
Architectural Engineering MEng
Department of Civil and Structural Engineering
Explore this course:
You are viewing this course for 2022-23 entry. 2023-24 entry is also available.
Key details
- A Levels AAA
Other entry requirements - UCAS code HK2D
- 4 years / Full-time
- September start
- Accredited
- Find out the course fee
Course description
On this course, you'll study all the engineering disciplines associated with buildings and their infrastructure, and develop an understanding of architectural thinking and practice.
There is an increasing demand for building systems engineers who can provide multidisciplinary skills at the interface of engineering and architecture. You'll become the kind of engineer that recognises social responsibility and holistic thinking, ready to develop career engineering high-quality buildings that have minimal impact on the environment.
During your third year you'll spend a full semester doing the Integrated Design Project. The project encourages you to unleash your creativity on a grand scale by devising plans for an entire urban regeneration project based on a real site in Sheffield. You'll investigate new design methods and construction materials while developing detailed designs such as elegant bridges, sustainable and environmentally sensitive multi-storey buildings, or state-of-the-art sports venues. It'll give you invaluable project experience and a feel for the kind of issues you may encounter in your career.
The course is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and the Institute of Highway Engineers under licence from the Engineering Council. This degree is accredited as fully satisfying the educational base for a Chartered Engineer (CEng).
The course is also accredited by the Institution of Mechanical Engineers and the Chartered Institution of Building Services Engineers.
Architectural Engineering HK2D is primarily an engineering course and does not lead to qualification as an architect.


Modules
A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.
Choose a year to see modules for a level of study:
UCAS code: HK2D
Years: 2022, 2023
Core modules:
- Civil Engineering Mathematics
-
This module aims to reinforce students' previous knowledge and to develop new basic mathematical techniques needed to support the engineering subjects taken at Levels 1 and 2. It also provides a foundation for the Level 2 mathematics courses in the appropriate engineering department. The module is delivered via online lectures, reinforced with weekly interactive problem classes.
20 credits - Civil Engineering Skills with Manufacturing
-
This module aims to give students the tools to become excellent engineers. This begins with the ability to communicate their designs through hand sketches and through the use of software. Students are then expected to use peer assessment to assess their drawings so they can understand how not only to create drawings but also how to effectively present information on them too. Basic skills in computer programming are also introduced to give students the ability to solve complex problems. In second semester the module concentrates on manufacturing skills and surveying skills (both with a practical aspect).
20 credits - Civil and Structural Engineering Mechanics 1
-
This module is delivered in both the Autumn and Spring Semesters. Teaching in the first semester is designed to provide a basis of knowledge and understanding of elastic structural analysis and will be applied to two key structural forms - trusses and beams. The focus of the second semester is on the analysis of stress, strain and elastic deformation of beams, qualitative structural analysis of beam-like structures and the fundamentals of plasticity.
20 credits - Thermofluids
-
Architectural Engineers are required to understand design and construct buildings that provide human comfort with minimal energy consumption. This module will develop the fundamental thermofluids basis and the necessary skills and interdisciplinary agility to address this global challenge. The module will give an introduction to the fundamental principles of thermodynamics required to analyse and design engineering processes, and the basic principles of fluid mechanics and their application to flow systems and devices. Real world examples will be used throughout, to highlight the importance of thermofluid systems and their integration with a wide range of engineering areas.
20 credits - Environment and Technology 1
-
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio.
10 credits
This module presents principles of planet and place including;
- climate literacy and climate justice, building in the era of the climate emergency
- principles of regenerative design and ecology
- historical overview of solar architecture - Environment and Technology 2
-
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio. This module presents principles of planet and place including;- environmental design and site analysis, landscape principles, buildings and their surroundings, interior and exterior spaces
10 credits
- analysis of solar sun path and microclimate, building form and building physics - Geotechnical Engineering 1
-
This module is an introductory module to the use of soils in engineering practice. As soils are a naturally varying material, the creation of different soil types is first discussed giving the student a background in why soils differ. This then progresses into the engineering classification of soils followed by the design of simple geotechnical structures. These include retaining walls and earth embankments.
10 credits - Introduction to Structural Materials Engineering
-
This lecture course covers all the main classes of materials (ceramics, metals, polymers, natural materials and composites), describing the properties that they show, the root cause of their properties, the structure, and how we can affect this by processing to get the properties we want. The course will also introduce some ways that the best material for a purpose can be selected.
