Explore this course:

    Apply now for 2025 entry or register your interest to hear about postgraduate study and events at the University of Sheffield.

    MSc(Eng)
    2025 start September 

    Electronic and Electrical Engineering

    School of Electrical and Electronic Engineering, Faculty of Engineering

    Prepare for a career in industry or research. You'll further your understanding of electronic and electrical devices and systems, experience a wide range of topics and, finally, specialise in an area that particularly interests you.
    Postgraduate electronic and electrical engineering student with equipment

    Course description

    Electronic and electrical engineering is a broad and rapidly expanding set of disciplines. Building on core teaching in electrical machines, electronic materials, and the way that electronic circuits interact, this course will allow you to choose from a wide range of optional modules from all our active research areas to tailor your learning in a way that meets with your requirements.

    Accreditation

    Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. You must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

    Modules

    A selection of modules is available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    Opportunities exist for dissertation studies to be carried out in collaboration with other university research centres or with industrial organisations. Examples of previous projects include:

    • Global optimisation of permanent magnet synchronous machines for high performance electric vehicles.
    • Investigation of multi-physics effects in electrical machines for wind turbines.
    • Design oriented analysis of future aircraft electrical power systems.
    • Prediction of motor control signals.
    • Optical scissors technique for photolithography applications.
    • Design, build and measurements of an optoelectronic device measurement system.
    • PWM closed loop speed control of a brushless DC motor.

    Core modules:

    MSc Investigative Research Project

    The aim of this module is to provide a structured individual project to enable you to carry out practical and/or theoretical work that underpins your academic studies and allows for the acquisition and demonstration of a wide range of research skills.

    60 credits
    Engineering Research and Design Project

    The aim of this module is to equip students with skills, knowledge and experience needed to carry out research independently and as a team for solving engineering problems set in a range of globally applicable contexts.  As members of a team, students will develop and demonstrate a range of skills that will enhance their ability to tackle research projects and add value to their employability.  Specifically, students will develop skills in the areas of critical literature review, engineering design, project management, team working, and communication.

    15 credits

    Optional modules - seven from:

    AC Machines

    This unit will introduce students to AC, Synchronous, Induction, and Synchronous/Switched Reluctance machines. It will consider operation, performance, characteristics and modelling.

    15 credits
    Advanced Control of Electric Drives

    This module explores advanced modelling and modern control strategies of electric drive systems with a focus on induction (IM) and permanent magnet synchronous machines (PMSM).

    15 credits
    Energy Storage Management

    This module looks at the storage and management of energy in electrical systems. It will consider:

    (a) Fuel cells: the basic principles of hydrogen fuel cells, reaction
    rate, cell interconnection, the bipolar plate, fuel cell types, ancillary components of a fuel cell system, advantages and disadvantages of fuel cell technologies.

    (b) Batteries and supercapacitors: battery chemistries, energy/power densities of different batteries. Differences between electrochemical energy storage and electrical energy storage in supercapacitors, performance characteristics, charging, modelling, thermal effects, and measurement.

    (c) Mechanical: Principles of mechanical energy storage, flywheels / compressed air. Mechanics of energy storage, precession torques and counter-rotating systems for vehicles. Energy management will include the ancillaries required to connect energy storage to the grid, including dc-dc and dc-ac inverters in addition to battery modelling approaches commonly used for state of charge and state of health monitoring.

    15 credits
    Motion Control and Servo Drives

    This module investigates, in detail, the performance and operational characteristic of both modern a.c. and d.c. variable speed drives and actuation systems, as well as their applications in electric/hybrid vehicle traction.

    15 credits
    Permanent Magnet Machines and Actuators

    This module looks at the topologies for, design of, and characteristics of permanent magnet electrical machines. It will look at these machines from the types of magnets employed, electromagnetic torque, thermal behaviour and modelling through the winding of such machines to the design of a range of machines; for example brushless AC/DC, fractional slot, switched/transverse flux.

    15 credits
    Power Electronics Converters

    This module introduces power conversion principles, defines the terminology and analyses operational principles, modulation methods and control of selected power converters topologies for industrial applications.

    15 credits
    Power Semiconductor Devices

    This module will look at power semiconductor devices: physics, technology, characteristics, packaging and application.

    15 credits
    Advanced Computer Systems

    This module looks at modern computer systems from operating systems down to the underlying computer architectures to provide a coherent view of how such systems work and how their performance can be improved, looking, in particular, at parallelism.

