Biomedical Engineering BEng
2025-26 entryBe inspired to help shape the future of healthcare technology on this flexible course. Beginning with a broad-based introduction to biomedical engineering, you'll learn about biology, physiology and anatomy, and begin to understand how traditional engineering principles can be applied to the human body.
Key details
- A Levels AAB
Other entry requirements - UCAS code H673
- 3 years / Full-time
- September start
- Accredited
- Find out the course fee
- Optional placement year
- Study abroad
- View 2024-25 entry
Explore this course:
Course description
Why study this course?
According to the National Student Survey 2024, the University of Sheffield is ranked number one in the Russell Group in the subject of bioengineering, medical and biomedical engineering.
Use unique biomedical spaces such as the Bio mammalian and Bio bacteria labs, along with the Microfabrication room, Electronics clean room and the Pilot Plant in the Diamond.
As rated by The Times and Sunday Times Good University Guide 2024. We're also one of the longest-running biomedical engineering departments in the country.
From your second year you can choose between four specialisms: Biomedical Engineering, Medical Devices and Systems, Biomaterials Science and Tissue Engineering, or Biomanufacturing.
Join teams of students to solve engineering problems in developing countries – pushing you to develop you as a professional engineer and enhancing your career prospects.
Be at the forefront of the rapidly growing medical technology sector and save and improve people’s lives through this well-established Biomedical Engineering BEng.
Our expert academic team, composed of industry experts, clinicians and academics, has been teaching biomedical engineering at Sheffield for over a decade. They’ll show you how traditional engineering principles can be used to heal the human body, by integrating disciplines from across the field of engineering.
Tissue engineering, biotechnology, mechanics and robotics – we teach you how to use technology to give people a healthier and more fulfilling life.
The BEng offers unparalleled flexibility to allow you to tailor your course to your interests. Your first year gives an introduction to bioengineering, at the end of which you’ll begin to broadly tailor the course towards a specialism, by choosing one of the following four specialisms for the rest of the course:
- Biomedical Engineering: use engineering principles to help safeguard and enhance human health.
- Medical Devices and Systems: develop novel devices and improve clinical engineering systems.
- Biomaterials Science and Tissue Engineering: apply materials engineering and cell biology principles to repair damaged body tissues and organs.
- Biomanufacturing: apply chemical engineering and cell biology principles to the manufacture of pharmaceuticals and other biologically active substances.
The degree will culminate in an individual project, where you’ll spend your final year working with an academic on your chosen specialism.
Accredited by the Institute of Physics and Engineering in Medicine (IPEM) and the Institution of Engineering and Technology (IET)on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.
Modules
A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.
Choose a year to see modules for a level of study:
UCAS code: H673
Years: 2022, 2023
Core modules:
- Introduction to Electric and Electronic Circuits
-
This module introduces the concepts and analytical tools for predicting the behaviour of combinations of passive circuit elements, resistance, capacitance and inductance driven by ideal voltage and/or current sources which may be ac or dc sources. The ideas involved are important not only from the point of view of modelling real electronic circuits but also because many complicated processes in biology, medicine and mechanical engineering are themselves modelled by electric circuits. The passive ideas are extended to active electronic components; diodes, transistors and operational amplifiers and the circuits in which these devices are used. Transformers, magnetics and dc motors are also covered.
20 credits - Modelling, Analysis and Control
-
This module will introduce principles of modelling of simple continuous dynamical systems. This module also introduces analysis of linear models. It includes a detailed analysis of the dynamical behaviour of 1st and 2nd order systems linking behaviour to physical parameters, e.g. Rise time, settling time, overshoot, steady-state. Damping and damping ratio and resonance. Frequency response is also discussed. We will introduce control and feedback as a topic by providing examples of open-loop and closedloop control, and undertake detailed analysis of linear models with a focus on 1st and 2nd order systems. Students are introduced to simple practical feedback mechanisms, including PID controllers and performance criteria such as offset, stability, poles and zeros. You will learn about the principles of how to use Laplace Transforms to solve linear differential equations, and for system representation, using transfer functions and block diagram algebra. You will also develop an appreciation of frequency-domain implications of system analysis through the use of Fourier series. MATLAB is used to reinforce the simulation and analysis of all module contents and coursework assignments.
