
Physics and Astrophysics with a Year in Industry BSc
Department of Physics and Astronomy
You are viewing this course for 2021-22 entry.
Key details
- A Levels AAB
Other entry requirements - UCAS code FF36
- 4 years / Full-time
- Accredited
- Find out the course fee
- Industry placement
Course description

The year in industry is a one-year extension of the BSc Physics and Astrophysics with a Year in Industry degree. A year in industry will put your academic studies into context, and improve your skills and your employability.
This is a broad and intellectually stimulating degree that includes core physics knowledge and a thorough grounding in astrophysics. You'll study the workings of the universe, from the planets of our solar system to the most distant galaxies.
You'll learn how to analyse astronomical data, draw conclusions and present results. You can spend time in the astronomy laboratory and use our robotic telescope to take your own data. There are two projects to complete in your final year.
If you want to study physics, but don't meet the entry requirements to go straight into the first year, our Physics with a Foundation Year could be for you. After successfully completing the one-year programme, you'll progress onto the first year of your chosen degree.
Accredited by the Institute of Physics (IOP) for the purpose of fully meeting the educational requirement for Chartered Physicist.
Modules
The modules listed below are examples from the last academic year. There may be some changes before you start your course. For the very latest module information, check with the department directly.
Choose a year to see modules for a level of study:
UCAS code: FF36
Years: 2021
Core modules:
- Mathematics for Physicists and Astronomers
-
This module provides the necessary level 1 mathematics for students taking physics and/or astronomy degrees. The following topics will be covered: basic algebra (functions, coordinate systems, algebraic manipulation etc), Taylor and binomial series, common functions of one variable, differentiation and integration techniques, basic complex numbers, first and second order differential equations, vector calculus, properties and applications of matrices and elementary probability theory.
30 credits - Fields and Quanta
-
This module introduces the key concepts of fields and quanta: electric and magnetic fields, the behaviour of electric charges and currents, vectors and densities, potentials, quantum states and their evolution, the probabilistic nature of fundamental physical law, and the breakdown of classical physics. This module will teach you how physics problems relate to these fundamental concepts, and how those concepts are used to construct solutions.
25 credits - Motion and Heat
-
This module introduces and applies the key concepts of motion and heat: force, equations of motion, phase space, determinism and free will, symmetry and conservation laws, waves and oscillations, coherence and classical frequency-time uncertainty, the laws of thermodynamics, thermal equilibrium, entropy and the arrow of time. You will learn how physics problems relate to these fundamental concepts, and how those concepts are used to construct solutions. You will apply the key concepts to design experiments to test scientific hypotheses. You will develop your data analysis and communication skills and to use different sources of information in your learning. You will work independently and as part of a group, developing a wide variety of study skills that will prepare you for the rest of your degree programme.
25 credits - Introduction to Astrophysics
-
One of four half-modules forming the Level-1 Astronomy course, PHY104 aims to equip students with a basic understanding of the important physical concepts and techniques involved in astronomy with an emphasis on how fundamental results can be derived from fairly simple observations. The course consists of four sections: (i) Basic Concepts, Fluxes, Temperatures and Magnitudes; (ii) Astronomical Spectroscopy; (iii) Gravitational Astrophysics. Parts (i),(ii) and (iii) each comprise some six lectures. The lectures are supported by problem classes and laboratory work.
10 credits - Observing the Night Sky
-
This module aims to equip the student with a grounding in the observational and computational data analysis skills they will need as part of an astronomy degree programme, and is an essential pre-requisite of the more advanced handling of astrophysical data that will be expected as part of Levels 2, 3 and 4. The module consists of a mixture of taught material, workshops, and practical activities in positional astronomy, telescope optics, practical observing skills, basic python programming, and astrophysical data analysis.
10 credits - Our Evolving Universe
-
The course provides a general overview of astronomy suitable for those with no previous experience of the subject. The principal topics covered are (1) how we deduce useful physical parameters from observed quantities, (2) the structure and evolution of stars, (3) the structure of the Milky Way, and the classification, structure and evolution of galaxies in general, (4) an introduction to cosmology and (5) extrasolar plantets and an introduction to astrobiology. All topics are treated in a descriptive manner with minimal mathematics.
