MSc
2021 start

Human and Molecular Genetics

Department of Molecular Biology and Biotechnology, Faculty of Science

Explore human genetics and develop an understanding of how human genetic diseases are diagnosed clinically at the chromosome and DNA levels.
Image of postgraduate Molecular Biology and Biotechnology students using equipment in lab

Course description

Designed in collaboration with the NHS: Sheffield Diagnostic Genetics Service, this course is for students who are fascinated by medical genetics. Through hands-on practical skills training and lecture modules you’ll explore human genetics and develop an understanding of how human genetic diseases are diagnosed clinically at the chromosome and DNA levels.

Students have the opportunity for clinical work placements in the Sheffield Diagnostic Genetics Service, which is based in the Sheffield Children’s Hospital NHS Foundation Trust.

The biggest part of your course is the Medical Genetics Laboratory Project. Here you’ll spend six months undertaking extensive training before applying this knowledge to the diagnosis of human genetic diseases.

Intercalation

We accept medical students who wish to intercalate their studies. Find out more on the Medical School's website.

Apply now

Modules

Core modules:

Laboratory Techniques in Molecular Bioscience

This unit will provide training and practical experience in key laboratory techniques in molecular bioscience with a focus on human genetics. In particular, this module is designed to develop and practice core genetic and biochemical techniques so that students may progress confidently to the research project. Over a Period of 3 months, students will receive training in CRISPR genome editing technology in addition to other molecular biology techniques, including; protein and DNA isolation, SDS PAGE, Western analysis, protein over-expression, PCR, plasmid construction and restriction mapping.

30 credits
Research Project

This unit provides a period of laboratory work, with training in experimental techniques, record keeping and writing up. Projects are supervised by a member of staff within MBB or another suitable department, and are related to on-going research projects within the Department or in other suitable research laboratories. This unit is designed to provide students with experience of undertaking investigations independently on a specific research topic, so that they can develop a research oriented approach, and gain experience of laboratory work in preparation for a future career in science.

60 credits
Literature Review

This unit involves an in-depth survey of the current literature relevant to the student's Research Project (MBB6403). It is carried out before laboratory work on the project commences in order to prepare the student with a comprehensive understanding of the relevant subject knowledge, approaches and techniques. The exact nature and scope of the literature review will be determined by discussion between the student and the supervisor. Students will build upon the skills in literature searching and interpretation they have developed in their undergraduate studies, making use of a variety of databases and literature-searching tools. The unit involves primarily private study by the student under the direction of the project supervisor who will meet the student at regular intervals to discuss progress.

30 credits
Advanced Research Topics

This unit will develop the ability of students to acquire information through the medium of research seminars and published scientific papers. Students will attend Departmental research seminars and monitor the publication of new scientific papers relevant to their research area. They will also attend a journal club, in which they will present a recently published research paper and summarise the presentations of other students. Assessment of the unit will be on the basis of the journal club presentation and a series of short reports on research seminars, journal club presentations and newly published scientific papers.

15 credits

Optional modules - three from:

Genome Stability and Genetic Change

TThe module examines in detail the mechanisms that maintain genome integrity and generate genetic variation, both of which are essential to eukaryotic life. The lectures illustrate how preventing and creating changes in DNA make use of the same biochemical machinery. The main emphasis is on eukaryotes, reference is made to prokaryotes mainly as an aid to understanding the importance of conserved processes. Mechanisms studied in detail include single-strand break repair, protein-linked DNA break repair, homologous and non-homologous recombination, avoidance of replication errors, mismatch repair, excision repair and mutagenesis. Throughout the module experimental detail is included to illustrate how conclusions on gene function and interactions have been determined.

15 credits
The Genetics of Human Disease

This module will address the ways in which genetic factors influence our lifetime health. The module will focus on the methodology used to identify genetic factors involved in human genetic disease; that is, next generation sequencing, diagnostic PCR, karyotype analysis, fluorescence in-situ hybridisation (FISH) and microarray, and how genetic abnormalities result in disease. The rapid advance in the understanding genetic basis of disease has led to the importance of genetic diagnostic testing in healthcare. The scientific tests used in this industry and the real-life patient cases will be addressed in this module.

15 credits
Human Reproduction and Fertility

This module will address some of the processes underlying human fertility: that is, hormonal regulation of the reproductive systems, gametogenesis and fertilisation. The module will then consider methods of contraception, reasons for infertility, and issues relating to the assisted reproductive technologies. Finally, the importance of genetic imprinting will be discussed, together with a consideration of the impact of failures in imprinting.