20 credits - Systems Engineering Mathematics I
-
This module contains the core mathematical competencies required by students for a systems engineering programme. This covers basic algebra and functions, elementary calculus (differentiation and integration), solution of low order differential equations, Taylor series and iterative methods, matrix algebra and simultaneous equations, vectors and complex numbers. The content is delivered within a systems engineering context. Student learning is encouraged by regular formative assessment and supportive resources.
20 credits - Biomaterials I
-
This module introduces the human body from an engineering perspective; looking at it as a structure, a mechanism and a sensor. It then introduces both natural and replacement biomaterials discussing properties in relation to function using Ashby charts. Finally, the course discusses lessons that can be learnt from biomaterials by materials engineers in general (biomimetics).
10 credits - Engineering with Living Systems 1
-
As we face some of the emerging challenges of this century, from global pandemics, the environment to energy, water and health, it has become increasingly evident that engineering biological systems represent some of the most sustainable and advanced solutions. To progress these innovative approaches, there is an increasing need to train the next generation of engineers with knowledge of fundamental science applied with chemical engineering principles.
10 credits
This module will provide students with knowledge of fundamental biological processes, whilst enabling a clear link to how these are exploited within industry for biomanufacturing. More specifically, this module is an introduction to biological engineering covering the basics of host cell systems (e.g. yeast, E. coli) exploited within the biomanufacturing industry i.e. cell types, structure, function. The working of the cell will be introduced; cell chemistry (biochemistry) and cell structure (macromolecules). These will be described in terms of products (e.g. protein biopharmaceuticals, fatty acid fuels), cell cultivation (basic and industrial microbiology, fermentation) and methods to improve cell productivities e.g. metabolic engineering, synthetic biology. Modelling of fermentation processes will be expanded through enzyme catalysis and Michelis Menten kinetics and linked to applications e.g. departmental relevant research. The concepts described in the module will be reinforced through labs embedded at relevant points of the semester.
By taking this course students will be:
1. Introduced to biological engineering.
2. Shown that manufacturing can be achieved using living systems.
3. Introduced to microorganisms and microbiology.
4. Introduced to novel products such as biopharmaceuticals, and new environmental processes such as bioremediation.
5. Introduced to enzymatic catalysis.
6. Introduced to the key process of fermentation.
7. Introduced to synthetic biology and metabolic engineering. - Introduction to Biomedical Engineering
-
This module will introduce the application of engineering principles to biological and medical problems and give the student an appreciation of the breadth of biomedical engineering and identify to students what knowledge areas and skills are needed in order to contribute to the development of the fast growing field of biomedical engineering. It will also help create links with students and draw on the other modules that students will take in year 1.
10 credits - Materials Under Stress
-
The module will provide you with a basic understanding of the mechanics of materials relevant to bioengineering practice with application to simple components. You will learn about how structures behave under load and how to analyse them using equilibrium equations; free body diagrams; the concepts of stress and strain; and elastic and plastic response. You will gain knowledge of a wide range of engineering materials, their properties and behaviour in tension, compression, bending, shear and torsion. You will reinforce your academic understanding of the mechanics of materials through laboratory experiments. The module will highlight bioengineering relevant examples of the mechanical behaviour of materials.
10 credits - Physics of Living Systems 2
-
The aim is to introduce biomechanical descriptions of the human body. We look at its structure and its performance as a physical machine. The structural characteristics of human bones and tissue are investigated, together with the mechanical functions of the skeleton and musculature. Simple fluid dynamic characteristics of the body are introduced, including descriptions of blood-flow in the arteries and veins and air-flow in the lungs.
10 credits - Tissue Structure and Function
-
This course introduces students to the tissues of the human body. The principal tissues that make up the body will be described including the cells, proteins and other extracellular components that make up the tissue. The structure of the tissue will be discussed in detail, in particular how it relates to its specific function in a healthy human body. Basic anatomy - how tissues combine to create organs and where each organ can be found in the human body will be studied. Practical classes on human anatomy and histology will be used to demonstrate tissue structure. Finally, how tissue damage causes loss of function will be considered. This course should enable students to understand enough about human tissues so that they can progress to understanding how engineering techniques are used to support, monitor and repair damaged human tissues.
