Dr Scott Allen
PhD
Department of Neuroscience
Lecturer in Neuroscience
+44 114 215 9103
Full contact details
Department of Neuroscience
Sheffield Institute for Translational Neuroscience (SITraN)
385a Glossop Road
Sheffield
S10 2HQ
- Profile
-
I obtained my PhD from the University of Manchester where I characterised protein import and folding in the mitochondrial intermembrane space. My work showed that juxta-positioned intradisulphide bonding through transfer of electrons to cytochrome c via Erv1, is key for the folding of the TIM proteins. My work was highlighted on the front cover of the Journal of Molecular Biology (Allen et al (2005). J. Mol. Biol. 353:937-44).
I followed this up with a post-doctoral position focussing on the myelin sheath proteolipid protein and its folding in the endoplasmic reticulum. I then moved into the pharmaceutical industry with AstraZeneca developing biochemical assays to validate RNA aptamers as small molecule inhibitors and lentiviral vectors as shRNA delivery tools.
I joined the Department of Neuroscience at the University of Sheffield in 2009. I was the first in the field to use an XF bioanalyser (Seahorse Bioscience) to simultaneously measure the effect of MND on mitochondrial and glycolytic function in disease cellular models. Using this technology, we discovered in 2013 that oxidative stress is not only detrimental to mitochondrial function but also glycolytic function in cell models overexpressing mutant forms of the SOD1 protein.
In 2014, we showed that skin cells isolated from MND patients show similar mitochondrial dysfunction to that observed in the CNS. However, unlike in the CNS, the skin cells can upregulate their glycolytic pathways to maintain energy levels. Through transcriptomics and functional analysis, we found that there are significant changes in key metabolic regulators and altered metabolic function in skin cells isolated from sporadic cases and that these sporadic cases have an altered metabolic response to aging compared to controls.
Recently, I was the first in the field to use a phenotypic metabolic profiling system (OmniLog™) to screen MND patient cell lines. This approach in combination with metabolic flux analysis has identified a number of novel targets for MND study.
- Qualifications
-
2016-2019
Motor Neurone Disease Association Senior, Non-Clinical Fellow
Sheffield Institute for Translational Neuroscience, the University of Sheffield2009-2015
Senior Post-Doctoral Researcher
Sheffield Institute for Translational Neuroscience, the University of Sheffield2006-2008
Post-Doctoral Researcher
AstraZeneca2004-2006
Post-Doctoral Research Associate
The University of Manchester, Faculty of Life Sciences2000-2004
PhD The University of Manchester
Faculty of Life Sciences
- Research interests
-
The main research focus of my group is identifying the role of dysfunctional energy generation in neurodegenerative conditions, with particular interest in Motor Neurone Disease (MND). Our primary aim is to develop therapeutic strategies by:
- Using phenotypic metabolic screening to identify novel targets for therapeutic intervention using patient-derived fibroblasts and induced neuronal progenitor cell derived human astrocytes.
- Develop nutritional supplementation regimes for people with MND.
In vitro we use various cell models, including primary patient cells and genetically reprogrammed human progenitor cells and in vivo we use models such as zebrafish to investigate the role of astrocyte and neurone energy metabolism and how they affect disease progression. We are interested in;
- How MND effects metabolic pathway regulation and interaction.
- How metabolism responds to disease specific cellular stress such as oxidative stress and hypoxia.
- How the disease affects the metabolic response to ageing in patients.
The main research tools and techniques used in my laboratory are:
- Human astrocytes and neurons derived from fibroblasts through genetic reprogramming (collaboration with Dr Laura Ferraiuolo, (University of Sheffield).
- Mouse stem cells expressing the green fluorescent protein under the Hb9 promoter, resulting. in GFP+ motor neurons (collaboration with Dr Laura Ferraiuolo, University of Sheffield using cells kindly donated by Professor Thomas Jessell (Howard Hughes Medical Institute).
- Metabolic screening using an OmniLog™ metabolic profiling system.
- Metabolic flux analysis using an XF24 bioanalyser.
- Analysis of neuronal stress in zebrafish models of MND
- Hydrophobic interaction liquid chromatography-Mass spectrometry to assess nucleoside levels in patient Cerebrospinal fluid (CSF) (collaboration with Prof Martin Turner (University of Oxford) and Dr Hector Keun (Imperial College London).
Current projects which we are seeking both funding and PhD students for include (please contact me directly if interested (s.p.allen@sheffield.ac.uk);
- The role of adenosine deaminase in MND.
- How MND affects metabolic substrate transport.
- How MND affects glycogen storage and mobilisation.
- How fructose metabolism affects energy generation in MND astrocytes.
- Investigating the protective role of estradiol in MND (collaboration with Dr Tennore Ramesh).
- Metabolic screening of sporadic Parkinson’s disease patient fibroblasts and astrocytes (collaboration with Dr Heather Mortiboys and Prof Oliver Bandmann).
- How hypoxia affects metabolic energy generation in Alzheimer’s disease and motor neurone disease (collaboration with Dr Julie Simpson and Dr Claire Garwood).