    15 credits
    Advanced Integrated Electronics

    This module will advance your understanding of analogue and digital VLSI design. It concentrates on issues such as power consumption, the effect of interconnect, non-CMOS logic, circuit layout, analog amplifiers, data converters, and using Spice.

    15 credits
    Advanced Signal Processing

    This module focuses on introducing advanced signal processing methods and technologies and their applications. Topics include multi-rate filtering and filter banks; signal transforms; random signals; adaptive filtering and array signal processing.

    15 credits
    Semiconductor Materials

    This module describes the basic physical properties (structural, optical, electrical) of semiconductor materials used in the electronic and opto-electronic industries, and in semiconductor based research. The aim is to equip you with a comprehensive background understanding of the physical, structural, optical, electronic properties of semiconductor materials used in modern electronic and opto-electronic devices. There is a laboratory assignment where characterisation of epitaxially-grown material will be performed.

    15 credits
    Principles of Semiconductor Device Technology

    The unit describes the basic structure of materials and their relationship to the requirements of semiconductor devices for future applications, leading to methods of crystal growth, fabrication, modelling and characterization. The focus is on devices that underpin CMOS and its future evolution in AI: starting with the MOSFET, and leading on to future devices such as TunnelFET, Negative Capacitance FET and the Resistive Random Access Memory (RERAM).

    15 credits
    Nanoscale Electronic Devices

    The course aims to provide students with an understanding of the science and technology which underpins modern electronic device technology, with an emphasis on integrated electronic devices at the nanoscale.

    15 credits
    Energy Efficient Semiconductor Devices

    The efficient use of energy is of critical importance to future growth and well-being, providing a mechanism to reduce global emissions and to offset the impact of increasing fuel costs. Semiconductor devices can play can crucial role in this key global challenge, providing options which can both improve energy efficiency and also means for renewable energy generation. The course describes four key sectors where semiconductor devices are making considerable impact on energy efficiency.

    15 credits
    Optical Communication Devices and Systems

    The course examines the behaviour of the components in a communications system and the way in which their design and individual performance is determined by that of the system requirements.

    15 credits
    Electronic Communication Technologies

    This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.

    15 credits
    Data Coding Techniques for Communication and Storage

    Processing techniques to enable transmission and storage of data, in a reliable and secure fashion, are a key element in nearly all modern communication systems. This module deals with data-coding techniques required for reliable and secure data transmission and storage. It covers various aspects of digital communication combining elementary communication theory with practical solutions to problems encountered.

    15 credits
    Principles of Communications

    This course considers the mathematical foundations and the derived theories and techniques used by a wide range of communication systems, particularly the more recent digital systems. The aim is to provide the very mathematical foundation for understanding modern communication systems, present the structure of modern communication systems and the basic issues at each stage in the system, and create a theoretical background that applies to all communication systems and is not affected by any particular technology.

    15 credits
    Antennas, Propagation and Satellite Systems

    Review and application of electromagnetic theory for antenna analysis. Radiation pattern, gain, input impedance. Half wave, full wave dipole antennas, monopole antennas. Image theory. Antenna arrays. Polarization: linear, elliptical, axial ratio. Aperture theory: Fourier analysis, Huygens-Kirchhoff formula, rectangular and circular aperture, effective aperture. Microstrip antennas. Propagation in a plasma: critical frequency, refractive index. Ionospheric/tropospheric propagation of HF/VHF radio waves: MUF, ionosonde. Satellite communications systems. Earth stations - types and performance. Satellite transponders - amplifiers, redundancy, transmitters, frequency translation. Multiple access systems. 

    15 credits
    Mobile Networks and Physical Layer Protocols

    This module aims to provide an overview of how mobile communications networks operate and descriptions of the radio technology used over the air interface and the physical layer protocols used in GSM, 3G, 4G and 5G mobile networks. More specifically, the syllabus will cover: the description and demonstration of current UK cellular mobile networks with a historical perspective; antenna design for the radio-frequency interface, including handset, vehicle and base station antennas; multiple antenna arrays; health related issues of mobile handsets; radio propagation issues, diversity gain, Rake reception; link budgets; cellular network design and deployment strategies; modulation schemes; and GSM/3G/4G/5G physical layer protocols.

    15 credits
    System Design

    This module is concerned with the management of complexity in system design. To learn the basics of structured approach to design of complex systems, you will undertake a design project that requires the application of state of the art design tools that help to achieve appropriate error free design structures.

