
Chemistry with a Year in Industry MChem
Department of Chemistry
You are viewing this course for 2021-22 entry.
Key details
- A Levels AAB
Other entry requirements - UCAS code F106
- 4 years / Full-time
- Accredited
- Find out the course fee
- Industry placement
Course description
The MChem Chemistry with a Year in Industry course gives you a great opportunity to build experience and confidence in applying your chemistry skills in a commercial laboratory environment.
You will spend your third year working at a leading organisation in the chemical industry, paying reduced fees for the year you are on placement. Most students earn salaries during their placements and many are offered a graduate level job at the end. Previous students have worked in labs at businesses such as GlaxoSmithKline, Unilever, and even companies overseas.
When you return to Sheffield in your fourth year, you will further develop your research skills through advanced lecture topics, and in a research project where you will join a team that is working to make new discoveries in chemistry. The course is accredited by the Royal Society of Chemistry, which means that you can acquire a range of skills and knowledge that employers look for as you work independently, in teams and on a range of projects.
We cover a wide range of topics based on the latest concepts and findings in chemistry, and the skills and expertise that chemistry graduates can offer industry and society. These include:
- environmental and sustainable chemistry
- biological and medicinal chemistry
- advanced materials and nanotechnology
- astrochemistry
- computational chemistry
Your lectures in first and second year are supported by small group tutorials, where you can delve deeper into complex topics. These small group teaching sessions are led by your personal tutor in first year, and specialist experts in later years. In addition, your personal tutor will also help you work out which skills you need to develop and support you as you build up your experience in time for graduation.
If you want to study chemistry, but don’t meet the entry requirements to go straight into the first year of this course, you may be able to apply for our Chemistry with a Foundation Year course. Finish the year-long foundation programme with an average mark of 60 or above, and you’re guaranteed entry onto the first year of your chosen chemistry degree at the University of Sheffield.
Accredited by the Royal Society of Chemistry for fully meeting the academic criteria for Chartered Chemist (CChem).

Modules
The modules listed below are examples from the last academic year. There may be some changes before you start your course. For the very latest module information, check with the department directly.
Choose a year to see modules for a level of study:
UCAS code: F106
Years: 2021
In your first year, you'll spend a day a week in the lab, learning essential skills and techniques. You will study topics including the structure of atoms and molecules, how and why chemical reactions happen, and how to identify and analyse different compounds. You'll also look at biological processes that are underpinned by chemistry, and the critical role that chemistry plays in ensuring a sustainable future.
Core modules:
- Fundamentals of Chemistry
-
This is the first module that all of our undergraduate students take, and takes up most of the first year. It covers the fundamental concepts behind the four main branches of chemistry (organic, inorganic, physical and analytical), and teaches practical skills that every chemist needs, and professional skills that every university graduate needs. Themes include the structure of atoms and molecules, how chemical reactions happen, and how to identify and analyse different chemicals and elements. Topics are covered in lectures, workshops, small group tutorials and in the laboratory.
80 credits - Chemistry in a Sustainable Future
-
Chemistry has a crucial role to play in creating a sustainable world. This module looks at the contributions chemists can make to society, with a particular focus on sustainability and green chemistry. Students will learn where everyday essentials including food and energy come from, and how chemistry can help combat global warming by, for example, making the transition from fossil fuels to renewable energy sources and feedstocks possible. To make the biggest impact on society, students will learn how to explain scientific concepts to a range of audiences by working in groups to produce articles, infographics and other content.
10 credits
Optional modules:
- Mathematics for Chemists
-
This module introduces mathematics as the language of science, so that students can apply a range of mathematical tools to the scientific problems they’ll tackle during their chemistry degree. It is designed for students who haven’t done A Level mathematics, or an equivalent post-16 qualification. At the start, the focus is on revising key mathematics skills, such as rearranging and solving equations. Students build up to the more complex mathematical concepts that chemists use, both to explain fundamental theories and to complete practical work in the lab. Mathematics is taught in a chemistry context throughout, exploring topics that range from thermodynamics and kinetics to quantum chemistry.
