Explore this course:
Wireless Communication Systems
Department of Electronic and Electrical Engineering,
Faculty of Engineering

Course description
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.
Accreditation
Modules
Opportunities exist for dissertation studies to be carried out in collaboration with other university research centres or with industrial organisations. Examples of previous projects include:
- Hand gesture-based computer user interface using Kinect.
- Wireless signal propagation in jet engines.
- Optically controlled smart antenna.
- MIMO antenna on mobile phone.
- Wi-Fi mesh network for LTE/LTE-advanced small cell backhaul.
Core modules:
- MSc Investigative Research Project
-
This module is a research-led project supervised by a member of staff. In order to ensure the best use of the summer study period, project preparation and planning is carried out in semester 2, which is separately assessed. Project activities take place during the summer semester using the Departmental Research facilities and you are exposed to the latest methods, instrumentation and ideas in the area of their project. There is scope for you to demonstrate your critical skills and engineering knowledge to a high level.
60 credits - Advanced Signal Processing
-
This module focuses on introducing advanced signal processing methods and technologies and their applications. Topics include multi-rate filtering and filter banks; signal transforms; random signals; adaptive filtering and array signal processing.
15 credits - Principles of Communications
-
This course considers the mathematical foundations and the derived theories and techniques used by a wide range of communication systems, particularly the more recent digital systems. The aim is to provide the very mathematical foundation for understanding modern communication systems, present the structure of modern communication systems and the basic issues at each stage in the system, and create a theoretical background that applies to all communication systems and is not affected by any particular technology.
15 credits
- Antennas, Propagation and Satellite Systems
-
Review and application of electromagnetic theory for antenna analysis. Radiation pattern, gain, input impedance. Half wave, full wave dipole antennas, monopole antennas. Image theory. Antenna arrays. Polarization: linear, elliptical, axial ratio. Aperture theory: Fourier analysis, Huygens-Kirchhoff formula, rectangular and circular aperture, effective aperture. Microstrip antennas. Propagation in a plasma: critical frequency, refractive index. Ionospheric/tropospheric propagation of HF/VHF radio waves: MUF, ionosonde. Satellite communications systems. Earth stations - types and performance. Satellite transponders - amplifiers, redundancy, transmitters, frequency translation. Multiple access systems.
15 credits - Mobile Networks and Physical Layer Protocols
-
This module aims to provide an overview of how mobile communications networks operate and descriptions of the radio technology used over the air interface and the physical layer protocols used in GSM, 3G, 4G and 5G mobile networks. More specifically, the syllabus will cover: the description and demonstration of current UK cellular mobile networks with a historical perspective; antenna design for the radio-frequency interface, including handset, vehicle and base station antennas; multiple antenna arrays; health related issues of mobile handsets; radio propagation issues, diversity gain, Rake reception; link budgets; cellular network design and deployment strategies; modulation schemes; and GSM/3G/4G/5G physical layer protocols.
15 credits - Broadband Wireless Techniques
-
This module will give an understanding of the most up-to-date communication techniques used in the design and operation of broadband wireless systems based on OFDM technology such as WiFi, WiMAX and LTE. The module will explore the physical (PHY) layer, medium access control (MAC) and radio resource management functionalities of broadband wireless systems. It will also include an introduction to broadband wireless systems; the principles of OFDM, OFDMA and TDD/FDD multiple access; bit interleaved convolutional and turbo channel coding/decoding for OFDM systems; adaptive coding and modulation; frequency selective fading, channel estimation and equalisation; MIMO techniques; and network architectures.
15 credits - Wireless Packet Data Networks and Protocols
-
The aim of this module is to give an understanding of the functionality of packet switching protocols at different layers of a wireless system and to appreciate how these protocols achieve reliable data delivery in wireless communication systems. The module also includes an introduction to packet switching in wireless networks; radio link protocols, CRC, ARQ and hybrid-ARQ; MAC protocols; packet scheduling and differentiated quality of service; routing, IP protocol, mobile IP, wireless TCP and end-to-end quality of service; radio resource management, network planning and optimisation; network examples - WiFi, HSPA or LTE.
15 credits
Optional modules - two from:
- Advanced Computer Systems
-
This module looks at modern computer systems from operating systems down to the underlying computer architectures to provide a coherent view of how such systems work and how their performance can be improved, looking, in particular, at parallelism.
15 credits - Advanced Integrated Electronics
-
This module will advance your understanding of analogue and digital VLSI design. It concentrates on issues such as power consumption, the effect of interconnect, non-CMOS logic, circuit layout, analog amplifiers, data converters, and using Spice.
15 credits - Optical Communication Devices and Systems
-
The course examines the behaviour of the components in a communications system and the way in which their design and individual performance is determined by that of the system requirements.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits - Data Coding Techniques for Communication and Storage
-
Processing techniques to enable transmission and storage of data, in a reliable and secure fashion, are a key element in nearly all modern communication systems. This module deals with data-coding techniques required for reliable and secure data transmission and storage. It covers various aspects of digital communication combining elementary communication theory with practical solutions to problems encountered.
15 credits - Study Design and Systematic Review Methods
-
This module provides an introduction to quantitative and qualitative research methods, combining theoretical instruction with practical exercises both in class and as part of MOLE activities. This unit provides a foundation in research methods which complements the other modules on this course. There is an emphasis on research methods used in the evaluation, assessment and analysis of technologies in healthcare.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.
Open days
An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses. You'll find out what makes us special.
Duration
1 year full-time
Teaching
Research-led teaching and an individual research project.
Assessment
- Examinations
- Coursework
- Project dissertation with poster presentation
Entry requirements
A 2:1 honours degree in electronic and electrical engineering, physics, maths and other branches of engineering involving significant mathematical competence and relevant technical modules.
You should have a strong background in maths modules and in technical modules such as (but not limited to) signals and systems, and digital signal processing.
We will need evidence of relevant work/practical experience or strong performance in a major individual project during your degree.
Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.
If you have any questions about entry requirements, please contact the department.
Fees and funding
Apply
You can apply for postgraduate study using our Postgraduate Online Application Form. It's a quick and easy process.
Contact
eee-mscrec@sheffield.ac.uk
+44 114 222 5182
Any supervisors and research areas listed are indicative and may change before the start of the course.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.