Students in a physics laboratory

Theoretical Physics MPhys

Department of Physics and Astronomy

Apply for this course

You are viewing this course for 2022-23 entry.

Key details

Course description

This course is for students who want to explore the fundamental mathematics that has brought physicists ever closer to a ‘theory of everything’. You’ll develop the skills for a career in research, whether you want to help answer complex questions raised by topics such as relativity and quantum mechanics, or apply your scientific knowledge to solve problems in industry.

In your first two years, you’ll do the essential physics that all of our students cover, including quantum mechanics, electromagnetism, special relativity and classical physics. You can study more advanced maths topics in the university’s School of Mathematics and Statistics including: calculus, geometry, differential equations, linear algebra, and mechanics and fluids. These modules give you a much more detailed understanding of mathematical concepts than our standard physics degrees.

In practical classes, you’ll run experiments using the equipment in our modern laboratories to help you understand how important theories apply to the real world. In programming classes you can learn skills that are key to theoretical physics and valuable in many graduate careers, from data science to computer game design. There are also optional modules on topics such as particle physics and the physics of music.

In the third year, you can branch out into lots of different areas and complete your own research project in theoretical physics. Your core modules will cover topics like quantum mechanics and statistical physics. Optional modules include dark matter and mathematical biology.

A variety of optional modules are also available in your fourth year when you’ll also be working on a major research project. You’ll choose a research topic in theoretical physics and work closely with a member of academic staff who is an expert in the area you want to explore. The project takes up around half of your final year and can lead to a publication in a scientific journal.

Accredited by the Institute of Physics (IOP) for the purpose of fully meeting the educational requirement for Chartered Physicist.

Modules

The modules listed below are examples from the last academic year. There may be some changes before you start your course. For the very latest module information, check with the department directly.

Choose a year to see modules for a level of study:

Title: Theoretical Physics MPhys course structure
UCAS code: F321
Years: 2021

Core modules:

Fields and Quanta

This module introduces the key concepts of fields and quanta: electric and magnetic fields, the behaviour of electric charges and currents, vectors and densities, potentials, quantum states and their evolution, the probabilistic nature of fundamental physical law, and the breakdown of classical physics. This module will teach you how physics problems relate to these fundamental concepts, and how those concepts are used to construct solutions.

25 credits
Motion and Heat

This module introduces and applies the key concepts of motion and heat: force, equations of motion, phase space, determinism and free will, symmetry and conservation laws, waves and oscillations, coherence and classical frequency-time uncertainty, the laws of thermodynamics, thermal equilibrium, entropy and the arrow of time. You will learn how physics problems relate to these fundamental concepts, and how those concepts are used to construct solutions. You will apply the key concepts to design experiments to test scientific hypotheses. You will develop your data analysis and communication skills and to use different sources of information in your learning. You will work independently and as part of a group, developing a wide variety of study skills that will prepare you for the rest of your degree programme.

25 credits

Optional modules:

Mathematics for Physicists and Astronomers

This module provides the necessary level 1 mathematics for students taking physics and/or astronomy degrees. The following topics will be covered: basic algebra (functions, coordinate systems, algebraic manipulation etc), Taylor and binomial series, common functions of one variable, differentiation and integration techniques, basic complex numbers, first and second order differential equations, vector calculus, properties and applications of matrices and elementary probability theory.

30 credits
Supplementary Mathematics for Theoretical Physicists

This module provides the necessary supplementary mathematics for theoretical physics students taking level 1 mathematics modules. The following topics will be covered: consolidate previous knowledge of vectors; introduce the students to vector calculus; elementary probability theory; ensure that the students have a thorough knowledge of how to apply mathematical tools to physical problems.

10 credits
Mathematics Core 1

The module explores topics in mathematics which will be used throughout many degree programmes. The module will consider techniques for solving equations, special functions, calculus (differentiation and integration), differential equations, Taylor series, complex numbers and finite and infinite series.

20 credits
Mathematics Core II

The module continues the study of core mathematical topics begun in MS4F1015, which will be used throughout many degree programmes. The module will discuss 2-dimensional co-ordinate geometry, discussing the theory of matrices geometrically and algebraically, and will define and evaluate derivatives and integrals for functions which depend on more than one variable, with an emphasis on functions of two variables.

20 credits
Introduction to Astrophysics

One of four half-modules forming the Level-1 Astronomy course, PHY104 aims to equip students with a basic understanding of the important physical concepts and techniques involved in astronomy with an emphasis on how fundamental results can be derived from fairly simple observations. The module consists of three sections:

(i) Basic Concepts, Fluxes, Temperatures and Magnitudes;

(ii) Astronomical Spectroscopy;

(iii) Gravitational Astrophysics.