10 credits - The Solar System
-
One of four half-modules forming the Level-1 Astronomy course, PHY106 has five main sections. (i) provides a brief survey of the characteristics, composition and origin of the various planets, their satellites, the asteroids and comets and the motions and interactions of these bodies; (ii) discusses the internal structures of the planets, the Moon and other major bodies; (iii) is concerned with their surfaces and the processes that shape them, impacts, erosion, plate tectonics etc.; (iv) discusses planetary atmospheres and ionospheres, their origins and why they differ from one planet to another; (v) is concerned with planetary magnetism and its origins.
10 credits
Core modules:
- Classical and Quantum Physics
-
This module provides a foundation for advanced studies in physics by developing integrated skills and knowledge associated with the core topics of physics. These topics include quantum mechanics, classical physics, optics, thermal physics, electromagnetism and the properties of matter. Key mathematical methods are taught alongside the physics topics. Laboratory and computing skills are applied to the topics to reinforce key concepts, develop investigative, experimental and group working skills and develop a wide range of approaches to solving problems. The module also helps students place their physics knowledge and skills in a global context by providing opportunities to apply these attributes to external facing problems. These opportunities support the development of transferable skills such as group working, project management and information literacy.
70 credits - Astronomical Spectroscopy
-
This level 2 module provides an overview of astronomical spectroscopy for astrophysics dual students, covering how spectrographs work, the nature of spectra, atomic physics relevant to astronomical spectroscopy, line broadening mechanisms (natural, pressure, thermal) and the Curve of Growth for the determination of ionic abundances in stellar atmospheres, plus spectral diagnostics of ionized nebulae. Content from lectures are reinforced through an exercise involving specialist astronomical software relating to nebular diagnostics, plus the manipulation of stellar spectroscopic datasets using the programming language Python for the calculation of ionic abundances.
10 credits - Galaxies
-
This Level 2 Astronomy half-module aims to provide a comprehensive introduction to galaxies. It consists of six parts: (i) astronomical distance determination and galaxy classification; (ii) the properties of the main stellar and a gas components of our Milky Way galaxy, and its local environment; (iii) the properties of spiral galaxies; (iv) the properties of elliptical galaxies; (v) active galaxies; (vi) galaxy evolution. Students¿ presentation and research skills are developed through a 2500 word essay assignment.
10 credits - Observational Astronomy
-
This level 2 module builds upon astronomy material taught in level 1 and aims to equip students with the skills and understanding to plan, obtain and analyse optical imaging data of astronomical objects. Topics include astronomical telescopes, instrumentation, electronic detectors and data analysis in the Python computing language.
10 credits - Special Relativity & Subatomic Physics
-
Special relativity is a key foundation of modern physics, particularly in the contexts of particle physics and astrophysics where E = mc2 and relativistic speeds are crucial concepts. In this module, the fundamental principles of special relativity will be explained, emphasising the energy-momentum four-vector and its applications to particle collisions and decays. Applications to nuclear physics include nuclear mass & binding energy, radioactive decay, and nuclear reactions. We will also cover the structure of the nucleus (liquid drop and shell model) and, building on first year quantum physics, the concept of isospin, ending with an introduction to the quark model.
10 credits - Stellar Structure and Evolution
-
The module aims to provide an understanding of the physical processes occurring in stars and responsible for their internal structure and evolution from the main sequence to white dwarfs, neutron stars stars and black holes. It builds on Introduction to Astrophysics (PHY104) and seeks to explain the evolutionary phenomena described in Our Evolving Universe (PHY111).
10 credits
You'll spend your third year at your industry placement.
