New paper overturns previously published mechanism

A new CBE paper published in Materials Horizon has fully overturned a mechanism published in 1995; that mechanism was considered revolutionary at the time and formed a basis for a new area of materials science.

Professor Siddharth V. Patwardhan

Since that mechanism was not fully proven or understood, any further progress in the field was limited and the materials are still to date not commercially viable. CBE author Siddharth Patwardhan's work  in collaboration with Dr. Miguel Jorge from University of Strathclyde has the potential to deliver commercially viable manufacturing routes to porous materials, which could be worth millions per year to industry. 

Materials Horizons is a top ranked journal focusing on developments of exceptional significance across the breadth of materials research.


Title: The Role of Charge-Matching in Nanoporous Materials Formation

Authors: Alessia Centi, Joseph R. H. Manning, Vibha Srivastava, Sandra van Meurs, Siddharth V. Patwardhan, Miguel Jorge.

Abstract

Unravelling the molecular-level mechanisms that lead to the formation of mesoscale-ordered porous materials is a crucial step towards the goal of computational material design. For silica templated by alkylamine surfactants, a mechanism based on hydrogen-bond interactions between neutral amines and neutral silicates in solution has been widely accepted by the materials science community, despite the lack of conclusive evidence to support it. We demonstrate, through a combination of experimental measurements and multi-scale modelling, that the so-called “neutral templating route” does not represent a viable description of the synthesis mechanism of hexagonal mesoporous silica (HMS), the earliest example of amine-templated porous silica. Instead, the mesoscale structure of the material is defined by charge-matching of ionic interactions between amines and silicates. This has profound implications for the synthesis of a wide range of templated porous materials, and may shed new light on developing sustainable and economical routes to high value porous materials.

Previous published 1995 papers:

Ref. 9. P. T. Tanev and T. J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieve, Science, 1995, 267, 865–867

Ref. 14. P. T. Tanev and T. J. Pinnavaia, Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties, Chem. Mater., 1996, 8, 2068–2079