10 credits - Global Engineering Challenge Week
-
The Faculty-wide Global Engineering Challenge Week is a compulsory part of the first-year programme. The project has been designed to develop student academic, transferable and employability skills as well as widen their horizons as global citizens. Working in multi-disciplinary groups of 5-6, for a full week, all students in the Faculty choose from a number of projects arranged under a range of themes including Water, Waste Management, Energy and Digital with scenarios set in an overseas location facing economic challenge. Some projects are based on the Engineers Without Borders Engineering for people design challenge*.
*The EWB challenge provides students with the opportunity to learn about design, teamwork and communication through real, inspiring, sustainable and cross-cultural development projects identified by EWB with its community-based partner organisations.
Core modules:
- Systems Engineering Mathematics II
-
This module provides an introduction to the use of analytical mathematical techniques and numerical methods and algorithms for subsequent higher level module studies and for solving a wide range of engineering problems as well. Students will develop their skills in the theory and application of core mathematics tools required for systems engineering and the application of these in system simulation and data based modelling. A brief summary of topics covered includes: complex variables and Fourier transforms, analysis of matrices and systems represented by matrices, optimisation of functions of many variables, probability, numerical integration techniques and data modelling and analysis. The module is embedded throughout with engineering examples using the mathematical techniques.
20 credits - Advanced Bioengineering Topics
-
This module follows on from An Introduction to Bioengineering delivered in year 1, and continues the integration of the course modules delivered in year 1 and year 2, while providing links to modules in years 3/4. It will build on the knowledge and skills developed in year 1 and support students as they begin to specialise by providing more in-depth information on topics from the 4 streams of the degree. The module will also use flipped learning sessions to teach key skills in statistical analysis of data for bioengineers, using examples drawn from the field of Bioengineering.
10 credits - Introduction to Programming and Problem Solving
-
This module introduces basic concepts of computer programming, through an introduction to problem solving and the development of simple algorithms using the programming language Python. The module will stress the importance of good programming style and good code design and will introduce how an object-oriented approach can help to achieve these aims.
10 credits - Engineering - You're Hired
-
The Faculty-wide Engineering - You're Hired Week is a compulsory part of the second year programme, and the week has been designed to develop student academic, transferable and employability skills. Working in multi-disciplinary groups of about six, students will work in interdisciplinary teams on a real world problem over an intensive week-long project. The projects are based on problems provided by industrial partners, and students will come up with ideas to solve them and proposals for a project to develop these ideas further.
- Biomaterials II
-
This course will explore the range of materials, both synthetic and natural, that can be used as implants in the human body, from a materials science perspective. This course will highlight the materials properties of implant materials, and will give an overview of possible host responses to the implant materials. Additionally, both physical and chemical routes to reduce the host response will be discussed. Case studies of hard and soft tissue implants will be discussed. Finally, the course will highlight the use of artificial organs.
10 credits
Optional modules:
- Communication Electronics
-
This module introduces the basic structure of a communication system and examines the various circuits and signal engineering strategies that
20 credits
are necessary to make a system work. The fundamental building blocks of a communications system are introduced and analysed in terms of the critical design metrics. Following on from the system approach, a range of circuit components are introduced and analysed such as filters and oscillators. This approach will provide you with a range of levels of system and component understanding such that you can apply these to designs. - Control Systems Design and Analysis
-
This module gives a solid theoretical foundation for understanding feedback control system analysis, design and application and is suitable for general engineering students. This is supported by hardware laboratories, PC laboratory activities and coursework. Content covers standard analysis tools such as root-loci, Bode diagrams, Nyquist diagrams and z-transforms. The latter part of the course focuses on the design of common feedback strategies using these analysis tools and students will undertake indicative designs and reinforce learning through application to laboratory and hardware systems.