10 credits - Global Engineering Challenge Week
-
The Faculty-wide Global Engineering Challenge Week is a compulsory part of the first-year programme. The project has been designed to develop student academic, transferable and employability skills as well as widen their horizons as global citizens. Working in multi-disciplinary groups of 5-6, for a full week, all students in the Faculty choose from a number of projects arranged under a range of themes including Water, Waste Management, Energy and Digital with scenarios set in an overseas location facing economic challenge. Some projects are based on the Engineers Without Borders Engineering for people design challenge*.
*The EWB challenge provides students with the opportunity to learn about design, teamwork and communication through real, inspiring, sustainable and cross-cultural development projects identified by EWB with its community-based partner organisations.
Core modules:
- Structural Analysis I
-
This module is designed to improve your knowledge understanding of how elastic and plastic methods of structural analysis can be applied to various structural forms. The module will be delivered via lectures, supported by problem-solving, and computer and laboratory classes. You will develop your ability to analyse structures under working and ultimate loads, by hand and via computer.
20 credits - Structural Engineering Design and Appraisal
-
This module will discuss the fundamental principles of structural engineering philosophy and design. The theories and concepts of analysis and design of structural elements will be presented for the most commonly used structural materials and discussed along with the more prescriptive design rules included in the relevant Eurocodes.
20 credits - Fluids Engineering
-
The module is designed to consolidate and extend the students' understanding of basic fluid flow properties, fluid flows and applying analysis techniques to solve engineering fluids problems. The module will cover the use of both integral control volume and differential analysis techniques. These will be applied to a range of simple engineering fluid systems;Newtonian laminar analysis will be applied to internal flows. The boundary layer will be introduced and related to the concepts of drag. The concepts of compressible nozzle flow, choking and shock waves will be covered. Sub-sonic and sonic compressible flow will be introduced. Students will also be introduced to the computational fluid dynamics using FLUENT and given hands-on experience.
10 credits - Further Civil Engineering Mathematics and Computing
-
This module is part of a series of second-level modules designed for the particular group of engineers shown in brackets in the module title. Each module consolidates previous mathematical knowledge and new mathematical techniques relevant to the particular engineering discipline.
10 credits - Geotechnical Engineering 2a
-
This module is aimed at extending your knowledge of soil mechanics and geotechnical engineering. The focus is on applying fundamental understanding of mechanics to geotechnical problem solving with an emphasis on fluid-soil interaction. The approach is designed to link soil mechanics theory (e.g. seepage, consolidation and settlement) to practical application (e.g. deformation of foundations) through the use of physical models and case studies. The course will encompass lectures, tutorials, group work including laboratories, and directed and independent reading.
10 credits - Heat Transfer
-
Heat transfer mechanisms are introduced. Heat conduction, convection and radiation are studied in this order. Techniques for analysing heat transfer problems are then covered. Two applications, heat exchangers and fins are analysed in detail. At the end of the module, students should be able to:
10 credits
1. State the fundamental processes of heat transfer and apply them to real world systems.
2. Understand how heat is transferred by conduction, convection and radiation.
3. Solve a variety of fundamental and applied heat transfer problems. - Humanities 1
-
The overall aim of this module is to provide you with an understanding of how the field of architecture is positioned in relation to contemporary as much as to past issues. It will provide basic knowledge of particular moments in the recent history of the architecture and will familiarise you with some of its figures, concerns and events. Though the emphasis is on western architecture, it will include and encourage discussion of the way the architecture has been shaped and is being shaped around the world. As an Architectural Humanities module, it will not only focus on the history and theories of architecture but will also emphasise a more interdisciplinary approach that mobilises the knowledge and methods of the humanities. The module will look at 'situating' as the way in which the position, voices, agendas of, and issues concerning architecture are expressed and represented. It is a means to invite you to define your personal interest and take on architecture discipline and practice and to develop your own agenda within this wide open-field. This module will contribute to your development as a critical thinker and researcher who can evolve informed and rigorous arguments in both words and images.