20 credits - Chemistry in the Biological World Around Us
-
Chemistry is the backbone of fundamental biological processes, from healthcare and medicine to countless other features of modern life. This module brings together the four main branches of chemistry (organic, inorganic, physical and analytical) to explain the principles behind the biology we experience in our day-to-day lives. Topics may include medicine, nutrition, the molecules that have defined modern biology, and studies of molecules that have shaped and changed the biological world.
10 credits - Chemistry in the Physical World Around Us
-
Many of the technologies, products and structures we take for granted in our everyday lives rely on chemistry. This module brings together the four main branches of chemistry (organic, inorganic, physical and analytical) to explain the chemical principles of the world around us. Topics may include the chemistry of explosives, molecules that glow, and the chemistry of toiletries, cosmetics, paints, laundry and foodstuffs.
10 credits - Essential Mathematics for Chemists
-
Lots of scientific knowledge is built on a strong mathematical foundation. This module is designed to develop students’ mathematical understanding, skills and intuition. Advanced mathematical concepts such as differentiation and integration of complex functions, partial differentiation and integration by parts will be taught in terms of their applications in chemistry. Other topics, such as series, complex numbers, matrices, determinants and differential equations are are also covered in physical and theoretical chemistry contexts. The aim is to give students a strong set of practical tools for tackling a range of chemistry problems through a series of staff-led workshops and self-study problem sets.
10 credits - Physical Principles in Chemistry
-
This module is designed for students studying Chemistry, but who do not have an A-level Physics qualification. The goal is to ensure that you have a strong grasp of the fundamental physical principles that will be used in your Chemistry degree. The course covers three major areas of physics: mechanics, electrostatics, and optics. Students will learn about topics including forces, energy conservation, wave motion, force fields and oscillators
10 credits
In your second year, you'll spend two days a week in the lab, as you learn to run more complex experiments. You'll move on to study more advanced topics in organic chemistry (reactions of functional groups, synthesis, biopolymers), inorganic chemistry (main group compounds, transition metal coordination complexes, inorganic solids) and physical chemistry (quantum mechanics, thermodynamics, polymers and colloids).
Core modules:
- Inorganic Chemistry: Structure, Bonding & Reactivity
-
This module is designed to deepen students' understanding of inorganic chemistry, including main group compounds, transition metal coordination complexes and inorganic solids. Students will learn how symmetry principles can be used to explain molecular structure and bonding using molecular orbital theory as well as to analyse the structures of highly ordered crystals. Spectroscopy techniques are taught so that students can learn how to characterise inorganic compounds, while studying the different reactions and properties that these chemicals display. In the lab, students develop their practical skills by synthesising and characterising inorganic compounds, safely and efficiently.
30 credits - Physical Chemistry and Polymer Science
-
Chemical structures are based on a number of important physical principles. This module builds up students¿ understanding of the theory behind physical and chemical phenomena. Students will use quantum mechanics to examine the structure and properties of atoms and molecules, and the laws of thermodynamics are used to explain the properties of mixtures and equilibria. Polymers and colloids are also introduced and students learn how to prepare and characterise these compounds and mixtures, which are behind many familiar products and technologies. The theory behind common spectroscopic techniques that are used to investigate molecular structures are also covered. In the lab, students get more experience of the techniques chemists use to gather and analyse data from chemical processes and determine the properties of different materials.
30 credits - Synthetic, Mechanistic and Biological Aspects of Organic Chemistry
-
This module builds on students' knowledge of the common functional groups within organic molecules that are responsible for many chemical reactions including aromatic rings, alkenes and carbonyls. Several classes of chemical reactions are studied in detail, with a focus on understanding the mechanisms behind them. Students also learn how to design synthetic routes to prepare molecules. Students will look at biological systems from a chemical perspective, including the structures and functions of biopolymers such as proteins and DNA. In the lab, students further develop the practical skills needed to carry out synthetic organic chemistry, in a safe and efficient manner.
