. This becomes most obvious in case of the
Ferguson event, where B1 and B2 fail to deliver a single true positive result—hence the F1 score of
0. In other events such as Ottawa Shooting and Sydney Siege all systems have acceptable precision in
their results. However, only our proposed (MS-)HMM also have a high to very high recall leading to
a vastly superior F1 score in these events. Another interesting observation can be made regarding the
Germanwings Crash event where system λ yields perfect classification while B2 achieves exactly the
same results as the overall best performing system λ′. However, it also has to be noted that this particular
event contains only 12 rumours and these results therefore have limited expressiveness.

Finally, we also examined system λ′’s noticeable low F1 score of 0.4 in the Ferguson event. Looking at
the classification outcome on rumour level we observe that this score is largely caused by the unbalanced
nature of the event with only 2 of the 34 rumours being actually true. Out of these true rumours the
system managed to capture one (λ: 2; B1: 0; B2: 0) while overall misclassifying only three rumours (λ:
1; B1: 4; B2: 5). In fact, the performance of all classifiers concerning this event is much more similar
than the particular F1 scores suggest.

6.1 Early detection of rumours

For an eventual practical application of our rumour classification system it is also important to consider
its performance as a function of time, i.e. how many tweets are necessary to achieve a reasonable
classification performance. Therefore, we also explore early detection of rumours by confining our
systems to the first ten (first five) tweets only during classification. Classification results using shortened
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Charlie Hebdo

System Precision Recall F1

B1 0.634 0.792 0.704
B2 0.667 0.667 0.667
λ 0.643 0.750 0.692
λ′ 0.605 0.958 0.742

Ferguson

System Precision Recall F1

B1 0 0 0
B2 0 0 0
λ 0.667 1 0.800
λ′ 0.333 0.500 0.400

Germanwings

System Precision Recall F1

B1 0.333 0.500 0.400
B2 0.500 1 0.667
λ 1 1 1
λ′ 0.500 1 0.667

Ottawa

System Precision Recall F1

B1 0.818 0.450 0.581
B2 0.909 0.500 0.645
λ 0.882 0.750 0.811
λ′ 0.792 0.950 0.864

Sydney Siege

System Precision Recall F1

B1 0.714 0.303 0.426
B2 0.647 0.333 0.440
λ 0.758 0.758 0.758
λ′ 0.750 1 0.857

Table 3: Performance across events

sequences are summarized in Table 4. As expected the best scores can be achieved by using complete
sequences, which feature a median tweet count of 18. For sequences shortened to the first 10 tweets
performance drops down to an F1 score of 0.658 for system λ and 0.642 for system λ′ respectively.
Further reducing sequences’ length to five tweets leads to worse classification performance. However,
performance decrease is considerably lower for system λ′ with an F1 score of 0.618 (λ: 0.524).

Additionally, we also retrained our best performing model λ′ on shortened sequences using first 10
and first 5 tweets only. Comparing F1 scores between training conditions we only find marginal decrease
of roughly 1% when using the first 10 tweets. However, narrowing down to the first 5 tweets during
model training gives unsatisfactory classification results with an F1 score 0.529.

Overall it can be seen that given only the first 10 tweets at classification time our models still perform
better than the baselines. Using even shorter sequences is only reasonable when utilizing the full potential
of MSHMM which were still able to beat the baselines while using only the first 5 tweets.
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System All tweets First 10 First 5

λ 0.756 0.658 0.524
λ′ 0.804 0.642 0.618

Table 4: Early detection F1 scores

6.2 Using Automatic Stance Labels
Results in Table 2 are obtained using gold stance labels. However, this restricts the idea of stance-based
rumour verification to only data where human stance labels are available. To overcome this limitation,
we have adopted the state-of-the-art stance classifier of Aker et al. (2017a). It has been evaluated on the
RumourEval’2017 shared task A on rumour stance classification (Derczynski et al., 2017b) and achieved
the best results, namely 79.02% accuracy. The classifier’s performance measure was obtained by the
RumourEval organizers. Note that for evaluating our models a subset of the data from shared task A
has been used. The system performs standard feature engineering such as the extraction of bag-of-
words, sentiments, indicator features, etc, but also adds features that are specific to modelling the stance
classification problem such as whether the tweet entails some surprise, doubt, certainty and support
terms. Apart from feature extraction the system does not require any further parameters to set nor any
domain knowledge.

We label automatically all tweets in our dataset with tweet-level stance information using this classifier.
Once these stance labels are obtained, we repeat the evaluation of (MS-)HMMs λ and λ′. Results for
systems λa and λ′a with automatic stance labels are shown in Table 5.

Both variants show only slight changes in F1 score compared to their gold data counterparts. In terms
of precision and recall λa shows a shift towards recall compared to λ—combined with a corresponding
loss in precision. However, system λ′a remains stable in precision and recall while using automatically
generated labels. This demonstrates that our veracity classification approach based on the features stance
and time has viable practical applications.