Core modules:
- Astronomy Project
-
This Level 3 Astronomy half module provides an opportunity for students to develop and exercise their skills and ability to undertake independent, albeit closely supervised, research. Students are able to select from a wide variety of proposals for projects, many involving practical observation and field work; others are essentially theoretical or interpretative or require the development of computer programmes designed to simulate a variety of astronomical phenomena. Many projects are collaborative and encourage students to work with others in a team. Assessment is based on individual written reports and oral examination. These provide exercise in presentational skills.
10 credits - Atomic and Laser Physics
-
This module covers the physics of atoms and lasers at an intermediate level. The course begins with the solution of the Schrodinger equation for the hydrogen atom and the atomic wave functions that emerge from it. It then covers atomic selection rules, spectral fine structure and the effects of external fields. The spectra of selected multi-electron atoms are described. The basic operation of the laser is then covered by introducing the concepts of stimulated emission and population inversion. The course concludes with a description of common lasers and their applications.
10 credits - Introduction to Cosmology
-
Cosmology is the science of the whole Universe: its past history, present structure and future evolution. In this module we discuss how our understanding of cosmology has developed over time, and study the observed properties of the universe, particularly the rate of expansion, the chemical composition, and the nature of the cosmic microwave background, can be used to constrain theoretical models and obtain value for the parameters of the now-standard Hot Big Bang cosmological model.
10 credits - Particle Physics
-
This Level 3 Physics half module introduces students to the exciting field of modern particle physics. It provides the mathematical tools of relativistic kinematics, enabling them to study interactions and decays and evaluate scattering form factors. Particles are classified as fermions - the constituents of matter (quarks and leptons) - or as bosons, the propagators of field. The four fundamental interactions are outlined. Three are studied in detail: Feynman diagrams are introduced to describe higher order quantum electrodynamics; weak interactions are discussed from beta decay to high energy electroweak unification; strong interactions, binding quarks into hadrons, are presented with the experimental evidence for colour. The role symmetry plays in the allowed particles and their interactions is emphasised.
10 credits - Problem Solving & Advanced Skills in Physics/Astrophysics
-
This half-module seeks to provide insight and support to the Level 3 Physics and Astrophysics programme as a whole. Lectures and tutorials will build upon previous skills developed involving data analysis and errors, information retrieval and scientific writing. Problem classes are directed to impart a broad, coherent and critical grasp of the fundamentals of Physics. Students are encouraged to attempt unfamiliar problems, extract the essentials, and so obtain quick, rough but sound solutions. The module involves group work and is assessed by means of class tests and written examinations. The latter are designed to test basic concepts of Physics and Astrophysics and the ability to apply them to unrehearsed situations.
10 credits - Solid State Physics
-
This is the final core solid state physics module. It covers the classification of solids into the three types - conductors, semiconductors and insulators, the free electron model, the origin of electronic band structure, the fundamental properties of conductors and semiconductors, carrier statistics, experimental techniques used to study carriers in a solid, the classification and physics of the principal types of magnetism.
10 credits - Stellar Atmospheres
-
This module describes how astronomers obtain information about the properties of stars from their atmospheres. On completion, you should be able to appreciate differences between the main spectral types, understand how the interaction of radiation with matter affects the appearance of a stellar atmosphere, including the major sources of opacity. You will have a knowledge of the formation of spectral lines, line broadening mechanisms, plus an appreciation of the use of stellar continua and lines as atmospheric diagnostics. The outer solar atmosphere will also be discussed, together with outflows from late and early type stars.
10 credits
Optional modules:
- Industrial Group Project in Physics
-
PHY346 provides students with an industrial project where team working, planning, time management; presentation and report writing are integrated with science problem solving. The industrial client poses a problem that a group work on over two semesters to resolve. Interim and final presentations are made to the client and academic supervisors. Project work may use laboratory measurement and computational approaches as well as referencing leading research literature.