30 credits - Environmental, Analytical & Sustainable Chemistry
-
Chemistry - in terms of both natural processes and artificial phenomena - has a clear impact on the environment. This module will look at some of ways chemicals interact with the environment, and explore how we can measure the sustainability of a chemical process and potentially improve its green credentials. In this context, students will expand their analytical chemistry skills and their ability to determine structures of compounds. This includes looking at how mixtures of compounds can be separated and how the proportions of their components can be determined. In the lab, students design and conduct their own experiments to investigate a real chemical problem from the world around us.
20 credits - Enterprise and Employability
-
This module focuses on the ways that chemistry can be applied in business, and for the benefit of society as a whole. Students will analyse and discuss examples of successful and unsuccessful commercial endeavours to learn, for example, how new drugs have been discovered while others have failed. They will then be introduced to the process of developing a business and, working in small groups, students, will develop and present their own idea for a business based on an area of chemistry that they have chosen. As part of this module, students also attend our annual Careers Day, where chemistry students can explore career options and meet with employers who hire chemistry graduates.
10 credits
During your industrial placement year, you will have academic and industrial supervisors to support you, distance learning materials to work through, and a visit from a member of staff to make sure you are settling in. At the end, you will be assessed by your supervisor in industry and produce a final report. Placements aren't guaranteed – it's your responsibility to secure one, although there is significant support available to ensure that you are successful.
Core modules:
- Final Report on the Year in Industry
-
This module is taken by all qualified students on CHMU07 (MChem Chemistry with Study in Industry) during their industrial placement year. Report writing is an essential skill that professional chemists must master. In recognition of this, students will produce a word-processed report on the work carried out during their industrial placement. Both the Industrial and the Academic tutors will give guidance on how the report should be written.
40 credits - Performance on Industrial Placement
-
This module is taken by all qualified students on CHMU07 (Chemistry with study in Industry MChem) during their industrial placement year. Chemistry is a practical subject and this module aims to develop the following essential skills: technical skills, ability to design experiments, critical analysis, a positive attitude to work, maintenance of a reasonable work rate, inititiative, comprehension, and team work. Throughout the year guidance will be given by the Industrial Tutor.
40 credits - Self-Study Assignments
-
This module is taken by all qualified students on the MChem Chemistry with study in Industry degree course (CHMU07). Studentsl will study selected lecture material from Level 3 of the MChem Chemistry degree course (CHMU02) to ensure that their chemistry knowledge is comparable to students on that course. This will be done by a combination of self-study reading of selected texts and lecture notes together with guided self-study questions and assignments.
30 credits - Oral Presentation
-
This module is taken by all qualified students on CHMU07 (Chemistry with study in Industry MChem) during their industrial placement year. Oral presentational skills are extremely valued, especially in industry. It is expected that as part of the placement in industry a student will regularly have to give brief oral presentations of their work. This unit aims to build upon these experiences. Throughout the year guidance will be given both by the Industrial and Academic tutors.
10 credits
After your placement year, you’ll join one of our research groups to work on a project that addresses an unanswered question in chemistry. You’ll expand your knowledge and experience with lecture modules on specialist topics ranging from advanced organic synthesis to nanochemistry and sustainability in polymer science.
Core modules:
- Research Skills in Chemistry
-
For this module, students complete an extended research project on a topic at the cutting edge of chemistry. Students work alongside professional scientists as a member of one of the Department of Chemistry's research groups. They receive specialist training to help them develop the advanced practical skills they need for their project, and have access to state-of-the-art equipment and facilities. They also put their previous research training and existing careers skills into practice through literature searches, communicating their work and presenting their findings.
75 credits
Optional modules:
- Advanced Materials Chemistry
-
This module explains how structural, electronic, thermal, chemical and other properties of materials can be harnessed by chemists to help solve technological and environmental challenges. Functional materials covered include supramolecular 2D and 3D assemblies, crystals and polymers. Students learn about design strategies, molecular properties, and material function, using concepts from coordination chemistry, organic chemistry, solid-state chemistry and crystallography. The role of different materials properties in sensing, separation, gas adsorption, catalysis, drug delivery, rechargeable batteries, light absorption and emission, solar cells, conductivity, propulsion and gas generation will be discussed in the context of their impact on energy, health care, transport and the environment.