20 credits - Introduction to Mechanical Properties and Structural Materials
-
The basic concepts of stress, strain and moduli are introduced. The links between atomic bonding and the mechanical properties of all the main classes of materials (ceramics, metals, polymers, natural materials and composites) are then explored. Modes of failure, stress concentrations, dislocations, ductility and creep are also covered. The linkages between materials properties and microstructures of materials are investigated with an emphasis on links between processing, microstructure and the mechanical properties of metals,
20 credits - Mechatronics
-
This unit covers methods to represent, analyse and design mechanical, electrical and computational systems and their integration into mechatronics systems. This module will enable students to design, analyse, develop and integrate mechatronic systems. The unit includes lectures on the principles of mechatronic systems, 2D/3D CAD design, sensors and instrumentation, actuation, digital data acquisition, signal pre-processing, hardware interfaces, microcontroller programming and peripherals; practicals on analysing mechatronic components; and project work on designing, developing and testing a mechatronic system.
20 credits - Engineering with Living Systems 2
-
This module focuses on the production of a range of important products using living systems. The module will introduce the biotechnology industry and outline typical products in each sector. The module will cover general microbiology of cell growth including growth kinetics in batch and continuous systems. An overview of a typical fermentor for biomass production will be included. The module will describe how genetic engineering and metabolic engineering of biological systems is used for the production of important products. As examples a number of case studies will be used.
15 credits - Introduction to Pharmaceutical Engineering
-
This module introduces pharmaceutical manufacturing (including biopharmaceuticals) using real world examples. Regulatory affairs and quality management regarding their manufacturing will be introduced.
15 credits - Aspects of Medical Imaging and Technology
-
This module provides an introduction to medical technology, with a particular bias towards ionising and non-ionising electromagnetic radiation and its diagnostic role in medicine. The module begins with the generation and behaviour of electromagnetic waves and the breadth of technological application across the electomagnetic spectrum. This extends from magnetic resonance imaging at low energies to high energy photons in X-ray systems. The importance of radiation in diagnosis is acknowledged by discussion of imaging theory and primary imaging modalities, such as planar radiography and CT. The therapeutic role is examined by a brief consideration of radiotherapy.
10 credits - Biology and Chemistry of Living Systems II
-
This course expands the range of biological systems covered that are core to the Cell and Human Biology element of the Biomaterials and Bioengineering courses. The following are included: the extracellular matrix; cell adhesion and spreading; cell communication and signalling; cytokines and HIV: complement activation and development of new biomaterials to improve biocompatibility; toxicity and toxicology including information on mutagenic effects, teratomas, carcinogens and neurotoxicity; classification of tumours, spread of tumours and clinical relevance. Two practical classes cover hands-on in vitro cell culture and toxicity testing of biomaterials. This unit aims to: investigate the extracellular matrix and its many functions; Investigate cell adhesion and spreading and how they are influenced by the physico-chemical characteristics of the underlying substrata; Provide an introduction to cell communication and cell-signalling, including information on hormones, local mediators, contact-dependent signalling molecules, and neurotransmitters; Explore the biological defences available at the cellular and systems level to injury, infection and materials; Provide a detailed knowledge of toxicity and toxicology, including information on mutagenic effects, teratomas, carcinogens and neurotoxicity.
10 credits - Cell and Molecular Biology
-
This course provides an introduction to biochemistry and molecular biology that builds on the anatomy, physiology and cell biology learnt at Level 1. It starts with the chemical components of living cells and progresses by understanding how simple chemicals become macromolecules and, in turn, form lipids, proteins and nucleic acids. How macromolecules form individual components of a living cell such as the membrane, chromosomes and mitochondria is also considered. The essential functions of the cell including metabolism, DNA replication and genetic transcription are then discussed. Finally, how a complex of cells can form a tissue is examined.
10 credits
Core modules:
- Bioengineering Research Project
-
Each project is an original research investigation carried out individually under the supervision of one or more members of academic staff. It involves the completion of a comprehensive Literature Survey involving the reading of original papers and review articles in Learned Society Journals and Conference Proceedings. Projects will usually also involve laboratory work although some may be based primarily on computational studies or a detailed examination of the published literature.
30 credits - Accounting and Law for Engineers
-
The module is designed to introduce engineering students to key areas of accounting and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time, the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products, and enhance their awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice.
10 credits - Managing Engineering Projects and Teams
-
This module provides you with an understanding of the significance of projects as an instrument of business success in engineering organisations. You will learn a range of project management tools, techniques and methodologies throughout the project life cycle. You will develop skills in defining, planning, delivering, and controlling engineering projects. You will also learn the roles and responsibilities of people within engineering projects and understand how to manage teams in engineering projects.