10 credits - Humanities 2
-
ARC104 concerns the reciprocal relationship between architecture, the built environment and society, exploring the issues through a broad range of case studies. It will focus on a range of buildings, mainly dwellings. Through a multidisciplinary and cross-cultural approach, cases will include, for instance, vernacular, indigenous and everyday buildings to show how architecture worked when people built for themselves directly without recourse to building specialists and mechanised technology. The course seeks to establish that architecture works through different categorisations, such as style, symbolic references, typologies, use, materiality, meaning, structure, layout, form, but also through the framing of human activities and rituals. The cross-cultural approach prompts the question if there are aspects that remain specific to a local context and if in some cases, some of these can be regarded as universal, or not.
10 credits - Materials for Structural Engineering
-
This module looks at the role of materials and materials properties used for structural design. The module will be delivered using a combination of lectures, on-line learning initiatives and group-based practicals.
10 credits - Sustainable Buildings
-
Buildings account for 40% of global carbon emissions. Current design practice across the globe creates buildings that produce 10 times as much carbon as a sustainable building.This module will define what a sustainable building means and demonstrate how to design one for any given climatic, social and economic environment with a particular focus on an International approach to sustainable design.
10 credits - Engineering - You're Hired
-
The Faculty-wide Engineering - You're Hired Week is a compulsory part of the second year programme, and the week has been designed to develop student academic, transferable and employability skills. Working in multi-disciplinary groups of about six, students will work in interdisciplinary teams on a real world problem over an intensive week-long project. The projects are based on problems provided by industrial partners, and students will come up with ideas to solve them and proposals for a project to develop these ideas further.
Core modules:
- Integrated Design Project: Part 2 for Architectural Engineering
-
This module follows on from IDP - part 1. In this module Architectural Engineering students will demonstrate integration of their previous studies in developing the design of a low carbon building. Consideration of Structural Engineering and Environmental Engineering must be carried out whilst demonstrating an awareness of the Architectural implications of the engineering design.
30 credits - Integrated Design Project - Concept Design Stage
-
The Integrated Design Project - Concept Design Stage is a series of linked modules running for 14 weeks of the spring semester. The aim of these modules is to give you the opportunity to experience the engineering design process by working on proposals for redevelopment of a real brownfield site located in Sheffield.
20 credits
At the start of this 5 week long module, known as Integrated Design Project - Concept Design Stage Part 1, you will take part in a master-plannning exercise, giving you the opportunity to develop various skills whilst working collaboratively with students from the University's School of Architecture.
You will build on the above master-plannning exercise in subsequent parts of the module/project, which involve engineering development of a scheme considering stakeholder requirements, through option identification and evaluation, to the production of design calculations and drawings. Accordingly, you will consider the overall concept/scheme design, where ability to consider and integrate a wide range of issues is more important than detailed design calculations. - Advanced Engineering Thermodynamic Cycles
-
The course will consolidate and expand upon the fundamental and general background to Thermofluids engineering developed during first and second year courses. This will be achieved through the study of more realistic systems, machines, devices as well as their application.
10 credits
To introduce students to more realistic energy conversion and power production processes. Use of irreversibility to analyse plant. Introduction of reheat and heat recovery as methods of achieving improved efficiency. To look at total energy use by means of combined gas and steam and combined heat and power cycles and understand some of the environmental issues. A variety of refrigeration cycles will also be illustrated as well as the Otto and Diesel cycles. - Advanced Structural Analysis
-
Advanced Structural Analysis aims to teach you the most modern theories suitable for performing the static assessment of structural members subjected to in-service multiaxial loading. Initially, this module focuses on the linear-elastic behaviour of structural members loaded in torsion as well as in bending. The fundamental equations modelling the behaviour of beams under the above loading conditions are derived by following rigorous mathematical procedures. The module examines also those equivalent stresses (such as von Mises, Tresca, etc.) commonly used in situation of practical interest do design structural members against complex systems of forces and moments. Finally, the problem of designing notched structural members against multiaxial static loading is addressed in great detail by considering both ductile and brittle materials.
10 credits - Advanced Structural Design and Appraisal
-
This module takes students through the structural design process, based around a case study of a real building.
10 credits
The process initially looks at options for gravity load-bearing elements, (such as floor slabs, beams and columns) as well as options for lateral load resisting systems (such as reinforced concrete shear walls / cores and steel bracing frames), before carrying out analysis and design of the selected options.
The module also looks at key considerations such as fire, robustness and vibration.
This module is intended to prepare students for carrying out the analysis and design of structures in the 'Integrated Design Project' (IDP).