Parts (i), (ii) and (iii) each comprise some six lectures. The lectures are supported by problems classes, in which you will learn to apply lecture material to the solution of numerical problems.

10 credits
The Solar System

One of the four half-modules forming the Level 1 astronomy course, but may also be taken as a stand-alone module. PHY106 covers the elements of the Solar System: the Sun, planets, moons and minor bodies. What are their structures and compositions, and what dothey tell us about the formation and history of the Solar System?

10 credits
Our Evolving Universe

The course provides a general overview of astronomy suitable for those with no previous experience of the subject. The principal topics covered are (1) how we deduce useful physical parameters from observed quantities, (2) the structure and evolution of stars, (3) the structure of the Milky Way, and the classification, structure and evolution of galaxies in general, (4) an introduction to cosmology and (5) extrasolar plantets and an introduction to astrobiology. All topics are treated in a descriptive manner with minimal mathematics.

10 credits
Frontiers of Physics I

This pair of 10-credit modules aims to introduce research-inspired material into the level 1 physics curriculum. Each module includes three short courses on research-based topics taught by an academic who is actively involved in the research. The individual courses will be regularly reviewed to ensure that the material is up to date and includes current areas of investigation. The module aims to show that cutting-edge physics research is often underpinned by basic concepts covered in A level and 1st year physics courses.

10 credits
The Physics of Sustainable Energy

The module will cover the physics of sustainable energy. It includes discussions framed by the book `Sustainable Energy without the Hot Air' by D MacKay and will cover current energy requirements and what energy could potentially be provided by the various forms of renewable energy. The course will commence with a discussion of the basic physics of energy, power and work and the conversion of energy from one form to another. We examine in detail the history of global energy useage and how we produce and use energy in the UK. We will then explore the impacts that this energy use has on the biosphere and climate and the public perception of such processes. The course will then focus on the energy contenet of objects and processes we take for granted and will then move on to means by which we can produce energy using renewable technologies, such as wind, wave, solar, biofuels etc. We will also examine nuclear (fusion and fission) energy and will discuss their principles and practical implementation. Finally, we will consider solutions to our energy needs, including transportation, energy conservation, carbon capture and geoengineering.

10 credits
Physics of Living Systems 2

The aim is to introduce biomechanical descriptions of the human body. We look at its structure and its performance as a physical machine. The structural characteristics of human bones and tissue are investigated, together with the mechanical functions of the skeleton and musculature. Simple fluid dynamic characteristics of the body are introduced, including descriptions of blood-flow in the arteries and veins and air-flow in the lungs.

10 credits
Introduction to Electric and Electronic Circuits

This module introduces the concepts and analytical tools for predicting the behaviour of combinations of passive circuit elements, resistance, capacitance and inductance driven by ideal voltage and/or current sources which may be ac or dc sources. The ideas involved are important not only from the point of view of modelling real electronic circuits but also because many complicated processes in biology, medicine and mechanical engineering are themselves modelled by electric circuits. The passive ideas are extended to active electronic components; diodes, transistors and operational amplifiers and the circuits in which these devices are used. Transformers, magnetics and dc motors are also covered.

20 credits

The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.

Learning and assessment

Learning

You'll learn through lectures, small group tutorials, programming classes, practical sessions in the lab and research projects.

We invest to create the right environment for you. That means outstanding facilities, study spaces and support, including 24/7 online access to our online library service.

Study spaces and computers are available to offer you choice and flexibility for your study. Our five library sites give you access to over 1.3 million books and periodicals. You can access your library account and our rich digital collections from anywhere on or off campus. Other library services include study skills training to improve your grades, and tailored advice from experts in your subject.

Learning support facilities and library opening hours

Assessment

You will be assessed through a portfolio of problem sets, lab work and other material, as well as exams, essays, lab reports and presentations.

Programme specification

This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.

Find programme specification for this course

Entry requirements

With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible

Standard offer
Access Sheffield offer

The A Level entry requirements for this course are:
AAA
including Maths and Physics

The A Level entry requirements for this course are:
AAB
including Maths and Physics

A Levels + additional qualifications | AAB, including AA in Maths and Physics + A in a relevant EPQ AAB, including AA in Maths and Physics + A in a relevant EPQ

International Baccalaureate | 36, with 6 in Higher Level Maths and Physics 34, with 6,5 in Higher Level Maths and Physics

BTEC | Not accepted Not accepted

Scottish Highers + 2 Advanced Highers | AAAAB + AA in Maths and Physics AAABB + AB in Maths and Physics

Welsh Baccalaureate + 2 A Levels | A + AA in Maths and Physics B + AA in Maths and Physics

Access to HE Diploma | Access to HE Diploma in science: 60 credits overall with 45 credits at Level 3, including 39 credits at Distinction (all in Maths and Physics units) and 6 credits at Merit Access to HE Diploma in science: 60 credits overall with 45 credits at Level 3, including 36 credits at Distinction (all in Maths and Physics units) and 9 credits at Merit

Mature students - explore other routes for mature students

English language requirements

You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification

Equivalent English language qualifications

Visa and immigration requirements

Other requirements
  • Students must have passed the practical element of any science A Level taken

Pathway programme for international students

If you're an international student who does not meet the entry requirements for this course, you have the opportunity to apply for an International Foundation Year in Science and Engineering at the University of Sheffield International College. This course is designed to develop your English language and academic skills. Upon successful completion, you can progress to degree level study at the University of Sheffield.

