Students in a physics laboratory

Physics with a Foundation Year BSc MPhys

Department of Physics and Astronomy

Apply for this course

You are viewing this course for 2021-22 entry. 2022-23 entry is also available.

Key details

Course description

If you don't have the usual scientific or mathematical background for our degrees, a foundation year is for you. Your first year will be spent improving your knowledge and skills, so you're at the right level to move to a degree.

Your study will include modules in physics, mathematics and chemistry. When you've completed the foundation year, you can enter the first year of any of our physics degree programmes.

You can specialise later in your course, and can often switch between our degrees. In your final year, you'll complete an extended individual project.

Modules

After successfully completing the foundation year modules, you can start your main degree.

The modules listed below are examples from the last academic year. There may be some changes before you start your course. For the very latest module information, check with the department direct.

Title: Physics with a Foundation Year MPhys or BSc course structure
UCAS code: F309
Years: 2021

Core modules:

Core Foundation Mathematics

The syllabus for MAS003 covers the common core A Level curriculum. The unit is tailored for students who have been away from mathematics for a period of time, but who will have gained some A-Level or similar qualifications. The unit covers the basic principles of algebra, geometry and calculus. Following the introduction of new material in the lectures, students have the opportunity of extensive problem solving, both in the tutorial sessions with the lecturers and in their own time.

40 credits
Foundations of Physics

PHY009 provides students with the foundations of Physics required to enter the first year of a regular Physics or other scientific degree course, or an engineering course where detailed knowledge of Physics is needed.

Understanding will be developed in 3 lectures per week over a full academic year. Problem solving and example classes are integrated into lectures. The following topics will be covered: Dynamics/Mechanics; Electricity and Magnetism; Thermal Physics; Oscillations, Waves, and Optics; Properties of Matter; Atomic and Nuclear Physics.

As PHY009 teaches no practical Physics, this module is complemented by the 10 credit laboratory module FCE002 for most science foundation year students (except for foundation year students leading to a Mathematics undergraduate programme) or FCE001 for engineering foundation year students.

The greatest advances in technology have taken place in the last hundred years. In 1897 few would have imagined that the probing of materials at the atomic level would reveal so much. These early discoveries of atomic constituents and their structure would pave the way for semi-conductor electronics, develop key concepts in physical laws, and offer a replacement energy source for fossil fuels in the form of nuclear power. This course summarises key discoveries in early particle physics and combines historical background with the detailed physics understanding needed to fully appreciate the subject.

These full modules aim to provide a sound foundation in Physics in preparation for Level 1 Physics modules. It introduces (i) Properties of Matter, (ii) Oscillations, waves & optics and (iii) Atomic and Nuclear Physics. (i) Properties of Matter discusses structural, mechanical and electrical properties in terms of simple models. (ii) treats vibration and waves introducing the concepts of wavelength, frequency and wave speed. (iii) discusses the physics of the atom, including historical aspects, the electron, the photo-electric effect, Bohr¿s atomic model, nuclear structure and radioactivity.

30 credits
Advanced Level Chemistry

The unit covers a selection of the major concepts from areas of inorganic, organic and physical chemistry in order to develop a sound basic knowledge of chemistry corresponding to the common core A level curriculum as preparation for successful studies in the Material Sciences and Chemical Engineering.

20 credits
Scientific and Laboratory Skills

This module will introduce:
1. Practical skills common to physics and broad based science and engineering themes. It will develop student practice in performing laboratory experiments using a range of measurement techniques, understanding errors, writing method statements, using appropraite graphing and statistical techniques, and drawing valid conclusions.
2. Communication skills in presenting information both formally and informally, verbal and written.
3. Group work and organisational skills needed to become a successful student.

20 credits
Further Foundation Mathematics

The syllabus for MAS004 covers important material which appears on the A level maths and further mathematics A Level curriculum. The module is for students who are taking MAS003 and need a deeper background in mathematics for their degree course. The module covers advanced principles of algebra, geometry and calculus. Following the introduction of new material, students have the opportunity of extensive problem solving, both in the problem classes with tutors and in their own time.

10 credits

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

Learning and assessment

Learning

You'll learn through lectures, small group tutorials, programming classes, practical sessions in the lab and research projects.

We invest to create the right environment for you. That means outstanding facilities, study spaces and support, including 24/7 online access to our online library service.

Study spaces and computers are available to offer you choice and flexibility for your study. Our five library sites give you access to over 1.3 million books and periodicals. You can access your library account and our rich digital collections from anywhere on or off campus. Other library services include study skills training to improve your grades, and tailored advice from experts in your subject.

Learning support facilities and library opening hours

Programme specification

This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.

