DrLisBowman

Dr Elisabeth Bowman

Reader in Geomechanics

Address:
Department of Civil and Structural Engineering
Sir Frederick Mappin Building
Mappin Street, Sheffield, S1 3JD

Telephone: +44 (0) 114 222 5747
Fax: +44 (0) 114 222 5700

Email: e.bowman@sheffield.ac.uk
Room: C109d

 

 

 

 


My work aims to understand how landslides, high speed debris flows and rock avalanches behave, so we can protect lives and infrastructure from their impact.

dr elisabeth bowman

Profile

Elisabeth (Lis) Bowman completed her undergraduate and postgraduate degrees at the University of Cambridge and spent several years in consulting practice. She received her PhD in 2002 researching the mechanics of creep and ageing in freshly disturbed granular materials. She then spent three years as a Royal Academy of Engineering Postdoctoral Fellow at the University of Cambridge exploring the mechanics of large and catastrophic landslides via physical modelling, after which she joined the academic staff at the University in Canterbury in Christchurch, New Zealand. There she gained valuable field experience in investigating landslide and earthquake behaviour as well as continuing with experimental research and numerical modelling of slope stability / landslide mechanics.

Lis joined our Department in 2013. Her research is aimed at understanding particulate-scale mechanisms of geomaterials under deformation, including roles of particle size segregation, creep and fracture that produce important and sometimes puzzling geotechnical phenomena. Questions being addressed:

  • What is the role of particle breakage in the runout of large rock avalanches?
  • How does particle size segregation and pore pressure influence the velocity and run out of debris flows? How does this affect barrier design?
  • How can seepage induced internal erosion of fine particles be characterized towards increased safety of hydraulic structures such as dams and levees?
  • Why and how do granular soils “age” (increase in strength and stiffness with time)?

The investigative tools she uses in her research include physical modelling, transparent soil, high speed imaging, PIV and PTV techniques, centrifuge, flume and element testing and field mapping.

Lis’s research covers the following specific topics:
  • Creep of granular soils leading to observed ageing effects
  • Mechanisms behind the extraordinary spreading of large and catastrophic rock avalanches, including static-dynamic behaviour of rock breakage
  • Mechanics of the motion of debris flows with a view to better modelling of their runout behaviour
  • Behaviour of granular flows within geotechnical centrifuge physical model experiments
  • Internal erosion of susceptible soils (such as glacial tills), which may lead to internal instability in embankment dams, levees and canals
  • Local deformation modes of model geosynthetic reinforced soil walls under seismic loading



Selected Publications

Journal articles