20 credits - Microscopy and Spectroscopy Laboratory
-
This course is based around students gaining hands-on experience using a range of sophisticated laboratory techniques that will be used to explore a range of different properties of functional materials. Current techniques available include: optical microscopy, atomic force microscopy, absorption and photoluminescence spectroscopy, Raman spectroscopy, angular-reflectance spectroscopy, residual gas analysis, deposition of thin films and temperature-dependent optical and electronic spectroscopy. The inclusion of further techniques is planned. These techniques will be introduced to the students through lectures that describe the underpinning science. Students will use each of these techniques in turn Semester One, where they will undertake (in pairs) a series of short practical experiments. In Semester Two, students will concentrate on the use of one or two techniques, and (in pairs) will use them to undertake a longer project-style piece of research.
20 credits - Physics Education and Outreach
-
This 20-credit Extended Project unit is intended primarily for students considering a career in teaching, but may also be of interest to those wishing to pursue careers in science communication in general. The first half of the unit will introduce a range of topics including theory of learning and teaching, skills such as video editing, physics in the National Curriculum, and a range of hands-on exercises in science teaching and communication. Students will undertake a range of assignments related to the taught material, which may include lesson observations in schools, making videos or podcasts, radio broadcasts, writing popular articles or creating resources for schools. The second half consists of a 10-credit project: a wide range of schools and outreach-related topics are available.Note that admission to this unit is subject to an interview and a DBS check. This is because parts of the unit require students to visit schools and interact with pupils.
20 credits - Advanced Electrodynamics
-
This module gives a detailed mathematical foundation for modern electrodynamics, starting from Maxwell's equations, charge conservation and the wave equation, to gauge invariance, waveguides, cavities and antennas. After a brief recap of vector calculus, we explore the role of the scalar and vector potential, the multi-pole expansion of the field, the Poisson and Laplace equations, energy and momentum conservation of the fields, and Green's functions. We conclude with a relativistic treatment of the fields.
10 credits - Advanced Programming in Python
-
Python is a widely-available programming language that can be used to design powerful computer programmes suitable for scientific applications. Python is also used widely in the computing industry and in research. This module builds on the basic introduction provided in PHY235 by introducing advanced concepts such as defensive programming, classes, program design and optimisation. This teaching will be underpinned with a series of projects which will furnish the students with the ability to design complex Python scripts to address a wide variety of problems including those involving analysis of `big data with emphasis on presentation of results using advanced visualisation methods.
10 credits - Dark Matter and the Universe
-
Dark matter, though still unidentified and not yet directly detected, is established as a major constituent of the universe according to modern cosmology. In this course, we will review the astrophysical and cosmological evidence for the existence of dark matter, critically assess the various candidates that have been put forward, and discuss direct detection methods for the two most popular candidates¿WIMPs and axions. The course has a multidisciplinary flavour combining work in astronomy, particle physics, solid state physics, detector technology and philosophy, encouraging development of skills in all these.
10 credits - Further Quantum Mechanics
-
This module builds on the quantum mechanics learned in the perquisites PHY250 and PHY251. The Heisenberg matrix formulation of the theory is developed from the Schrodinger wave picture. Approximately methods (perturbation theory and variational method) are derived and applied. Methods for solving time dependent problems are developed. Problems involving magnetic fields and spin are treated. Many particle wavefunctions for fermions and bosons are introduced.
10 credits - History of Astronomy
-
The module aims to provide an introduction to the historical development of modern astronomy. After a brief chronological overview and a discussion of the scientific status of astronomy and the philosophy of science in general, the course is divided into a series of thematic topics addressed in roughly chronological order. We will focus on the nature of discovery in astronomy, in particular the interplay between theory and observation, the role of technological advances, and the relationship between astronomy and physics.
10 credits - Mathematical Physics
-
Linear algebra: matrices and vectors; eigenvalue problems; matrix diagonalisation; vector spaces; transformation of basis; rotation matrices; tensors; Lie groups; Noether's theorem. Complex analysis: analytic functions; contour integration; Cauchy theorem; Taylor and Laurent series; residue theorem; application to evaluating integrals; Kronig-Kramers relations; conformal mapping; application to solving Laplace's equation.