15 credits - Biophysical Chemistry
-
This module covers the concepts and techniques that students need to study the physical properties of biological macromolecules at a structural level. It explains how thermodynamic concepts and advanced spectroscopic measurements allow biomolecule structures, function and interactions to be investigated. Students learn about methods for analysing ensembles of many molecules as well as measurements on single biomolecules. Biophysical approaches to studying proteins and nucleic acids structures, and the mechanism of DNA damage recognition are taught as is the development of molecules for diagnostics, therapeutics and theranostics.
15 credits - Catalysis and Asymmetric Synthesis
-
Chemists' ability to synthesise organic molecules with defined stereochemistry is the backbone of many useful applications, from medicines to new materials. Modern methods of organic synthesis rely on sophisticated and efficient chemical reactions that create exquisite levels of functional group selectivity and stereochemical control. This module will explains the cutting edge processes that achieve these objectives, in the context of catalysis and stereoselective synthesis. There is a focus on transformations that are promoted by a sub-stoichiometric amount of catalyst. Concepts behind controlling stereochemistry in important synthetic chemical reactions will also be explained.
15 credits - Chemistry of Light
-
Understanding processes caused by light is key in chemistry, physics, biology and engineering, and has recently led to many major scientific breakthroughs. This course explains how light and matter interact in molecules, nanostructures and materials. It will explain photoinduced electron and energy transfer - essential processes in nature and everyday life - using examples of natural and artificial photosynthesis. Modern techniques for studying light-induced processes, on time-scales from seconds to femtoseconds, are also covered. The theory is taught in the context of applications in photocatalysis, photonics and optoelectronics, solar energy conversion, and light-induced processes in medicine.
15 credits - Methods and Models in Theoretical Chemistry
-
The principles of theoretical chemistry can explain and predict chemical phenomena across all the main branches of chemistry (organic, inorganic, physical, analytical), and can shed light on molecular aspects of physics and biology. A wide range of methods and models are covered, including graph theory and the Hückel model, density functional theory, coupled cluster, time-dependent quantum mechanics, and more. Students are taught to assess these methods and models' suitability for different tasks, and put the theory into practice by using them to interpret chemical phenomena in group projects.
15 credits - Modern Industrial Catalysis
-
Reactions catalysed by metals are hugely important in the chemical industry, where they are used to produce bulk chemicals at large scales and fine chemicals at smaller ones. This module explains the heterogeneous and homogeneous catalytic processes behind some of the most economically important chemical reactions. It covers the chemical basis of these process, and their advantages and disadvantages of heterogeneous and homogeneous systems. There is a focus on reaction mechanisms and the role of the metal centre, and fundamental physical processes such as adsorption and reaction kinetics. Concepts are illustrated by analysing, in detail, catalytic reactions including hydrogenation, oxidation, carbonylation and polymerisation.
15 credits - Nanochemistry
-
Thanks to their small size, nanomaterials have many unique properties that lead to lots of interesting applications in technology and medicine. Chemists have have the skills to design and synthesise nanoscale materials using top-down and bottom-up nanofabrication methods, plus the tools to visualise, characterise and process them. This module covers the synthesis and properties of nanoparticles, and how they can be used in technologies such as computing, data storage and medicine.
15 credits - Pharmacology, Medicinal Chemistry and Drug Design
-
The discovery and development of new drugs requires a multidisciplinary approach, bringing together anatomy, physiology, pharmacology and toxicology. In this module, students learn about these areas as they build on their organic and medicinal chemistry knowledge from earlier in their degrees. It covers concepts including pharmacodynamics, pharmacokinetics and basic toxicology, and looks in detail at strategies for optimising the pharmacodynamic, pharmacokinetic properties of drugs. There is also a focus on computing technologies, including computer-aided drug design tools and quantitative structure¿activity relationship models. Students learn about the fundamental chemistry behind the synthesis of specific drugs throughout the module.