- Electric Circuits
-
This module provides a basic introduction to electric circuits for engineers of all disciplinary backgrounds. It introduces the passive circuit elements (resistance, capacitance and inductance), and explores their behaviour when driven by ideal voltage and/or current sources. DC and AC power delivery will be discussed, including batteries and transformers. The module also introduces the basics of electromechanical energy conversion, including common motor topologies. The module will include examples and applications of the electrical engineering concepts, to ensure it is relevant and accessible for all disciplines of engineering.
10 credits - Environment and Technology 5
-
The overall aim of the Environment and Technology modules is to provide the knowledge and ability in building technology, environmental design and construction methods that are necessary to undertake design projects in the Design Studio. This module presents principles of people & comfort, including;
10 credits
- human comfort, human experience and architectural spatial qualities regarding acoustics, lighting, daylighting and thermal perception- an understanding of passive heating, cooling and ventilation of buildings considering operational energy (operational carbon) - Finance and Law for Engineers
-
The module is designed to introduce engineering students to key areas of financial and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, raising finance, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products and an awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice. There will be a heavy emphasis on group working, report writing and presentation as part of the assessment supplemented by online exercises and an individual portfolio.
10 credits - Integrated Design Project - International Report and Individual Portfolio
-
International/Global Context of Engineering' (5 credits)The CEO of your group has just been made aware of a project very similar to that in the CIV3201 module (Part 1 of the IDP) being planned in a specified location overseas (note that each group will be given a different location) and is considering submitting a tender for the design and construction works. If the tender is successful, it may lead to further opportunities for working on similar projects in the region.The CEO has therefore requested that you prepare a report, to be presented at the next board meeting, which discusses and critically evaluates the risks and opportunities of carrying out such projects. Your report will help the board to decide whether or not to submit a tender for the project.For this part of the project, you will work in the same groups as for Part 2 if you are a Y3 MEng student, or if a newly formed group if you are a BEng student. You will need to undertake research into conditions in the country specified, identifying the principal differences and similarities between working in the UK and overseas, thinking broadly about the conditions (environmental, political, cultural, social etc as well as technical issues) that could impact on the design or construction of the project. By evaluating the risks and opportunities, associated with these issues, you should be able to recommend what additional measures /considerations your company would have to take so they can make an informed and objective decision whether to tender.'Individual Reflection', ' Portfolio and Training Scheme Document' (5 credits). This part of the project should be carried out individually. The final stage in any project should be to review the process undertaken, identifying and evaluating successes (so they can be repeated) and failures (so improvements can be made), and noting requirements for further training and development. This process is also reflected in graduate training towards a professional qualification such as becoming a Chartered Engineer. This involves demonstrating achievement of levels of competence in a range of areas for development as a professional engineer, as well as planning your professional development.Therefore, at the end of this project, you should draw together reflections on your project and group work experience throughout the semester to develop a report and portfolio demonstrating your learning and achievements, relating this to achievement of at least 3 of the ICE member Attributes or IStructE Core Objectives or the Sheffield Graduate Award (SGA) scheme equivalent.
10 credits
Core modules:
- Individual Research Project for Architectural Engineering
-
The MEng individual final year project is a major piece of investigative research in a subject that is not of a routine nature that will enable students to gain expertise in investigative techniques and understanding research methods. It is intended to be intellectually challenging. It is expected that during their research, students will develop and exhibit competence in the following: defining a problem, researching and critically analysing information and data, problem solving, writing a report, and discussing and defending their findings. Students are also expected to take initiative, to plan / organise their own programme of research, to work independently and to display originality and creativity.
30 credits - Computational Fluid Dynamics
-
This module is designed to provide and reaffirm an understanding of computational fluid dynamics from underlying governing principles modeling the behavior of fluids to typical numerical mathods used for solving them. Through lectures, practical computer sessions, and labs the module aims to provide students with a working understanding of transport equations, turbulence, pressure-velocity coupling in steady flows, and implementation of various boundary conditions in a built-environment context. The module will additionally develop students skills in effectively and professionally communicating implemetation of CFD models.
15 credits - Structural Dynamics and Applications to Vibration Design
-
This module is designed to provide students with a systematic knowledge and understanding of structural dynamics and its applications in Civil Engineering. On successful completion of this module, students will be able to perform calculation and analyse vibration response of single-degree-of-freedom and multi-degree-of-freedom systems and apply simple structural dynamics theory to solve practical problems in vibration engineering design.