System Precision Recall F1

λa 0.632 0.888 0.738
λ′a 0.669 0.975 0.794

Table 5: Overall scores using automatic labels

7 Discussion

In our results in Table 2 we showed that overall collective stance indeed is an important feature to consider
for the purpose of veracity prediction. However, this depends on how this collective feature is used.
When stance is added as additional feature to those features reported by related work (setting B2) we
could only gain a neglectable improvement. On the other side, when collective stance was used within
HMM we observe superior results indicating that using HMM is a better way for capturing the crowd
stance wisdom and applying this effectively on the veracity classification task. In case of baseline B2
we used rather a crude way of capturing the stance wisdom by counting different stance types. However,
collective stance might obey some specific patterns of development, as indicated by Mendoza et al.
(2010), and capturing these patterns is an important factor. This is where our systems λ and λ′ shine and
the power of capturing this is reflected in the ample classification performance increase. However, this
increase is not distributed equally across all events. In the following paragraphs we are going to raise a
few points that likely have contributed to these outcomes:

Our MSHMM λ′ overall produces results which are especially distinct from the other models’ results
by being able to correctly classify 12 rumours where all other models fail. Note that this occurs in
only two and one cases for baselines B1 and B2 respectively. Further investigation of these 12 correctly
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classified rumours shows that they tend to be shorter than average with a median length of 11 tweets.
Interestingly, λ′ correctly classifies true rumours in 9 out of the 12 cases, although they contain only 1 to
3 supporting stances each.

On the other hand, there are also 15 rumours that are solely misclassified by our HMM λ′. Again, this
is less often the case for the baselines with 8 occurrences each for model B1 and B2. As it is also indicated
by the comparably lower precision scores, model λ’s produces more false positive classifications than
the other models, especially concerning the events Sydney siege and Ferguson (B1: 15; B2: 14; λ: 18;
λ′: 26). Consequently, all 15 misclassified rumours are false positives. Further investigation of the
individual rumours’ properties remained inconclusive.

Overall the baselines have a negative bias, i.e. they tend to classify rumours as false. While the actual
true/false ratio of all rumours is 46.8% true, model B1 classifies 35% of the rumours as true (B2 34%).
On the contrary, λ shows no bias with a ratio of 48%, while λ′ has a positive bias with a ratio of 64.3%.
This observation is in line with the baselines F1 score of 0 for rumours related to the Ferguson riots event
where only 2 out of all 34 rumours are true. Out of these two true rumours one was found by both our
models while the other was correctly classified solely by model λ.

We investigated our models’ performance on short sequences of tweets to accommodate for the fact
that a timely detection of rumours would be of great practical benefit. Naturally, we experience a perfor-
mance drop when reducing sequences’ length. We believe that this is due to the collective stance being
expected to stabilize only over time (see Section 1). However, we indeed could show that especially our
MSHMM is capable of capturing a rumours’ veracity very fast with a high level of recall and sufficient
precision, still outperforming the baselines even when using only the first five tweets of a rumour.

Especially the high recall affirms our intend to adapt our framework for the task of rumour detection,
which is a necessary step before rumour veracity classification can be performed. It will be interesting
to observe in future work whether the model can perform equally well at this task.

As described in Section 6 our model λ′ including tweets’ times achieved best performance values on
this particular data set. This result—as well as the strong result of model λ—shows our HMM-based
method’s general applicability to the problem at hand. Furthermore, we have demonstrated the general
suitability and classification stability of our automated stance annotation framework. Since we seem to
have overcome the need for manual annotation when using MSHMM in future work the data sets can be
extended to more recent events featuring potentially large amounts of tweets.

However, it is also reasonable to assume that events are heterogeneous in their stance distribution
patterns, which might have an impact on classification performance and generalizability across events.
Therefore, in subsequent analysis different event types should be considered when training MSHMM. A
basic event distinction might be sharp, sudden events that also feature a definite ending vs. soft events
where multiple sub-events occur that trigger new developments in the corresponding discussion threads.

Finally, note that the discussed HMM approach achieves results in the 80% margin in terms of F1

when it uses gold standard stance. This performance drops insignificantly when the stance information
is obtained by automatic methods. With that the stance information is the only dependent variable for
the HMM and any performance improvement on that site will, as the results on gold standard stance
show, also increase the performance of the HMM-based classifier. This is also valid for new rumours
where it can be expected that the current automatic stance detection approach does not perform as well
as in the SemEval2017 data and thus have negative impact on the verification results. This is a known
problem that there is a performance drop when the system moves to new unseen data. However, the
performance gap can be closed with extending training data (obtained either manually or using some
distance learning) and focusing more on domain independent features.

8 Conclusions

This paper investigated whether rumour stance alone and combined with tweets’ times can be used to
predict rumour veracity automatically. We followed two different strategies in applying stance for the
verification task. In the first strategy we added stance as an additional feature to those commonly used
in earlier studies. We demonstrated that including collective stances observed in sequences of tweets
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leads to only neglectable performance increase when using approaches adapted from the literature. The
second strategy was to use stance as the only feature to model true and false rumours with discrete HMM.
Finally, we employed multi-spaced HMM to jointly model the temporal changes in stance information.
We demonstrated that already using stance-based HMM without time information leads to substantially
better classification results over the first strategy. Though, the extension to multi-spaced HMM with time
incorporated has led to even superior results with an F1 score of 80.4%.

Next, we will investigate further the integration of temporal information for the rumour detection task.
Furthermore, we will explore if veracity classification can be improved further by combining our HMM-
based classifier with other state-of-the-art approaches. In addition, we plan to adapt the crowd stance
along with HMM for the fake news detection task.
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