15 credits - Sustainability in Polymer Science
-
Plastics have revolutionised modern life. However, plastic waste is a growing problem, with estimates that the oceans will contain more plastic than fish by 2050. We need to make better use of both fossil-based and renewable resources, and move towards a zero-waste, circular economy. Should we do this by recycling durable petrochemical-based materials that are made to be reused, or legitimise the single-use of products made from degradable polymers? This course will discuss the problems with current plastics, what the alternatives are and whether they¿ll work. Topics include the current status of the plastics industry, life-cycle analysis, degradable polymers, non-fossil fuel feedstocks, and reuse, reforming and recycling.
15 credits - Synthetic Methods in Organic Chemistry
-
Chemists' ability to synthesise organic molecules and to prepare new compounds has led to countless products and discoveries: pharmaceuticals, agrochemicals, fine chemicals, flavours, fragrances, materials and more. This module on the chemical reactions of organic compounds takes students' organic chemistry knowledge to an advanced level. The focus is on useful transformations that involve main group elements or transition metals. Examples are drawn from recent developments that have led to important and useful new methods and approaches within advanced synthetic organic chemistry.
15 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.
Learning and assessment
Learning
You'll learn through lectures, small group tutorials and workshops, practical sessions in the lab and research projects.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible
The A Level entry requirements for this course are:
AAB
including A in Chemistry
The A Level entry requirements for this course are:
ABB
including A in Chemistry
A Levels + additional qualifications | ABB, including A in Chemistry + B in the EPQ; ABB, including A in Chemistry + A; AS or B in A Level in Further Mathematics ABB, including A in Chemistry + B in the EPQ; ABB, including A in Chemistry + A; AS or B in A Level in Further Mathematics
International Baccalaureate | 34, 6 in Higher Level Chemistry 33, 6 in Higher Level Chemistry
BTEC | DDD in Science, including specific Chemistry units DDD in Science, including specific Chemistry units
Scottish Highers + 1 Advanced Higher | AAABB + A in Chemistry AAABB + A in Chemistry
Welsh Baccalaureate + 2 A Levels | B + AA, including Chemistry B + AB including A in Chemistry
Access to HE Diploma | 60 credits overall in a relevant subject with 45 at Level 3 including 36 credits at Distinctions and 9 credits at Merit. Level 3 units must cover sufficient Chemistry. Applicants are considered individually. 60 credits overall in a relevant subject with 45 at Level 3 including 30 credits at Distinctions and 15 credits at Merit. Level 3 units must cover sufficient Chemistry. Applicants are considered individually.
Mature students - explore other routes for mature students
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
-
BTEC required units include Applications of Inorganic Chemistry, Applications of Organic Chemistry, Industrial Chemical Reactions and Practical Chemical Analysis
-
A Level in General Studies and Critical Thinking are not accepted
-
GCSE Maths grade 6 or grade B
We also accept a range of other UK qualifications and other EU/international qualifications.
If you have any questions about entry requirements, please contact the department.
Department of Chemistry
The Department of Chemistry was one of the University's first departments when it was founded in 1905. Since then, four Nobel Prize winners have either worked or studied in the department. Our researchers work on a broad range of contemporary scientific challenges, ranging from antimicrobial resistance and environmental sustainability to cancer treatments and new technological solutions for industry.
The Department of Chemistry is mainly located in the Dainton and the Richard Roberts Buildings, which feature lecture theatres, teaching labs and world-class research facilities. We're just across the road from the award-winning library facilities at the Information Commons and the Diamond, and the UK's number one students' union, all within a short walk of the city centre.
Facilities
We have three large teaching labs where you'll spend a lot of time during your degree: one for organic chemistry, one for inorganic chemistry and one for physical chemistry. Each lab has specialist analytical equipment, including nuclear magnetic resonance, infrared and ultraviolet spectroscopy, and gas-, liquid- and size-exclusion chromatography. Our advanced lab is used for the group research project you'll complete in your third year, with large fume cupboards and workbenches to make collaboration easy.
We are also home to a number of multi-million pound research laboratories. These include the Lord Porter Ultrafast Laser Spectroscopy Laboratory, which is used in studies ranging from energy transport in molecules and materials to artificial photosynthesis, and our Soft Matter Analytical Laboratory, where scientists can study samples that are 100 times smaller than the width of a human hair.