10 credits - Scientific Writing
-
This module is designed to provide an opportunity to learn about scientific communication, and specifically scientific writing, the most important way that new information is shared. The learning is facilitated by practice, that is to say that much of the learning will be achieved by researching using published literature, presenting data and writing.
10 credits
Independent study and self-led learning will be supported through the content provided and the tutorials that are a core part of the course. Through these resources and the tutorials, your skills in scientific information literacy will be learned and practised, as well as those relating to tools including databases searching, reference management, figure production and graphical presentation tools. Communication to lay audiences will also be explored and practised.
Optional modules:
- Tissue Engineering Approaches to Failure in Living Systems
-
The lecture course will continue the systems-based introduction to human physiology and anatomy introduced in level 2 and explore through lectures the tissue engineering approaches to cope with disease, failure and old age in body systems. The emphasis is placed primarily on generic technologies of relevance to tissue engineering recognising that this is an enormous and growing field. Thus, the first part of the course focuses on generic issues relevant to tissue engineering of any tissues and then for the remainder of the course exemplar tissues are selected to illustrate current tissue engineering approaches and identify the challenges that remain ahead.
20 credits
The lectures are supported by linked tutorials which focus on: (a) assessing the students understanding of their current knowledge so that they achieve immediate and informal feedback, and(b) giving the students the experience of working in small groups to apply what they have learnt in the preceding lectures to current problems. Thus a key feature of this module is to stimulating the students in critical thinking, essentially by giving them a toolkit to equip them to look critically at any tissue engineering challenge and come up with pertinent questions and experimental approaches. - Advanced Biochemical Engineering
-
This module will extend the use of classical chemical engineering principles of mass balance, energy balance and mass transfer to unit operations used in the manufacture of biopharmaceuticals.
15 credits - Advanced Bioprocess Design Project
-
This module will cover the design of whole biomanufacturing processes for the manufacture of biotherapeutic proteins. This will include a taught component where process design principles and practice will be learnt plus assistance during the design process where the student will produce a process design and accompanying report.
15 credits - Biopharmaceutical Manufacturing
-
The module aims to provide an understanding of the key unit operations used in manufacturing biopharmaceutical products including vaccines, therapeutic proteins, and cell/gene therapies. The course will cover fermentation, extraction technologies and purification operations. The module will describe the design and application of each unit of operations, and introduce key associated topics including process engineering, analytical technologies, automation, quality by design, and regulatory issues. The course will have a particular focus on latest industrial trends, and current and future challenges in biopharmaceutical
15 credits
manufacturing will be studied in-depth. - Bioresources and Bioprocessing
-
This module provides an overview of bioresources and their applications in the bioeconomy. The different types of bioresources, their characteristics and how that affects their applications will be discussed. Technologies, including chemical and biochemical methods, that are used for processing bioresources will be explored. Production of bioenergy from bioresources will be discussed.
15 credits - Environmental Engineering
-
The course will have three main focus areas: Air pollution, water pollution and soil pollution. The module will prepare students for tackling pollution problems, both in terms of methods for preventing the pollution from occurring in the first place and with methods for remediation of polluted sites in the environment.
15 credits - Aspects of Medical Imaging and Technology
-
This module provides an introduction to medical technology, with a particular bias towards ionising and non-ionising electromagnetic radiation and its diagnostic role in medicine. The module begins with the generation and behaviour of electromagnetic waves and the breadth of technological application across the electomagnetic spectrum. This extends from magnetic resonance imaging at low energies to high energy photons in X-ray systems. The importance of radiation in diagnosis is acknowledged by discussion of imaging theory and primary imaging modalities, such as planar radiography and CT. The therapeutic role is examined by a brief consideration of radiotherapy.
10 credits - Biomechatronics
-
There are a wide range of important healthcare challenges in the 21st Century, such as the aging population, stroke, paralysis and the loss of limbs, which can be treated using biomechatronic devices such as exoskeletons, active prosthetic limbs and brain computer interfaces.
