MSc(Res)
2022 start September 

Particle Physics

Department of Physics and Astronomy, Faculty of Science

Particle physics has been at the centre of some of the 21st century's biggest scientific discoveries. You'll study in a department that has worked on the discovery of the Higgs boson and the detection of gravitational waves. Our researchers are involved in searches for dark matter and ground-breaking neutrino experiments.
Particle Physics student working with equipment

Course description

This course covers the complex theories and experimental techniques that particle physicists use to explain the nature of the universe. It will develop your understanding of the Standard Model by going into even greater depth on topics you might have covered in your undergraduate degree, such as quantum mechanics, electrodynamics and dark matter.

You’ll learn about the methods particle physicists use to study the universe, the experiments that led to the discoveries of neutrons, positrons and neutrinos, and the experimental evidence for quarks and gluons. You can examine the possible explanations for dark matter with scientists who are leading searches for it, and take modules led by researchers who were involved in the Higgs boson and gravitational wave discoveries.

The biggest part of your degree is your research project, which you might be able to work on at a research facility such as CERN. Possible topics include:

  • background events in the LUX-Zeplin dark matter experiment
  • characterising ultra-fast imaging photon sensors for neutrino experiments
  • design a masterclass for high-school students using ATLAS open data
  • searching for supersymmetry with the ATLAS detector at the CERN Large Hadron Collider
  • the WATCHMAN Project: Using anti-neutrinos for nuclear threat reduction
  • using tau leptons in collider experiments to search for new physics

You will also complete a research training programme, and there are optional modules to choose from including general relativity, particle astrophysics, semiconductor physics and statistical physics.

We took a group of our students to the CERN research facility in Switzerland, where many of our particle physics researchers are working on projects including the ATLAS collaboration that was behind the Higgs boson discovery.

Modules

The modules listed below are examples from the last academic year. There may be some changes before you start your course. For the very latest module information, check with the department directly.

Core modules:

Advanced Electrodynamics

This module gives a detailed mathematical foundation for modern electrodynamics, starting from Maxwell¿s equations, charge conservation and the wave equation, to gauge invariance, waveguides, cavities and antennas. After a brief recap of vector calculus, we explore the role of the scalar and vector potential, the multi-pole expansion of the field, the Poisson and Laplace equations, energy and momentum conservation of the fields, and Green¿s functions. We conclude with a relativistic treatment of the fields.

10 credits
Dark Matter and the Universe

Dark matter, though still unidentified and not yet directly detected, is established as a major constituent of the universe according to modern cosmology. In this course, we will review the astrophysical and cosmological evidence for the existence of dark matter, critically assess the various candidates that have been put forward, and discuss direct detection methods for the two most popular candidates¿WIMPs and axions. The course has a multidisciplinary flavour combining work in astronomy, particle physics, solid state physics, detector technology and philosophy, encouraging development of skills in all these.

10 credits
Further Quantum Mechanics

This module builds on the quantum mechanics learned in the prequisites PHY250 and PHY251. The Heisenberg matrix formulation of the theory is developed from the Schrodinger wave picture. Approximate methods (perturbation theory and variational method) are derived and applied. Methods for solving time dependent problems are developed. Problems involving magnetic fields and spin are treated. Many particle wavefunctions for fermions and bosons are introduced. Some current research literature on Quantum Mechanics is explored through a directed reading exercise.

10 credits
The Development of Particle Physics

The module describes the development of several crucial concepts in particle physics, emphasising the role and significance of experiments. Students are encouraged to work from the original literature (the recommended text includes reprints of key papers). The module focuses not only on the particle physics issues involved, but also on research methodology - the design of experiments, the critical interpretation of data, the role of theory, etc. Topics covered include the discoveries of the neutron, the positron and the neutrino, experimental evidence for quarks and gluons, the neutral kaon system, CP violation etc.

10 credits
Physics Research Skills

This 30-credit module is to enhance and support the Physics MRes course. It is designed to allow students to explicitly reflect on various aspects of the research process and its communication.Students will be required to keep a diary of their project and reflect on their progress; write a literature review of the project area reflecting on how and why they chose their sources; reflect on the process of learning a new skill for their project; communicate what their research is about and why it is important to a general audience; consider how to teach what they are researching at UG level.

30 credits
Research Project in Physics

This module will give students the opportunity to develop skills relevant to a career in physics research. It will consist of a laboratory or analytical based research project in one of the Department¿s research groups. Each student will work under the supervision of a member of academic staff and will formulate the hypotheses and questions to be addressed and plan and carry out experiments or simulations to test these hypotheses. The outcome of the project will be summarised in a dissertation and the student will keep a notebook of the research, deliver an oral presentation of their work, and prepare a poster of their findings.

