Explore this course:

    2022 start September 

    Molecular Medicine

    The Medical School, Faculty of Medicine, Dentistry and Health

    This flexible course gives you the chance to choose specialist modules from the pathway that interests you most. You'll carry out a five-month research project, which gives you invaluable laboratory experience. Our graduates go on to PhD study or work in related industries.
    Group of three postgraduate students in the medical scool using medical equipment

    Course description

    Lead academic: Dr Martin Nicklin

    Designed for both animal/human biology and clinical graduates, this flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies.

    You’ll be brought up to date with the latest technical and scientific advances in biomedical science and therapeutic design and learn how to use the latest technology to answer research questions for yourself. Core modules cover the fundamentals. You'll choose specialist modules from the pathway that interests you most.

    You'll also receive practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

    Two-year post-study work visa

    The UK government has announced a two-year post-study work visa for international students.

    Your research project

    We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

    Examples of research projects

    This list shows projects that students chose in 2017–2018. To protect intellectual property we haven’t displayed the most recent projects as they are likely to relate to current research in the investigator’s group. We usually generate a surplus of at least 30 per cent of projects. Students are guaranteed one of their top five choices and usually get their first or second choices. These projects are grouped by pathway title but almost all projects were available across more than one pathway.

    • Inducing breast cancer immunogenic cell death with Cancer Killing Viruses
    • The role of voltage gated sodium channels in the invasiveness and metastatic potential of cancer cells
    • Understanding the role of microtubule dynamics in the homeostasis of axonal transport and chemotherapy induced peripheral neuropathy
    • Transcriptomic and cell cycle analysis of THAP8-deficient cells
    • Targeting the endogenous cannabinoid system as alternative to medicinal marijuana for the treatment of prostate cancer
    • Elucidating the cellular pathways and machinery involved in epithelial polarisation and cancer using advanced imaging techniques
    • DNA replication complexes of the 'high cancer risk' human papillomaviruses (HPV) as targets for anti-viral/anti-cancer therapies
    • The small heat shock protein [alpha]B-crystallin (HSPB5) as a regulator of fibrosarcoma response to chemotherapy and radiotherapy
    Experimental medicine
    • Investigating the effect of inflammation on veratridine response-profiles in primary sensory neurons
    • Developing a bi-functional non-antibiotic biodegradable wound dressing for treating chronic ulcers
    • Regulation of BPIFA2: an unexplored role in acute kidney disease
    • Development of microfabricated smart scaffolds for bone regeneration
    • Do neutrophil-derived microvesicles affect lung epithelial cell permeability?
    • Modulating cilia in the mucociliary airway epithelium
    • Chronic inflammatory disease in obesity: is leptin driven adipocyte-macrophage inflammatory signalling dependent on TRIB3?
    • Therapeutic potential of GSK3[beta] inhibition for anxiety and depression
    • Investigation of the generation of force by fibroblasts under the influence of therapeutic ultrasound
    • Novel strategy for intraneuronal delivery of proteins for treatment of neurological diseases
    • Is packaging of vault RNAs into extracellular vesicles dependent on major vault protein?
    Microbes and infection
    • The potential of anti-adhesion therapy in a biofilm infection model
    • Role of FlrB in the regulation of bacterial motility and colonisation
    • Treating Respiratory Syncytial Viral Infection by Targeting Membrane Microdomains
    • The regulation of rhinoviral infection of the human airway by APPL1 and APPL2
    • Colicin M derivatives as novel antimicrobials against antibiotic resistant Gram-negative bacteria
    Genetic mechanisms
    • Identification of neuronal kill factors secreted by stem cell-derived astrocytes from amyotrophic lateral sclerosis (ALS) patients
    • DNA damage and repair mechanisms in cellular models of TDP-43 mediated neurodegeneration
    • Is SENP1-mediated deSUMOylation of XBP1 Required for Autophagy Induction by ER stress for Cell Survival?
    • Characterization of miRNAs targeting TRIB1 and their impact on macrophage function, polarization and lipid metabolism
    • In silico functional analysis of inherited cancer susceptibility variants on chromosome 2

    How we teach

    We use speakers from the pharmaceutical industry to put our teaching into a commercial context. Practising clinical colleagues from the Medical School also contribute to this course.

    The taught part of the course provides you with an understanding of the background and scientific methods that are used to investigate human diseases. We emphasise how experiments and experimental programmes are designed and interpreted. We aim to present the most recent scientific developments in each subject area, and we keep our course up to date to reflect changes in the emphasis of biomedical science.


    We accept medical students who wish to intercalate their studies. Find out more on the Medical School's website.

    Do you have a question? Talk to us

    Book a 15-minute online meeting with our course tutor to find out more information and ask further questions.

    Book an appointment with Martin Nicklin


    A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.

    The course begins with six core modules that are appropriate to all specialities. These core modules cover the fundamentals.

    You'll then choose from one of four specialist pathways. Students decide on their pathway before the optional parts of the course begin in February. You only need to decide 10 weeks into the course when you choose your project, which will also be associated with a particular pathway. You'll choose specialist modules from the pathway that interests you most.

    Medical graduates may also be interested in our clinical applications pathway.

    Explore core modules and pathways

    The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

    Open days

    An open day gives you the best opportunity to hear first-hand from our current students and staff about our courses. You'll find out what makes us special.

    Upcoming open days and campus tours


    1 year full-time. We are unable to offer a part-time or distance learning study option for this course at present.