15 credits - Building Performance Modelling and Simulation
-
The module aim is to give you exposure to the tools and techniques available to engineers and designers in the built environment sector. This module will focus on the modelling and simulation of thermal phenomena occurring in buildings. The module will develop your ability to use building simulation to optimise the design in respective to set objectives, for instance minimising energy consumption, maximising thermal comfort. One of the key elements will also involve analysis of uncertainty sources such as modelling assumptions and simplifications, and lack of available data that result in uncertainty in the predictions of building performance.
10 credits - Civil Engineering Research Skills
-
This module introduces academic engineering research and associated skills to students. Hence, it provides an academic training basis for independent dissertation projects later in the course of study, as well as, more generally, helping students understand various methodologies they are exposed to in their course of study, develop a data analysis capability and develop skills reading and critiquing the original academic literature in civil engineering and allied disciplines. Such skills are also essential for undertaking high calibre consultancy work when employed by industry.
10 credits - Thermodynamics for Buildings and Cities
-
This module covers thermodynamic principles as they apply to buildings and cities. It considers the fundamental principles required to understand energy flows in the built environment. Practical examples related to heat networks, and the design of systems to achieve comfort.
10 credits
Optional modules:
- Blast and Impact Effects on Structures
-
This module introduces students to issues related to material and structural response high-magnitude, transient loading, such as those generated by explosions or impacts. The module includes quantification of blast load parameters, qualitative assessment of material and structural response, development of closed-form and numerical calculation methods to quantify structural response and an appraisal of codes of practice guidance intended to increase the resilience of structures to these loads. Teaching takes place predominantly in lecture and tutorials with some computer laboratories.
15 credits - Parametric Architectural Geometry
-
This module aims to support an emerging need to better understand concepts and skills for architectural geometry construction using parametric modelling processes. In particular, the course emphasizes computational schemes that can assist designers in managing geometry data and propagating designs. Students are introduced to both the theoretical framework and implementation of architectural geometry construction. This module is delivered through a series of lectures, hands-on workshops and individual assignments/projects. As a result students will learn contemporary parametric modelling techniques for customizing generative design systems, navigating design variations, analysing design artefacts and exploring design manifestations.
15 credits - Parametric Modelling and Computational Design
-
Parametric design involves a workflow that allows for changes in key model parameters to be observed rapidly, generally in a computer aided design workspace. It provides the designer with immense design and analysis freedom when undertaking tasks that would be repetitive or not feasible to perform manually. It also allows for a rapid exploration of the design space at the initial conceptual stage of a project. It can also be used in conjunction with optimisation methods and other computational design techniques to automatically generate candidate designs, taking advantage of the vast computational resource available in a modern PC. This module provides lectures describing the fundamentals underpinning parametric modelling and computational design techniques and gives you hands-on experience of modelling and optimising engineering structures using the Rhino modelling software and the inbuilt Grasshopper visual programming environment.
15 credits - Urban Microclimate
-
With the risk of climate change and the growing urbanisation of cities it is essential that we design cities in such a way as to reduce the impact on the local climate. This module will give you an understanding of the fundamental processes which result in alterations to the local climate in cities followed by best practice design approaches to reduce the impact on the climate. This will cover consideration of heat, wind and pollution. You will develop your understanding through lectures, seminars, case study reviews and through design. Related topics such as soundscapes will also be discussed.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.
Learning and assessment
Learning
The following are the main learning and teaching methods implemented within the programme:
- lectures
- tutorials (and example classes)
- practical activities
- design classes
- coursework assignments (including oral, video and poster presentations)
- Individual Investigative Project (final year)
- integrative projects
- online resources
We've academic staff who are world-leaders in their respective fields and some have over 20 years’ experience in industry. Our staff experience demonstrates how engineering fundamentals are applied in practice through project work that mimics real-life situations. We also bring in leading industry experts to enhance and support our teaching and advise on our curriculum.