10 credits
'Biomechatronics' describes the integration of the human body with engineered devices composed of electronic, mechanical and control components (mechatronics) for the purposes of
(i) emulating and replacing natural human function lost through disease or accident and/or
(ii) augmenting natural human function to generate superhuman abilities.
The biomechatronics module will cover the subject of biomechatronics in theory and practical application, and span the main core topics of: neural control, biomedical signals, sensors and actuators. - Biomedical Instrumentation
-
This unit provides an overview of important topics in biomedical instrumentation. The module is designed around the measurement needs in hospital-based critical care monitoring and in particular how the instrumentation engineer can help the clinician to answer a specific but vital question: is tissue oxygen delivery adequate? This central clinical scenario is used as the basis upon which to describe a number of key topics in transducer design and signal processing. Key topics in electrocardiography and signal processing are illustrated via hands-on lab sessions.
10 credits - Cell and Molecular Biology
-
This course provides an introduction to biochemistry and molecular biology that builds on the anatomy, physiology and cell biology learnt at Level 1. It starts with the chemical components of living cells and progresses by understanding how simple chemicals become macromolecules and, in turn, form lipids, proteins and nucleic acids. How macromolecules form individual components of a living cell such as the membrane, chromosomes and mitochondria is also considered. The essential functions of the cell including metabolism, DNA replication and genetic transcription are then discussed. Finally, how a complex of cells can form a tissue is examined.
10 credits - Design of Medical Devices and Implants
-
The purpose of this module is for students to gain knowledge and experience in designing medical and assistive devices and implants, which underlines the role played by a Biomedical Engineer/Bioengineer. Topics include a survey of world health and clinical problems, the need for solutions in the developed, developing and underdeveloped countries; the principles of medical device and implant design; design parameters and specifications; design for an assistive product, engineering analysis; preclinical testing for safety and efficacy, risk/benefit ratio assessment, evaluation of clinical performance and design of clinical trials. Case studies and topical discussions are used to aid further understanding of specific topics.
10 credits - Digital Signal Processing
-
The aim is to introduce students to digital processing techniques, including sampling and analysis of digital signals, design of digital filers, and the introduction of digital image processing. Discrete signals and systems are studied, with an emphasis on the frequency-domain theory necessary for the analysis of discrete signals and design of digital filters. The concepts associated with digital images and some basic digital image processing operations are also covered.
10 credits - Fluids Engineering
-
The module is designed to consolidate and extend the students' understanding of basic fluid flow properties, fluid flows and applying analysis techniques to solve engineering fluids problems. The module will cover the use of both integral control volume and differential analysis techniques. These will be applied to a range of simple engineering fluid systems;Newtonian laminar analysis will be applied to internal flows. The boundary layer will be introduced and related to the concepts of drag. The concepts of compressible nozzle flow, choking and shock waves will be covered. Sub-sonic and sonic compressible flow will be introduced. Students will also be introduced to the computational fluid dynamics using FLUENT and given hands-on experience.
10 credits - Hardware-in-the-Loop & Rapid Control Prototyping
-
This course represents an opportunity for students to gain hands-on experience of designing and implementing advanced controllers upon a challenging, real-world control problem. Uniquely, each student will be issued with their own, portable control hardware for the duration of the course. Students will learn how to interface such a system to industry standard software using a data acquisition device, before developing their own simulation models of the hardware. These models will be used to synthesise a feedback controller, and verified in simulation before being implemented upon the hardware. The resultant controller will then be refined in a cycle of rapid control prototyping.
10 credits - Intelligent Systems
-
This module will introduce students to the theme of intelligent systems with special applications to modelling, control, and pattern recognition. Although this technological area can be perceived as being broad, the focus will mainly be on Fuzzy Systems and on interesting synergies such as those between Fuzzy Systems and Artificial Neural Networks (ANN), including the Neuro-Fuzzy architecture. This module should appeal to all students from engineering as well as from science backgrounds who wish to learn more about Artificial Intelligence and Machine-Learning related paradigms, and mostly, how may the related architectures be applied effectively to solve real-world problems, i.e. non-linear, noisy, and the ones that are characterised by uncertainties. This unit is also timely indeed, since knowledge transfer from human to machine and from machine to human and knowledge extraction from data (Big Data) are seen particularly, as vital components for a successful economy, healthy well-being, and clean environment. Finally, the module strikes the too-often difficult balance between theoretical foundations and examples of applications via weekly interactive lectures, laboratory experiments, video demonstrations, and problem solving.