- The role of inosine in MND (collaboration with Prof Martin Turner (Oxford) and Dr Hector Keun (Imperial College London).
- How spinal muscular atrophy (SMA) affect energy pathway flux (collaboration with Dr Paul Heath).
- Publications
-
Journal articles
- Adenosine deaminase, not immune to a mechanistic rethink in central nervous system disorders?. Histol Histopathol, 18404.
- Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiology of Aging.
- Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response. International Journal of Molecular Sciences, 21(21). View this article in WRRO
- Why TDP-43? Why not? Mechanisms of metabolic dysfunction in amyotrophic lateral sclerosis. Neuroscience Insights, 15.
- Lipid metabolism in astrocytic structure and function. Seminars in Cell & Developmental Biology. View this article in WRRO
- Understanding metabolic flexibility : a potential key to unlocking metabolic therapies in amyotrophic lateral sclerosis?. Neural Regeneration Research, 15(9), 1654-1654. View this article in WRRO
- C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain, 1-20. View this article in WRRO
- A high-throughput and pathophysiologically relevant astrocyte-motor neuron co-culture assay for amyotrophic lateral sclerosis therapeutic discovery. Bio-protocol, 9(17). View this article in WRRO
- Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain, 142(3), 586-605. View this article in WRRO
- Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites.. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(11), 2087-2101. View this article in WRRO
- Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiology of Aging, 36(10), 2893-2903. View this article in WRRO
- Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathology and Applied Neurobiology, 41(2), 201-226. View this article in WRRO
- Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.. Neurobiol Aging, 35(6), 1499-1509.
- The Effect of SOD1 Mutation on Cellular Bioenergetic Profile and Viability in Response to Oxidative Stress and Influence of Mutation-Type.. Plos One, 6(8), e68256-e68256. View this article in WRRO
- S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis.. Free Radic Biol Med, 61, 438-452.
- Erv1 Mediates the Mia40-dependent Protein Import Pathway and Provides a Functional Link to the Respiratory Chain by Shuttling Electrons to Cytochrome c. Journal of Molecular Biology, 353(5), 937-944.
- Functional TIM10 Chaperone Assembly Is Redox-regulatedin Vivo. Journal of Biological Chemistry, 279(18), 18952-18958.
- The Structural Basis of the TIM10 Chaperone Assembly. Journal of Biological Chemistry, 279(18), 18959-18966.
- Juxtaposition of the Two Distal CX3C Motifs via Intrachain Disulfide Bonding Is Essential for the Folding of Tim10. Journal of Biological Chemistry, 278(40), 38505-38513.
- Assembly of Tim9 and Tim10 into a Functional Chaperone. Journal of Biological Chemistry, 277(39), 36100-36108.
- Atypical
TDP ‐43 protein expression in anALS pedigree carrying a p.Y374X truncation mutation in TARDBP. Brain Pathology. - Unbiased metabolome screen leads to personalised medicine strategy for amyotrophic lateral sclerosis. Brain Communications.
- Peripheral Glycolysis in Neurodegenerative Diseases. International Journal of Molecular Sciences, 21(23), 8924-8924.
Conference proceedings papers
- Inosine reverses motor neuron toxicity observed in amyotrophic lateral sclerosis patient astrocytes with an adenosine deaminase deficiency. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1859 (pp e23-e23)
- Adenosine deaminase, not immune to a mechanistic rethink in central nervous system disorders?. Histol Histopathol, 18404.
- Grants
-
- Academy of Medical Sciences- Springboard £99,997 Investigating how the MGO-NRF2 cellular protection pathway is affected in amyotrophic lateral sclerosis (ALS). Ref SBF005\1064
- 2018- Alzheimer’s Research UK, £98,594.70. Equipment grant application for an i2/H35 Hypoxic Chamber PI, Scott Allen
- 2016- Neurocare Charitable Trust £72,000. Equipment proposal for an OmniLog™ system. PI, Scott Allen
- 2015- The Motor Neurone Disease Association -£248,000. Senior Non-Clinical Fellowship
- 2014-Neurocare Charitable Trust-£5600. Metabolic Profiling Pilot Study funding
- 2010- Neurocare Charitable Trust £71,967. Equipment proposal for Seahorse XF24 Bioanalyser. PI, Scott Allen
Our Funders
- The Motor Neurone Disease Association (MNDA)
- Neurocare
- Alzheimer's Research UK
- Academy of Medical Sciences
- Teaching activities
-
I teach on the MSc courses in Translational Neuroscience, Translational Pathology and Molecular Medicine focussing on metabolomics. I also supervise MSc and undergraduate project placement students during their research projects. Co-lead of the MSc module MED638-Ethics in Neurodegeneration.
- Professional activities and memberships
-
- Reviewer for several funding bodies, including the Motor Neurone Disease Association (MNDA) and the Medical Research Council (MRC).
- Scientific link on the Sheffield Motor Neurone Disorder Research Advisory Group (SMND-RAG).
- Trustee of the Nick Smith Foundation
- Reviewer for the BBSRC, Action AT, Brain Communications, Molecular Neurobiology