Find programme specification for this course

Entry requirements

The A Level entry requirements for this course are:
BBB
including Maths and/or Physics

A Levels + additional qualifications | BBC, including Maths and/or Physics + B in a relevant EPQ

International Baccalaureate | 32, 5 in Higher Level Maths and/or Physics

BTEC | DDM in a relevant subject, including Physics and/or Maths modules

Scottish Highers + 1 Advanced Higher | ABBBB + B, including Maths and/or Physics

Welsh Baccalaureate + 2 A Levels | B + BB, including Maths and/or Physics

Mature students - explore other routes for mature students

English language requirements

You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification

Equivalent English language qualifications

Visa and immigration requirements

Other requirements
  • Students must have passed the practical element of any science A Level taken

  • GCSE Maths grade 6/B

We also accept a range of other UK qualifications and other EU/international qualifications.

If you have any questions about entry requirements, please contact the department.

Department of Physics and Astronomy

2D materials laboratory

Scientists in the Department of Physics and Astronomy are working on topics such as how to build a quantum computer, the search for dark matter and ways to combat antimicrobial resistance. They run experiments on the Large Hadron Collider at CERN, and help to map the universe using the Hubble Space Telescope. They’ll guide you through the key topics in physics and give you a huge range of optional modules to choose from. 

The department is based in the Hicks Building, which has recently refurbished undergraduate teaching laboratories with all the equipment you need for your physics and astronomy training, as well as classrooms, lecture theatres, computer rooms and social spaces for our students.

There are also telescopes and a solar technology testbed on the roof, state-of-the-art laboratories for building super-resolution microscopes and analysing 2D materials, and the UK’s first Quantum Information Laboratory, where students can study the fundamental science behind the next technological revolution. It’s right next door to the Students' Union, and just down the road from the 24/7 library facilities at the Information Commons and the Diamond.

Facilities

Our students are trained in newly refurbished teaching laboratories and can access a range of specialist technologies, from the telescopes on our roof to our state-of-the-art Quantum Information Laboratory.

In their final year, MPhys students are based in a specialist research laboratory where scientists are studying technologies such as 2D materials, photovoltaic devices and advanced microscopy tools.

Department of Physics and Astronomy

Why choose Sheffield?

The University of Sheffield

  A Top 100 university 2021
QS World University Rankings

  Top 10% of all UK universities
Research Excellence Framework 2014

  No 1 Students' Union in the UK
Whatuni Student Choice Awards 2019, 2018, 2017


Department of Physics and Astronomy

Top ten in the UK for research output

Research Excellence Framework 2014


Graduate careers

Department of Physics and Astronomy

Our physics students develop numerical, problem solving and data analysis skills that are useful in many graduate jobs, including computer programming, software engineering, data science, and research and development into new products and services. Their expertise can be applied to many of the challenges and opportunities of the 21st century, from developing renewable energy technologies and improving medical treatments to creating quantum telecommunications systems and exploring outer space.

Students who want to work as a physics researcher often do a PhD, which can lead to a career at a top university or a major international research facility such as CERN.

The University of Sheffield is part of the White Rose Industrial Physics Academy. This partnership of university physics departments and technical industries can set up collaborations between our students and industrial partners through internships, year in industry placements, final year projects and careers activities. WRIPA also organises the UK’s largest physics recruitment fair, where our students can meet potential employers.

Ciaran Allen

My degree fostered my interest in data, which I use every week in my job

Ciaran Allen BSc Physics and Astrophysics

Ciaran went into the medical implant and instrument manufacturing industry after graduation, to build on the interest in data he developed during his degree.

Fees and funding

Fees

Additional costs

The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.

Examples of what’s included and excluded

Funding your study

Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.

Use our Student Funding Calculator to work out what you’re eligible for.

Additional funding

Department of Physics and Astronomy scholarships

Visit us

University open days

There are four open days every year, usually in June, July, September and October. You can talk to staff and students, tour the campus and see inside the accommodation.

Open days: book your place

Taster days

At various times in the year we run online taster sessions to help Year 12 students experience what it is like to study at the University of Sheffield.

Upcoming taster sessions

Applicant days

If you've received an offer to study with us, we'll invite you to one of our applicant days, which take place between November and April. These applicant days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.

Campus tours

Campus tours run regularly throughout the year, at 1pm every Monday, Wednesday and Friday.

Book your place on a campus tour

Apply for this course

Make sure you've done everything you need to do before you apply.

How to apply When you're ready to apply, see the UCAS website:
www.ucas.com

The awarding body for this course is the University of Sheffield.

Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.

Our student protection plan

Terms and Conditions upon Acceptance of an Offer

Explore this course:

    2021-2022