We also accept a range of other UK qualifications and other EU/international qualifications.

If you have any questions about entry requirements, please contact the department.

Department of Physics and Astronomy

2D materials laboratory

Scientists in the Department of Physics and Astronomy are working on topics such as how to build a quantum computer, the search for dark matter and ways to combat antimicrobial resistance. They run experiments on the Large Hadron Collider at CERN, and help to map the universe using the Hubble Space Telescope. They’ll guide you through the key topics in physics and give you a huge range of optional modules to choose from. 

The department is based in the Hicks Building, which has recently refurbished undergraduate teaching laboratories with all the equipment you need for your physics and astronomy training, as well as classrooms, lecture theatres, computer rooms and social spaces for our students.

There are also telescopes and a solar technology testbed on the roof, state-of-the-art laboratories for building super-resolution microscopes and analysing 2D materials, and the UK’s first Quantum Information Laboratory, where students can study the fundamental science behind the next technological revolution. It’s right next door to the Students' Union, and just down the road from the 24/7 library facilities at the Information Commons and the Diamond.

Facilities

Our students are trained in newly refurbished teaching laboratories and can access a range of specialist technologies, from the telescopes on our roof to our state-of-the-art Quantum Information Laboratory.

In their final year, MPhys students are based in a specialist research laboratory where scientists are studying technologies such as 2D materials, photovoltaic devices and advanced microscopy tools.

Department of Physics and Astronomy

Why choose Sheffield?

The University of Sheffield

  A top 100 university 2022
QS World University Rankings

  Top 10% of all UK universities
Research Excellence Framework 2014

  No 1 Students' Union in the UK
Whatuni Student Choice Awards 2020, 2019, 2018, 2017


Department of Physics and Astronomy

Top ten in the UK for research output

Research Excellence Framework 2014


Graduate careers

Department of Physics and Astronomy

Our physics students develop numerical, problem solving and data analysis skills that are useful in many graduate jobs, including computer programming, software engineering, data science, and research and development into new products and services. Their expertise can be applied to many of the challenges and opportunities of the 21st century, from developing renewable energy technologies and improving medical treatments to creating quantum telecommunications systems and exploring outer space.

Students who want to work as a physics researcher often do a PhD, which can lead to a career at a top university or a major international research facility such as CERN.

The University of Sheffield is part of the White Rose Industrial Physics Academy. This partnership of university physics departments and technical industries can set up collaborations between our students and industrial partners through internships, year in industry placements, final year projects and careers activities. WRIPA also organises the UK’s largest physics recruitment fair, where our students can meet potential employers.

Heloise Stevance

I had amazing lecturers who later became colleagues and are now my friends

Dr Heloise Stevance MPhys Physics and Astrophysics

Heloise did her undergraduate degree and PhD in astrophysics here in Sheffield, and is now a researcher at the University of Auckland.

Fees and funding

Fees

Additional costs

The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.

Examples of what’s included and excluded

Funding your study

Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.

Use our Student Funding Calculator to work out what you’re eligible for.

Additional funding

The University of Sheffield’s Experience Sheffield Scholarships includes a number of scholarships that are guaranteed to go to students in the Department of Physics and Astronomy.

Department of Physics and Astronomy scholarships

Visit us

University open days

There are four open days every year, usually in June, July, September and October. You can talk to staff and students, tour the campus and see inside the accommodation.

Open days: book your place

Taster days

At various times in the year we run online taster sessions to help Year 12 students experience what it is like to study at the University of Sheffield.

Upcoming taster sessions

Applicant days

If you've received an offer to study with us, we'll invite you to one of our applicant days, which take place between November and April. These applicant days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.

Campus tours

Campus tours run regularly throughout the year, at 1pm every Monday, Wednesday and Friday.

Book your place on a campus tour

Apply for this course

Make sure you've done everything you need to do before you apply.

How to apply When you're ready to apply, see the UCAS website:
www.ucas.com

The awarding body for this course is the University of Sheffield.

Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.

Our student protection plan

Terms and Conditions upon Acceptance of an Offer

Explore this course:

    2022-2023