10 credits - Materials for Biological Applications
-
This module will explore contemporary biomaterials science and will focus on state of the art production methods for biomaterials manufacture. We will look at: rapid prototyping techniques for biomaterials manufacture, e.g. stereolithography, plasma coating techniques, electrospinning and fibres, foams for scaffolds, metal foams, metal coatings, ceramics processing/analysis, bioactive glasses and bioprinting. For all these, examples of recent literature will be used. The module will examine how the properties of the materials determine it's function and which processing techniques are optimum for specific applications, with a focus on implant materials and tissue engineering scaffolds.
10 credits - Mathematics (Computational Methods)
-
This module introduces some important numerical methods for solving partial differential equations such as the heat conduction equation which arise in engineering and develops methods for optimisation problems. It also gives an introduction to splines as a tool in design for curve fitting and surface approximation. Optimization techniques including numerical techniques, dynamic programming and integer programming are studied. This module is designed for mechanical engineers.
10 credits - Mechanics of Deformable Solids
-
The module continues the process begun in the first year of providing the essential knowledge, understanding and skills associated with the mechanics of deformable solids which students require to become competent Chartered Mechanical Engineers. The module covers analysis of mechanical components under stress and application of different methods to evaluate stress state and deformation of deformable solids. Plastic failure is also covered.
10 credits - Principles of Communications
-
This course considers the theory and techniques used by a wide range of communication systems, particularly the more recent digital and cryptographic systems. The aim is for students to develop a good grasp of the structure of a modern communication system and to understand the basic issues at each stage in the system.
10 credits - Bioengineering Careers Seminars
-
This module consists of a series of seminars and/or workshops on various aspects of bioengineering. These will be delivered by a number of invited industrial and academic speakers (80% non-academic), who are recognised experts and leaders in their field. Topics will include topical and also controversial issues in bioengineering. Students will be asked to attend, take detailed notes and participate in each workshop. A follow up of each topic will be required in order to generate a concise set of notes for each speaker.
10 credits - Robotic Systems
-
Robotics is having an increasing impact on society and the way we live. From advanced manufacturing to unmanned aerial systems and driverless cars this exciting area is presenting increasing technological challenges. This unit provides students with the advanced knowledge and understanding to apply control and systems engineering concepts to the field of robotics. The unit covers the theoretical foundations of manipulators and mobile robots, and reviews robotic systems with reference to their applications.
10 credits - State-Space Control Design
-
The aims of this modules are: to introduce state-space methods for the analysis and design of controllers for multivariable systems; to teach the use of analytical tools and methods for state-space control design; to demonstrate similarities between continuous and sampled data systems; and to extend the analysis to non-linear systems.
10 credits
Material to be covered includes: Structural properties (modal decomposition, controllability, observability, stability); design (pole assignment, observer design, separation principle, internal model principle, optimal control, LQG, reference tracking, integral control) of continuous systems and equivalents for sampled-data systems. - System Identification
-
Modelling dynamical systems from first principles via Newton's, Kirchoff's or other known physical laws is often challenging and costly, requiring substantial expertise. An alternative is offered through 'system identification' that takes observations of inputs and outputs from physical systems and infers or estimates a dynamical model directly.
10 credits
This module introduces two main ways of thinking about the identification problem, the theoretical framework that underpins them and the algorithms that compute the model estimates. It uses synthetic and real problems to illustrate the process and shows how models can be validated for future use.
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.
Learning and assessment
Learning
You'll learn and be taught through:
- lectures
- tutorials
- practical activities
- coursework assignments (including oral, video and poster presentations)
- Individual Investigative Project (final year)
- design projects
- online resources
Assessment
Students are assessed via a mix of the following:
- examinations
- coursework assignments
- lab work
- online tests
- reports
- group projects
- presentations
- design projects
- dissertations
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible.