90 credits

Optional modules - two from:

Advanced Particle Physics

The main aim of the unit is to give a formal overview of modern particle physics. The mathematical foundations of Quantum Field Theory and of the Standard Model will be introduced. The theoretical formulation will be complemented by examples of experimental results from the Large Hadron Collider and Neutrino experiments. The unit aims to introduce students to the following topics:
• A brief introduction to particle physics and a review of special relativity and quantum mechanics
• The Dirac Equation
• Quantum electrodynamics and quantum chromo-dynamics
• The Standard Model
• The Higgs boson
• Neutrino oscillations 
• Beyond the Standard Model physics

10 credits
Advanced Quantum Mechanics

This module presents modern quantum mechanics with applications in quantum information and particle physics. After introducing the basic postulates, the theory of mixed states is developed, and we discuss composite systems and entanglement. Quantum teleportation is used as an example to illustrate these concepts. Next, we develop the theory of angular momentum, examples of which include spin and isospin, and the method for calculating Clebsch-Gordan coefficients is presented. Next, we discuss the relativistic extension of quantum mechanics. The Klein-Gordon and Dirac equations are derived and solved, and we give the equation of motion of a relativistic electron in a classical electromagnetic field. Finally, we explore some topics in quantum field theory, such as the Lagrangian formalism, scattering and Feynman diagrams, and modern gauge field theory.

10 credits
An Introduction to General Relativity

This module introduces coordinate systems and transformations in Euclidean space. The principles of special relativity are reviewed, with emphasis on the coordinate transformations between systems moving at constant velocities. Our discussion of general relativity begins with an introduction to the principle of equivalence. We introduce the Christoffel symbols and the curvature tensors. We study examples of phenomena affected by general relativity, the rate of clocks and the redshift and bending of light in a gravitational field. Finally, we examine space time in the vicinity of the event horizon, the geometry of a non-spinning black hole, and the geometry of wormholes.

10 credits
Particle Astrophysics

The LHC accelerates protons to kinetic energies of up to 7000 times their rest mass - a huge technological achievement. Yet, every second, over 500 million particles with energies greater than this collide with the Earth. Where do these particles come from, and how are they accelerated to these astonishing energies? These are, in fact, still open questions in astrophysics. In this module, we will look at the observational evidence for particle acceleration in astrophysical objects, the mechanisms available to accelerate particles, and some of the likely sources, including supernovae and supernova remnants, neutron stars, and active galaxies

10 credits
Physics in an Enterprise Culture

This is a seminar and workshop based course with a high level of student centred learning. The unit will introduce students to the methods and skills associated with innovation, business planning, costing and marketing. It will broaden students understanding of the mechanics of project planning and research commercialisation. The course is divided into two components:

Part 1: Coming up with ideas. Students will take part in guest lectures and workshop classes to explore different ideas for business. They will learn about the innovation process and what makes a sucessful business. They will finish part 1 by submitting a draft business proposal that will be reviewed by academic staff and student peers and feedback will be given.

Part 2: Armed with the feedback from part 1 students will refine thier ideas and work towards a final pitch for thier business. Further support will be given to students to develop a costing of the idea.

10 credits
Semiconductor Physics and Technology

This module builds on the core solid state physics modules to provide an introduction to semiconductor electronic and opto-electronic devices and modern developments in crystal growth to produce low dimensional semiconductor structures (quantum wells, wires and dots). Band structure engineering, the main physical properties and a number of applications of low dimensional semiconductor structures are covered.

10 credits
Statistical Physics

Statistical Physics is the derivation of the thermal properties of matter using the under-lying microscopic Hamiltonians. The aims of this course are to introduce the techniques of Statistical Mechanics, and to use them to describe a wide variety of phenomena from physics, chemistry and astronomy. Current research literature is explored through a directed reading exercise.

10 credits

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

Teaching

You'll be taught through a series of lectures, seminars, tutorials and your research project.

Assessment

You'll be assessed by examinations, coursework, essays and other written work, presentations and a dissertation and viva.

Duration

1 year full-time

Your career

The advanced topics covered and the extensive research training make this course great preparation for a PhD. Physics graduates also develop numerical, problem solving and data analysis skills that are useful in many careers, including computer programming, software engineering, data science, and research and development into new products and services.

Entry requirements

We usually ask for a first-class degree, or equivalent, in physics.

Overall IELTS score of 6.5 with a minimum of 6.0 in each component, or equivalent.

Pathway programme for international students

If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for a pre-masters programme in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

We also accept a range of other UK qualifications and other EU/international qualifications.

If you have any questions about entry requirements, please contact the department.

Apply

You can apply for postgraduate study using our Postgraduate Online Application Form. It's a quick and easy process.

Apply now

Contact

postgradphysics-enquiry@shef.ac.uk
+44 114 222 3789

Any supervisors and research areas listed are indicative and may change before the start of the course.

Our student protection plan

Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.

Explore this course:

    PHYT17 Off Off