Professor Mark Strong BSc MB ChB MPH MSc PhD MRCPCH MFPH FHEA CStat

Deputy Dean of ScHARR

Professor of Public Health

Photo of Mark Strong


Mark Strong
Section of Public Health
School of Health and Related Research
The University of Sheffield
Regent Court
30 Regent Street
Sheffield S1 4DA

Tel: 0114 222 0812
Fax: 0114 222 0749

ORCiD: 0000-0003-1486-8233

PA: Karen Johnson 0114 222 0757


I am an academic public health doctor and a statistician. I am currently Deputy Dean of ScHARR.

Applications are now open for our MRC-funded Skills Development Fellowship Programme in Population Health Systems Science and Decision Modelling

We are recruiting for the second year of our MRC Skills Development Fellowships Programme, which is run by ScHARR in collaboration with colleagues in Mathematics and Statistics, Computer Science, Automatic Control & Systems Engineering, Economics, Insigneo, and the Bradford Institute for Health Research.

We are looking to recruit early career researchers from a quantitative background who will take on grand challenges in public health. See the fellowship pages for more details.

PhD opportunities

I welcome PhD applications at any time. You are welcome to email me to discuss an idea before making an application through the ScHARR online system. I supervise students who are interested in the use of mathematical models in health and health care.

Check out our web-app - SAVI - Sheffield Accelerated Value of Information

This web-app lets you calculate Expected Value of (Partial) Perfect Information for any cost-effectiveness model. Just upload the probabilistic sensitivity analysis sample and the app does the rest.

SAVI is now available as an R package from GitHub. This allows users to run the SAVI app on their own machine, and removes the need to transfer any data over the net. Installation instructions are here.

My Research interests

I have three related research interests that fall under the general banner of Uncertainty Quantification: (1) how do we properly account for all relevant uncertainties when we build a computer model of a physical, biological or social system? (2) how do we (efficiently) compute value of information? (3) how do we work out the value of a computer model? How much should we pay to make a simple model more complex? When do we stop increasing the complexity of a model?

Jeremy Oakley, Jim Chilcott and I have proposed an "internal" discrepancy-based method for managing model uncertainty. See this paper in JRSS Series C, and this paper in SIAM/ASA Journal of Uncertainty Quantification that develops the idea of the 'Expected Value of Model Improvement'. The method is discussed in more detail in my PhD thesis.

We have proposed an efficient method for computing partial EVPI. This method works for any number of parameters of interest and requires only the PSA sample. See this open access paper in Medical Decision Making. R functions to implement the method can be downloaded here. This paper uses Gaussian process-based methods that are nicely described in the  Managing Uncertainty in Complex Models (MUCM) toolkit.

The partial EVPI method extends nicely to the computation of EVSI. See here for our open access paper on the efficient computation of EVSI.

My Teaching

I teach on the Master in Public Health and undergraduate medical MB ChB degrees, and offer MFPH exam support to the Yorkshire and Humber public health training scheme.

I am interested in hearing from students who wish to pursue masters, MPhil or PhD projects that are focused on mathematical modelling in health or healthcare.

Professional activities

I am an honorary clinical consultant in public health at Public Health England.

I am an Associate Editor at Medical Decision Making.

Current and recent projects

  • Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies (CASCADE): A US National Institutes of Health funded project on alcohol consumption (2016-2021). PI - Robin Purshouse.
  • Investigation of the association between alcohol outlet density and alcohol related hospital admission rates in England. Alcohol Research UK (Jan 2015 to Dec 2016). PI - Ravi Maheswaran.
  • NOSH (NOurishing Start for Health): An MRC funded study exploring the potential of offering financial incentives to improve breastfeeding rates in low uptake neighbourhoods (2012-2016). PI - Clare Relton.

Key publications

Full list of publications

See my Google Scholar page here or my ResearchGate page here