Assessment
Students are assessed via a mix of the following:
- examinations
- coursework assignments
- online tests
- reports
- group projects
- presentations
- design work
- dissertations
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible
The A Level entry requirements for this course are:
AAA
including Maths
A Levels + additional qualifications AAB, including A in Maths + A in a relevant EPQ; AAB, including Maths + A in AS or B in A Level Further Maths
International Baccalaureate 36, with 6 in Higher Level Maths
BTEC Extended Diploma DDD in Engineering + A in A Level Maths
Scottish Highers + 1 Advanced Higher AAAAB + A in Maths
Welsh Baccalaureate + 2 A Levels A + AA, including Maths
Access to HE Diploma 60 credits overall in a relevant subject, with 45 credits at Level 3, including 39 credits at Distinction (to include Maths and Science or Engineering units) and 6 credits at Merit + grade A in A Level Maths. Applicants are considered individually
Other requirements-
GCSE Physics, Dual Award Science or Additional Science at grade 6/B
The A Level entry requirements for this course are:
AAB
including Maths
A Levels + additional qualifications AAB, including A in Maths + A in a relevant EPQ; AAB, including Maths + A in AS or B in A Level Further Maths
International Baccalaureate 34, with 5 in Higher Level Maths
BTEC Extended Diploma DDD in Engineering + B in A Level Maths
Scottish Highers + 1 Advanced Higher AAABB + B in Maths
Welsh Baccalaureate + 2 A Levels B + AA, including Maths
Access to HE Diploma 60 credits overall in a relevant subject, with 45 credits at Level 3, including 36 credits at Distinction (to include Maths and Science or Engineering units) and 9 credits at Merit + grade A in A Level Maths. Applicants are considered individually
Other requirements-
GCSE Physics, Dual Award Science or Additional Science at grade 6/B
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the department.
Department of Civil and Structural Engineering
What is civil engineering?
Civil engineering is at the forefront of improving the way we live. Whether it's providing the facilities that keep our day-to-day lives running smoothly - from roads and railways to clean water supplies - or working to meet the ever-changing needs of our society in the areas of sustainability, renewable energy and climate change, you'll be helping to create and protect the world we live in.
Civil engineering at Sheffield
Our courses will make you the kind of engineer the world needs right now; forward-thinking, interdisciplinary, environmentally conscious, and capable of the kind of complex thinking our rapidly changing society needs. Wherever you choose to start your career, you'll be in demand.
We're eighth in the UK for civil engineering, according to the Times Good University Guide 2020, and seventh according to the Complete University Guide 2020. Our research is internationally recognised. Industry and government value our expertise.
Our industry partners contribute to teaching through lectures, design classes, projects and site visits. We work with leading consultants, contractors and specialist civil engineering companies to provide industrial opportunities for a number of students each year. We also have industrial tutors and professionals who mentor our first-year students.
You'll be taught in The Diamond, one of the best teaching spaces in the UK.
Facilities
The Diamond building contains state-of-the-art teaching and lab facilities, and uses cutting-edge, industry-standard equipment.
Department of Civil and Structural EngineeringWhy choose Sheffield?
The University of Sheffield
A top 100 university 2022
QS World University Rankings
92 per cent of our research is rated in the highest two categories
Research Excellence Framework 2021
No 1 Students' Union in the UK
Whatuni Student Choice Awards 2020, 2019, 2018, 2017
Department of Civil and Structural Engineering
The Complete University Guide 2021
Student profiles
Graduate careers
Department of Civil and Structural Engineering
Our graduates work all over the world, from the UK to Australia and the USA. Recent graduates have gone on to work for AECOM, Arup, Atkins, Buro Happold, Eastwood & Partners, and Kier.
You'll be able to apply your knowledge and skills to fields as diverse as the built environment, sustainability and improving the environment.
In addition, architectural engineering graduates might go into a broad range of engineering areas ranging from building services to mechanical, electrical or acoustic engineering.
Or as a structural engineer, you'll be helping to shape the world around us. Structural engineers design and construct multi-storey buildings, bridges, sports stadiums, tunnels, airports and schools.
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Visit us
University open days
There are four open days every year, usually in June, July, September and October. You can talk to staff and students, tour the campus and see inside the accommodation.
Taster days
At various times in the year we run online taster sessions to help Year 12 students experience what it is like to study at the University of Sheffield.
Applicant days
If you've received an offer to study with us, we'll invite you to one of our applicant days, which take place between November and April. These applicant days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Campus tours run regularly throughout the year, at 1pm every Monday, Wednesday and Friday.
Apply for this course
Make sure you've done everything you need to do before you apply.
How to apply When you're ready to apply, see the UCAS website:
www.ucas.com
Not ready to apply yet? You can also register your interest in this course.
Contact us
Telephone: civilugadmissions@sheffield.ac.uk
Email: +44 114 222 5738
The awarding body for this course is the University of Sheffield.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.