Department of ChemistryWhy choose Sheffield?
The University of Sheffield
A Top 100 university 2021
QS World University Rankings
Top 10% of all UK universities
Research Excellence Framework 2014
No 1 Students' Union in the UK
Whatuni Student Choice Awards 2019, 2018, 2017
Department of Chemistry
National Student Survey 2019
Graduate careers
Department of Chemistry
Our courses have been created with your future in mind. All of our modules have been designed to give you skills that will help you find and succeed in your chosen career - problem solving, team working, fact finding, data analysis, critical thinking, communication, project management.
As part of your course, you'll develop your own idea for a chemistry business and pitch it as part of a team. On our Skills For Success training programme you can get experience of public speaking, presenting a poster, hosting a debate or producing a video. At our annual careers day you can explore career options, meet with employers who hire chemistry graduates and get tips from former students to help you take your next steps after graduation.
Some of the biggest employers of our students are pharmaceutical companies (such as GlaxoSmithKline), where chemists develop new medicines, and consumer goods companies (such as Unilever and Reckitt Benckiser), which make many of the products you see on supermarket shelves. Graduates can also go behind the scenes, creating the chemicals and materials that make industrial manufacturing possible.
The science industry doesn’t only employ scientists though - big companies like Unilever and AstraZeneca need graduates who understand science to work in communications, market research and business development roles.
What if I want to work outside science?
A chemistry degree from the University of Sheffield can take you far, whatever you want to do. We have graduates using their scientific minds in everything from finance to computer programming.
Work experience
On the MChem Chemistry with a Year in Industry degree, you'll spend your third year working at a leading organisation in the science industry. You'll pay reduced fees for the year you're on placement and most students earn salaries during their placements too. Organisations where our students have done their placements include:
- Croda Europe, UK (chemical industry)
- Dow Chemical Company, UK (chemical industry)
- GlaxoSmithKline, UK (pharmaceutical industry)
- Huntsman Corporation, Belgium (chemical manufacturing, Belgium)
- Merck KGaA in Darmstadt, Germany (science and technology)
- RB, UK (consumer goods, formerly Reckitt Benckiser)
- Scott Bader, UK (chemical industry)
Placements aren't guaranteed – it's your responsibility to secure one - but we'll do everything we can to help. During your first year, you'll attend lectures that teach you the skills you'll need to plan your year in industry. There are also CV writing and interview workshops, and you'll get advice from experts working in the chemical industry. In your second year, you'll work with your personal tutor and course director to make the arrangements for a placement in your third year.
During your placement, you will have academic and industrial supervisors to support you, distance learning materials to work through, and a visit from a member of staff to make sure you are settling in. At the end, you will be assessed by your supervisor in industry and produce a final report.
Each year undergraduate students can also apply to join the Sheffield Undergraduate Research Experience scheme. This gives you the chance to spend around six weeks working in one of our research groups over the summer. It's a unique opportunity to pursue research in an area that you are excited about, and can help inform your future career aspirations.
We can guarantee you a summer research placement if you meet the requirements of our Undergraduate Research Scholarship scheme. You need AAA or above at A Level (or equivalent) and to maintain an average grade of 70 per cent or higher during your course.
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Additional funding
Department scholarships are available for this course, for further details see our funding and scholarships page.
Visit us
University open days
There are four open days every year, usually in June, July, September and October. You can talk to staff and students, tour the campus and see inside the accommodation.
Taster days
At various times in the year we run online taster sessions to help Year 12 students experience what it is like to study at the University of Sheffield.
Applicant days
If you've received an offer to study with us, we'll invite you to one of our applicant days, which take place between November and April. These applicant days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Campus tours run regularly throughout the year, at 1pm every Monday, Wednesday and Friday.
Apply for this course
Make sure you've done everything you need to do before you apply.
How to apply When you're ready to apply, see the UCAS website:
www.ucas.com
Contact us
Telephone: +44 114 222 9500
Email: chemistry-admissions@sheffield.ac.uk
The awarding body for this course is the University of Sheffield.