Prof. Graham J. Leggett

Graham Leggett

Professor of Nanoscale Analytical Science and Head of Department
Department of Chemistry
The University of Sheffield
Brook Hill
Sheffield S3 7HF
United Kingdom

Telephone: +44 (0) 114 222 9556
Email: graham.leggett@sheffield.ac.uk

Leggett Group Website
General

Biographical Sketch

Prof. Leggett obtained a BSc in Chemistry from UMIST in 1987. His PhD from the same institution, obtained in 1990, was followed by consecutive appointments as Research Associate at Universities of Washington and Nottingham. In 1994 he was appointed as lecturer at the University of Nottingham 1994-98. He became a Lecturer at UMIST in 1998, where he was subsequently promoted to senior lecturer and reader. In 2002 he was appointed as Professor of nanoscale analytical chemistry at the University of Sheffield. He was appointed as the Head of Department in 2018.

Research Keywords

Analytical Science, Scanning Probe Microscopy, Near-Field Optics, Nanofabrication, Biomaterials, Surface Chemistry.

Teaching Interests

Analytical Chemistry; Surface Chemistry

Research Research Graham Leggett

Scanning probe microscopy (SPM) has revolutionised our ability to characterise the surface morphologies of complex and difficult materials. However, much more exciting and potentially more powerful are the capabilities that SPM techniques provide for the measurement of surface properties and for the manipulation of molecular structure. Our work focuses on the development of quantitative measurement tools for the investigation of molecular and polymeric surfaces (for example, the development of friction and chemical force microscopies for studying nanometre scale tribological phenomena).

Besides offering tools for surface characterisation, scanning probe instruments provide powerful capabilities for the modification of surface molecular structure. We have developed a new technique, scanning near-field photolithography, in which a scanning near-field optical microscope is used to fabricate structures that may be as small as 9 nm, using photochemical reactions. Our goal is to integrate top-down (lithographic) methods with bottom-up (synthetic) techniques by exploiting the versatility of photochemical methods as tools for executing very specific molecular transformations, in combination with the exquisite spatial resolution accessible in the near field. A particular emphasis of our work is the development of methods for the fabrication of biological nanostructures for use in novel highly miniaturised, high sensitivity analytical systems.

Teaching

Undergraduate and postgraduate taught modules

  • Chemistry and the World Around Us (Level 1): Fuel
    The course examines how chemical principles may be used to make qualitative assessments of the efficiency of energy production, and explores the complexity of many issues facing society as it grapples with the problems of climate change and energy supply scarcity.
  • Solid Surfaces and Catalysis (Level 3)
    This course considers the nature of gas-solid interactions and their relationship to catalytic activity.
  • Nanochemistry (Level 4)
    This provides an overview of the role of chemistry in nanotechnology, and introduce students to major techniques for the fabrication and characterisation of nanostructured materials and devices.
  • Polymer Characterisation and Analysis (Postgraduate Level)
    This course explores the major instrumental methods for identifying polymers and determining characteristics including: polymer molecular weight, molecular weight distribution, stereochemistry, sequence distribution in copolymers, transition temperatures, and surface features.

Support Teaching:

  • Level 3 Literature Review

Laboratory Teaching:

  • Level 1 Physical Laboratories
  • Level 2 Physical Laboratories
  • Level 3 Research Project
  • Level 4 Research Project

Publications

Journal articles

Chapters

  • Packham DE, Watts JF, Critchlow GW, Kneafsey B, Guthrie J, Sheriff M, Shanahan MER, Cope BC, Pascoe MW, Sagar AJG, Allen KW, Dixon DG, Melody DP, Whitehouse NR, Leggett G, Finch CA & Maddison A (2005) A: Abrasion Treatment, Handbook of Adhesion: Second Edition (pp. 1-58). RIS download Bibtex download
  • Cope BC, Packham DE, Leggett G, Beech JC, Lowe GB, Briggs D, Brewis DM, Crocombe AD, Dixon DG, Van Ooij WJ, Parbhoo B, Warwick CM, Pritchard J, Millington S, Chatfield C, Comyn J, Dillard DA, Kneafsey B, Shanahan MER & Pocius AV (2005) S: Scanning Electron Microscopy, Handbook of Adhesion: Second Edition (pp. 439-525). RIS download Bibtex download

Conference proceedings papers

  • Leggett GJ, Alswieleh A, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, Xia S, Ducker RE, El Zubir O, Cartron ML, Hunter CN & Armes SP (2014) Synthesis and nanometer-scale patterning of stimulus-responsive, biofouling-resistant zwitterionic poly(amino acid methacrylate) brushes. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 248 RIS download Bibtex download
  • Moxey M, El Zubir O, Johnson A, Dinachali SS, Saifullah MSM, Chong KSL & Leggett GJ (2014) Self-cleaning, reusable templates for protein nanopatterning fabricated by interferometric lithography and nanoimprinting. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 248 RIS download Bibtex download
  • Ducker RE, El Zubir O, Wang L, Cartron ML, Mullin N, Cadby A, Hobbs J, Hunter CN & Leggett GJ (2014) Nanoscale positioning of multiple proteins by scanning near-field photolithography. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 248 RIS download Bibtex download
  • Tsargorodska A, El Zubir O, Johnson A & Leggett GJ (2014) Fabrication of metal nanostructures over macroscopic areas by interferometric lithography of self-assembled monolayers. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 247 RIS download Bibtex download
  • Leggett G (2012) Continuous wave cavity ring-down spectroscopy for environmental applications. Optical Instrumentation for Energy and Environmental Applications, E2 2012 RIS download Bibtex download
  • Nikogeorgos N, Hunter CA & Leggett GJ (2012) Mechanics and thermodynamics of nanometre-scale molecular contacts. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 244 RIS download Bibtex download
  • Ducker RE, Montague MT, Sun S & Leggett GJ (2007) Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography - art. no. 664513. Nanoengineering: Fabrication, Properties, Optics, and Devices IV, Vol. 6645 (pp 64513-64513) RIS download Bibtex download
  • Leggett GJ, Chong KSL & Sun SQ (2004) Scanning near-field photolithography: A new tool for fabricating molecular nanostructures.. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol. 227 (pp U875-U875) RIS download Bibtex download
  • Chong KSL, Sun S & Leggett GJ (2004) Scanning near-field photolithography: A new route to biological nanostructures. Transactions - 7th World Biomaterials Congress (pp 1368) RIS download Bibtex download
  • Hobbs JK, Winkel AK, McMaster TJ, Humphris ADL, Baker AA, Blakely S, Aissaoui M & Miles MJ (2001) Some recent developments in SPM of crystalline polymers. Macromolecular Symposia, Vol. 167(1) (pp 1-14) RIS download Bibtex download
  • Leggett GJ, Beake BD & Brewer NJ (2000) Scanning force microscopy of polyester: surface structure and adhesive properties. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, Vol. 41(2) (pp 1435-1436) RIS download Bibtex download
  • Leggett GJ & Beake BD (1998) Development of surface morphology, local friction and adhesion in plasma-treated poly(ethylene terephthalate) films. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, Vol. 39(2) (pp 1228-1229) RIS download Bibtex download
  • Scotchford CA, Sim B, Hutt D, Leggett G & Downes S (1996) Surface energy effects on osteoblast attachment: A model system. Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium, Vol. 1 (pp 597) RIS download Bibtex download