    Our expertise

    The University of Sheffield is ranked number one in the UK for the world-leading quality of our biomedical research and in the top ten for combined world-leading and internationally excellent research outputs in clinical medicine.

    The impactful, high-quality research that we undertake influences how we teach across all of our postgraduate courses. In many areas, our research activity spans the spectrum from basic science up to practical clinical applications. We pride ourselves on collaboration between  clinicians and non-clinicians, and many of our courses include teaching from practising clinicians as well as research-active academics.

    Why study molecular medicine with us?

    Learn about the latest developments

    Molecular biology has proved to be a rich source of new therapeutic agents in the last three decades. Recombinant proteins continue to be developed as successful drugs that principally target extracellular proteins such as cytokines and cell-surface receptors. Protein drugs are almost always injected. Bioinformatic data can now be used to identify new intracellular target proteins and investigate the networks of interactions that the target proteins participate in. It is becoming increasingly possible to model the surfaces of target proteins and use this information to model the interaction of low molecular weight, orally available drugs and even design drugs from scratch.

    The completed Human Genome Project revolutionised the ways that we can consider human diseases. Single gene defects that cause rare genetic disorders took man-centuries to discover only 20 years ago. Now, because of next generation sequencing (NGS), single, novel gene defects can sometimes be identified in individual patients with only man-weeks of effort.

    It will soon be economically plausible to sequence all of an individual's genes in the clinic. Common diseases, though, are not caused by single gene defects. Many clearly involve the interaction of many susceptibility genes with the environment.

    An important part of the environment is the microbiome, the collective of microorganisms that inhabit an individual human. These organisms have strong interactions, many beneficial, with the immune system of the host and are fundamental to the understanding of common inflammatory diseases. It is now relatively simply to determine the composition of a microbiome, again by NGS.

    Changes that do not alter DNA sequence, known as epigenetic changes, can modulate the activity of genes too. Genes can be regulated by micro-RNA transcripts. All of these changes can increasingly be analysed by dedicated NGS methods that will be used in clinics of the future to investigate common diseases and to identify the multiple defects that drive individual patients' cancers.

    Our course aims to give you insights into all of these new developments and training in how to be a modern biomedical researcher.

    A recent external examiner report praised the quality of this course:

    This course provides an excellent training in a wide area of biomedical sciences. This explicitly includes soft skills such as critical thinking and processing of information that equips its graduates with the tools for successful careers in both academic and non-academic environments.


    Your modules are taught intensively over a two-week period, generally starting on a Wednesday, which gives you the weekend to catch up.

    Teaching methods include lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations.

    Semesters and holidays

    This MSc is an intensive programme, which means it doesn't follow the standard University semester dates and main holidays. We don't have a break during the Easter holiday and you'll be expected to write the literature over the winter holiday.

    There are two scheduled breaks: between December and January, and between August and September.

    You'll need to make sure that any breaks you intend to take don't disrupt your research project (check with your research project supervisor).


    Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

    Your research project is assessed by a thesis, possibly with a viva.

    Your career

    A high proportion of students from this course progress to study for a PhD, while others go on to work in the biotechnology or pharmaceutical industries. Our graduates have gone on to work for many prestigious institutions throughout the world, including Cambridge Bioscience, Covance and ADC Biotechnology.

    There are a wide variety of roles you can pursue, including:

    • PhD Studentship in Medical Science
    • Research work in Pharmaceutical/Biotech Industry
    • Laboratory management
    • Clinical trials management
    • Laboratory Research Assistant
    • Medicine
    • Clinical Scientist
    • Teacher of Science
    • Scientific Writer

    Student profiles

    Image of two postgraduate medical students using a microscope

    The medical school where my department is based is one of the best in the UK. This combined with the guest lecturers from the best academics and researchers in their respective fields made University of Sheffield my best choice for pursuing my master’s degree.

    My understanding of the molecular mechanisms of various diseases and disorders combined with the knowledge of emerging technologies in medicine would enable me to improve the understanding of various disease which would help in development of novel therapies in the field of medicine.

    Amanpreet Kaur Bains

    MSc Molecular Medicine

    Entry requirements

    A 2:1 degree with a substantial element of human or animal biology. Medical students can intercalate after completion of three years of their medical degree. We also welcome medical graduates and graduates in other scientific subjects such as biotechnology.

    Clinical applications pathway:

    Overall IELTS score of 7.0 with a minimum of 6.5 in each component, or equivalent.

    All other pathways:

    Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.

    If you have any questions about entry requirements, please contact the department.

    Fees and funding

    For the Clinical pathway use our course fee lookup tool.

    The fees below are applicable to the Genetic Mechanisms, Microbes and infection, Experimental Medicine and Cancer pathways.


    You can apply for postgraduate study using our Postgraduate Online Application Form. It's a quick and easy process.

    Apply now

    If you're interested in the clinical applications pathway, please make preliminary contact with the pathway leader Dr Paul Collini.

    More information

    The Medical School

    Interested in the student perspective?

    You can email our current students about their experiences of postgraduate study at Sheffield and our graduates are often available during open days.


    Dr J G Shaw
    +44 114 215 9553

    Any supervisors and research areas listed are indicative and may change before the start of the course.

    Our student protection plan

    Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.


    The Medical School

    Interested in the student perspective?

    You can email our current students about their experiences of postgraduate study at Sheffield and our graduates are often available during open days.


    For the Clinical pathway use our course fee lookup tool.

    The fees below are applicable to the Genetic Mechanisms, Microbes and infection, Experimental Medicine and Cancer pathways.