10 credits - Nuclear Astrophysics
-
The aims of this Level 3 Astronomy module are:1) To examine the evidence for the present distribution of the chemical elements in the Universe.2) To study the various nuclear processes that have led to the evolution of these elemental abundances.3) To discuss the possible astrophysical sites where these elements are produced.
10 credits - Nuclear Physics
-
This half-module Level 3 Physics course aims to cover the general properties of nuclei, to examine the characteristics of the nuclear force, to introduce the principal models of the nucleus, to discuss radioactivity and interactions with matter, to study nuclear reactions, in particular fission, fusion and the bomb, and to develop problem solving skills in all these areas. The motivation is that nuclear processes play a fundamental role in the physical world, in the origin of the universe, in the creation of the chemical elements, as the energy source of the stars and in the basic constituents of matter - plus the best of all motives - curiosity.
10 credits - Physical Computing
-
Digital circuits underpin our modern lives, including the acquisition and processing of data for science. In this course we will study the fundamental building blocks of digital processing circuits and computers. We will learn to describe circuits using the language VHDL, and how to program computers using the hardware-oriented high level language C. We will build interesting and useful digital architectures, and apply the skills we have acquired in laboratory exercises.
10 credits - Physics Level 3 Project 1
-
The aim of this half module is to provide an opportunity for students to exercise and develop their skills and ability to undertake independent, albeit closely supervised, research in physics. A very wide selection of projects is provided, often arising from current research in the Department. Many are practical, others are essentially theoretical or interpretative or require the development of computer programmes designed to simulate a variety of physical phenomena. Most projects are collaborative and encourage students to work in pairs. Assessment is based on individual written reports and oral examinations. These provide exercise in presentational skills.
10 credits - Physics Level 3 Project 2
-
The aim of this half module is to provide an opportunity for students to exercise and develop their skills and ability to undertake independent, albeit closely supervised, research in physics. A very wide selection of projects is provided, often arising from current research in the Department. Many are practical, others are essentially theoretical or interpretative or require the development of computer programmes designed to simulate a variety of physical phenomena. Most projects are collaborative and encourage students to work in pairs. Assessment is based on individual written reports and oral examinations. These provide exercise in presentational skills.
10 credits - Physics in an Enterprise Culture
-
This is a seminar and workshop based course with a high level of student centred learning. The unit will introduce students to the methods and skills associated with the research/business management, planning, costing, intellectual property issues, patenting and marketing. It will broaden students understanding of the mechanics of project planning and research commercialisation. The course is divided into two main themes: Theme 1: Research proposal. Here, students have to make a reasoned case for a new and original piece of research. Students will form part of a series of small 'panel-meetings' to assess the strengths and weaknesses of work submitted by other students on the course. Theme 2: Business proposal. Here, students are expected to propose a new technological design, product, invention or service, and pitch the idea to a group of 'experts'.
10 credits - Semiconductor Physics and Technology
-
This module builds on the core solid state physics modules to provide an introduction to semiconductor electronic and opto-electronic devices and modern developments in crystal growth to produce low dimensional semiconductor structures (quantum wells, wires and dots). Band structure engineering, the main physical properties and a number of applications of low dimensional semiconductor structures are covered.
10 credits - Statistical Physics
-
Statistical Physics is the derivation of the thermal properties of matter using the under-lying microscopic Hamiltonians. The aims of this course are to introduce the techniques of Statistical Mechanics, and to use them to describe a wide variety of phenomena from physics, chemistry and astronomy.
10 credits - The Physics of Soft Condensed Matter
-
Soft condensed matter is a generic name for a class of materials that play a crucial role in technology as well as providing fascinating and timely scientific problems. These complex materials are typified by polymers, gels and colloidal dispersions, whose properties often seem intermediate between ordinary liquids and solids. Familiar examples from everyday life include plastics, soaps and detergents, foodstuffs, and indeed the material from which living organisms are constructed. Only relatively recently has it been realised that despite the complexity of these materials elegant and simple physical principles often underlie their behaviour; this course provides an introduction to these principles.