The A Level entry requirements for this course are:
AAB
including Maths and a science
- A Levels + a fourth Level 3 qualification
- ABB including Maths and a science + B in a relevant EPQ; ABB including Maths and a science + B in AS or A Level Further Maths
- International Baccalaureate
- 34 with 6,5 (in any order) in Higher Level Maths and a science
- BTEC Extended Diploma
- DDD in Engineering or Applied Science + A in A Level Maths
- BTEC Diploma
- DD in Engineering or Applied Science + A in A Level Maths
- Scottish Highers + 2 Advanced Highers
- AABBB + AB in Maths and a science
- Welsh Baccalaureate + 2 A Levels
- B + AA in Maths and a science
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject (covering sufficient Maths and science units), with 45 credits at Level 3, including 36 at Distinction and 9 at Merit
-
Science subjects include Chemistry, Physics, Biology/Human Biology, Electronics, Engineering, Technology, Environmental Science, Computer Science, Further Mathematics or Statistics
The A Level entry requirements for this course are:
ABB
including Maths and a science
- A Levels + a fourth Level 3 qualification
- ABB including Maths and a science + B in a relevant EPQ; ABB including Maths and a science + B in AS or A Level Further Maths
- International Baccalaureate
- 33 with 5 in Higher Level Maths and a science
- BTEC Extended Diploma
- DDD in Engineering or Applied Science + B in A Level Maths
- BTEC Diploma
- DD in Engineering or Applied Science + B in A Level Maths
- Scottish Highers + 2 Advanced Highers
- ABBBB + AB in Maths and a science
- Welsh Baccalaureate + 2 A Levels
- B + AB in Maths and a science
- Access to HE Diploma
- Award of Access to HE Diploma in a relevant subject (covering sufficient Maths and science units), with 45 credits at Level 3, including 30 at Distinction and 15 at Merit
-
Science subjects include Chemistry, Physics, Biology/Human Biology, Electronics, Engineering, Technology, Environmental Science, Computer Science, Further Mathematics or Statistics
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the school/department.
Graduate careers
School of Chemical, Materials and Biological Engineering
Our graduates have become professional engineers who design medical instruments, repair body tissue and solve clinical problems through research. They work closely with materials scientists, physicians, dentists, therapists and technologists to help benefit human health. The transferable skills gained on the course have also enabled graduates to take up careers in law, finance, scientific writing and other fields.
School of Chemical, Materials and Biological Engineering
National Student Survey (NSS) 2024
Like the industry, biomedical engineering at Sheffield is interdisciplinary. You'll be taught by experts in materials, mechanical, control, electrical, chemical and biological engineering, computer science, medicine and biology.
From 3D printing and biophotonics, to tissue and bone engineering, we're helping to develop products that improve medical care and quality of life. Our research-led teaching produces multi-skilled graduates who can carry on that work.
You will develop the knowledge and skills employers are looking for by working closely with partners in the healthcare profession and in industry such as Philips, Johnson and Johnson and the NHS.
Learning and teaching takes place in one of the best biomedical engineering teaching spaces in the UK. The Diamond has industry-standard equipment for culturing and analysing cells, measuring the activity of the human body, mechanical and electrical testing of materials, 3D printing and customised software packages for developing biomedical engineering models.
School of Chemical, Materials and Biological EngineeringUniversity rankings
Number one in the Russell Group
National Student Survey 2024 (based on aggregate responses)
University of the Year and best for Student Life
Whatuni Student Choice Awards 2024
92 per cent of our research is rated as world-leading or internationally excellent
Research Excellence Framework 2021
Top 50 in the most international universities rankings
Times Higher Education World University Rankings 2023
Number one Students' Union in the UK
Whatuni Student Choice Awards 2024, 2023, 2022, 2020, 2019, 2018, 2017
Number one for teaching quality, Students' Union and clubs/societies
StudentCrowd 2023 University Awards
A top 20 university targeted by employers
The Graduate Market in 2023, High Fliers report
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Placements and study abroad
Placement
Study abroad
Visit
University open days
We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.
Subject tasters
If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.
Offer holder days
If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Our weekly guided tours show you what Sheffield has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.
Apply
Contact us
- Telephone
- +44 114 222 7837
- bioengineering-admissions@sheffield.ac.uk
The awarding body for this course is the University of Sheffield.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.
Any supervisors and research areas listed are indicative and may change before the start of the course.