15 credits
Genomic Science

A top-down approach to biology, simultaneously investigating the structure and function of the entire genome and its products, both contrasts with and complements the traditional gene-by-gene approach, allowing us a birds-eye view. In this module, we cover how genome sequencing can be used to understand the structure of human populations, profile microbial diversity and to trace the origins of disease outbreaks. We then discuss how methods such as RNA-seq, ChIP-seq and 4C can be used to investigate the genome-wide transcriptional profile, the chromatin landscape and the three-dimensional structure of the genome. Finally we describe the use of technologies such as mass spectrometry to investigate the complete proteome of a cell. The module builds on the material from the level 2 module Genes, Genomes and Chromosomes, to illustrate how cutting-edge genomic and proteomic methods can be used address fundamental biological questions.

15 credits
Stem Cell Biology

This lecture course will provide a thorough grounding in the biology of stem cells and regenerative medicine, with special reference to the molecular and genetic control of cell fate specification and differentiation. Students will also be enouraged to consider the clinical use of stem cells and their derivatives as well as the ethical issues that these raise. As this is a rapidly developing field, strong emphasis will be placed on understanding the current controversies in the literature.

15 credits
The World of RNA

This module will analyse the vital roles that RNA plays in the life of a cell and how RNA is increasingly used as a tool to understand biology. The module will cover the following 'cutting edge' research topics: RNA interference, CRISPR Genome Editing, non-coding RNAs, together with the latest work on well known RNA based activities. These include transcription, RNA splicing, RNA stability, RNA export and translation and how all these processes are coupled in the cell to ensure efficient, quality-controlled gene expression. The module aims to present the latest innovations and discoveries in the RNA world and their application.

15 credits
Genetic Pathways from Zygote to Organism

Multicellular organisms develop from a single zygote and in the case of humans, culminates in a mature human body consisting of over a trillion cells and around 200 different cell types. This module will examine the developmental mechanisms and genes that regulate pattern formation and cell identity in multicellular eukaryotes. We will focus on the role of key genes in the regulation of different developmental processes and the mechanisms that determine the correct temporal and spatial expression of these genes. We will illustrate these principles using examples from model organisms including Mus musculus, Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana. These systems have significantly informed our understanding of human disease but also demonstrate the different mechanisms through which cell fate and complexity are controlled.

15 credits

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

Teaching

Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern, well-equipped labs, leading to a project in which you design and conduct your own research. You will learn cutting edge science from research leaders, and gain practice in reading scientific literature and writing reports.

Assessment

Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.

Your career

Genetic diagnostic technologies are transforming clinical pathology in private and public healthcare systems. Through practical diagnostic laboratory training, clinical research and opportunities for NHS work placements, graduates will be well equipped to pursue careers in healthcare diagnostics, research and industry.

Previous students have gone on to join the NHS Scientist Training Programme in Genomics, Cancer Genomics, and Genetic Counselling. 

Graduates also progress to bioscience research-based PhDs and professional research assistant positions in industry and academia.

You can read our student profiles to find out more about the various careers our students have pursued and how the course has helped them to succeed.

Read all student profiles for this course

Entry requirements

A 2:1 degree or equivalent university qualification in molecular biology or a related subject (eg biochemistry, genetics, biotechnology, and microbiology).

We also accept medical students who wish to intercalate their studies.

Candidates with professional experience may also be considered following interview.

Overall IELTS score of 6.5 with minimum of 6.0 in each component, or equivalent.

International pathway programmes

If you're an international student and don’t meet our entry requirements, we offer a Pre-Masters in Science and Engineering programme through the University of Sheffield International College. The programme develops your knowledge of your chosen subject, introduces you to vital study skills and provides additional support to reach the English language level for the course, should you need it.

Once you complete your Pre-Masters in Science and Engineering and achieve the required grades, you can enter your chosen postgraduate degree at the University of Sheffield.

We also accept a range of other UK qualifications and other EU/international qualifications.

If you have any questions about entry requirements, please contact the department.

Apply

You can apply for postgraduate study using our Postgraduate Online Application Form. It's a quick and easy process.

Apply now

Contact

mbb-pgt-apply@sheffield.ac.uk
+44 114 222 2750

Any supervisors and research areas listed are indicative and may change before the start of the course.

Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.

Explore this course:

    MBBT09 Off Off