10 credits
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.
Learning and assessment
Learning
You'll learn through lectures, small group tutorials, programming classes, practical sessions in the lab and research projects.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible
The A Level entry requirements for this course are:
AAB
including Maths and Physics
The A Level entry requirements for this course are:
ABB
including Maths and Physics
A Levels + additional qualifications | ABB, including Maths and Physics + B in a relevant EPQ ABB, including Maths and Physics + B in a relevant EPQ
International Baccalaureate | 34, 6, 5 in Higher Level Maths and Physics 33 with 5 in Higher Level Maths and Physics
BTEC | Not accepted Not accepted
Scottish Highers + 2 Advanced Highers | AAABB + AB in Maths and Physics AABBB + AB in Maths and Physics
Welsh Baccalaureate + 2 A Levels | B + AA in Maths and Physics B + AB in Maths and Physics
Access to HE Diploma | 60 credits overall in Science with Distinctions in 36 Level 3 credits (all in Mathematics and Physics), and Merits in 9 level 3 credits 60 credits overall in Science with Distinctions in 30 Level 3 credits (all in Mathematics and Physics), and Merits in 15 level 3 credits
Mature students - explore other routes for mature students
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
-
Students must have passed the practical element of any science A Level taken
We also accept a range of other UK qualifications and other EU/international qualifications.
If you have any questions about entry requirements, please contact the department.
Department of Physics and Astronomy

Is time travel possible?
Are there habitable planets in other star systems?
Can we make a quantum computer?
Our courses explore the laws of the universe from subatomic particles to stars and galaxies. You'll join a community of researchers and students looking for answers to some of the biggest questions in the universe.
All our undergraduates get hands-on experience working alongside staff on real research projects. We host numerous general and specialist seminars by physicists from around the world.
The Department of Physics and Astronomy is based in the Hicks Building, which is next door to the Students' Union, and just down the road from the library facilities at the Information Commons and the Diamond. The School of Mathematics and Statistics is also based here.
Facilities
Our students are trained in newly refurbished teaching laboratories and can access a range of specialist technologies, from the telescopes on our roof to our state-of-the-art Quantum Information Laboratory.
In their final year, MPhys students are based in a specialist research laboratory where scientists are studying technologies such as 2D materials, photovoltaic devices and advanced microscopy tools.
Department of Physics and AstronomyWhy choose Sheffield?
The University of Sheffield
A Top 100 university 2021
QS World University Rankings
Top 10% of all UK universities
Research Excellence Framework 2014
No 1 Students' Union in the UK
Whatuni Student Choice Awards 2019, 2018, 2017
Department of Physics and Astronomy
Research Excellence Framework 2014
National Student Survey 2019
Physics and Astrophysics with a Year in Industry
National Student Survey 2020
Graduate Outcomes 2020
Graduate careers
Department of Physics and Astronomy
They are making an impact in many areas of society. Some are following careers in aerospace, telecommunications, teaching, defence and energy research. Others are achieving success in computing, accountancy and consultancy.
Organisations employing our graduates include Ernst & Young, BAE Systems, Rolls-Royce, Toshiba, Museum of Science and Industry, Thales and the Home Office. Many of our graduates continue to PhD research and become research scientists in academia or industry.
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Additional funding
Visit us
University open days
There are four open days every year, usually in June, July, September and October. You can talk to staff and students, tour the campus and see inside the accommodation.
Taster days
At various times in the year we run online taster sessions to help Year 12 students experience what it is like to study at the University of Sheffield.
Applicant days
If you've received an offer to study with us, we'll invite you to one of our applicant days, which take place between November and April. These applicant days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Campus tours run regularly throughout the year, at 1pm every Monday, Wednesday and Friday.
Apply for this course
Make sure you've done everything you need to do before you apply.
How to apply When you're ready to apply, see the UCAS website:
www.ucas.com
Contact us
Telephone: +44 114 222 4362
Email: physics.ucas@sheffield.ac.uk
The awarding body for this course is the University of Sheffield.