    15 credits
    Broadband Wireless Techniques

    This module will give an understanding of the most up-to-date communication techniques used in the design and operation of broadband wireless systems based on OFDM technology such as WiFi, WiMAX and LTE. The module will explore the physical (PHY) layer, medium access control (MAC) and radio resource management functionalities of broadband wireless systems. It will also include an introduction to broadband wireless systems; the principles of OFDM, OFDMA and TDD/FDD multiple access; bit interleaved convolutional and turbo channel coding/decoding for OFDM systems; adaptive coding and modulation; frequency selective fading, channel estimation and equalisation; MIMO techniques; and network architectures.

    15 credits
    Wireless Packet Data Networks and Protocols

    The aim of this module is to give an understanding of the functionality of packet switching protocols at different layers of a wireless system and to appreciate how these protocols achieve reliable data delivery in wireless communication systems. The module also includes an introduction to packet switching in wireless networks; radio link protocols, CRC, ARQ and hybrid-ARQ; MAC protocols; packet scheduling and differentiated quality of service; routing, IP protocol, mobile IP, wireless TCP and end-to-end quality of service; radio resource management, network planning and optimisation; network examples - WiFi, HSPA or LTE.

    15 credits
    Packaging and Reliability of Microsystems

    The module describes the methods used to fabricate microsystems. It also introduces and develops an understanding of the reliability and failure mechanisms in the devices and resulting microsystems.

    15 credits

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

    Open days

    An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses.
    Open days and campus tours

    Duration

    1 year full-time

    Teaching

    We deliver research-led teaching with support for your research project and dissertation.

    Assessment

    Assessment is by examinations, coursework, and a project dissertation with oral presentation.

    School

    School of Electrical and Electronic Engineering

    Image of student in clean room working on project

    We've been at the forefront of research and teaching within the field of electrical engineering for over a century, and in electronics since its advent in the mid 20th century. The use of electronics has become mainstream in a very short period of time, as we find innovative solutions to meet our everyday needs and new challenges.

    Our MSc postgraduate taught degrees provide you with an opportunity to further your knowledge of electronic and electrical engineering, while potentially specialising in a specific field of the subject, enabling you to pursue a particular direction in either your chosen career or further study.

    Whether you’re interested in the latest communication systems, cutting-edge semiconductor research, or developing your understanding of electrical machines and drives for the vehicles of the future, studying with us will help you grow as a student and researcher. 

    The department offers postgraduate students a choice of four one-year, full-time masters courses, which combine taught study on a wide range of modules and an exciting individual research project. You’ll learn from our academic experts, the majority of whom have strong links with partners in industry. 

    Our state-of-the-art teaching laboratories allow you to gain exposure to the world-leading research environment of the department whilst undertaking your project, and get hands on with equipment used in industry as preparation for your career. All of our courses are also accredited by the Institution of Engineering and Technology.

    Student profiles

    Postgraduate electronic and electrical engineering students with equipment

    I chose the University of Sheffield due to its great reputation for engineering courses. More specifically, I chose electrical engineering because I had conducted an electronics based final year project for my undergraduate degree. I wanted to continue studying electronics and gain further knowledge in the field.

    Christopher Wright
    MSc Electronic and Electrical Engineering

    Entry requirements

    Minimum 2:1 undergraduate honours degree in a relevant subject with relevant modules.

    Subject requirements

    We accept degrees in the following subject areas: 

    • Automation
    • Communication
    • Electrical / Electronic
    • Mechanical
    • Mechatronics
    • Physics

    We may also consider other engineering subjects

    Module requirements 

    You should have studied at least one Mathematics module and one module from the following areas:

    • Analogue Circuits
    • Analogue Electronic Technology
    • Communications Electronics
    • Digital Circuits
    • Digital Electronic Technologies
    • Digital Signal Processing
    • Electromagnetics
    • Principles of Communications
    • Signals and Systems

    We may also consider other related modules.

    We also consider a wide range of international qualifications:

    Entry requirements for international students

    We assess each application on the basis of the applicant’s preparation and achievement as a whole. We may accept applicants whose qualifications don’t meet the published entry criteria but have other experience relevant to the course.

    The lists of required degree subjects and modules are indicative only.  Sometimes we may accept subjects or modules that aren’t listed, and sometimes we may not accept subjects or modules that are listed, depending on the content studied.

    English language requirements

    IELTS 6.5 (with 6 in each component) or University equivalent.

    Pathway programme for international students

    If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

    If you have any questions about entry requirements, please contact the school/department.

    Fees and funding

    Apply

    You can apply now using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now

    Contact

    study@sheffield.ac.uk
    +44 114 222 5182

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.