
Aerospace Engineering (Private Pilot Instruction) MEng
Aerospace Engineering
Explore this course:
You are viewing this course for 2024-25 entry. 2023-24 entry is also available.
Key details
- A Levels AAA
Other entry requirements - UCAS code H490
- 4 years / Full-time
- September start
- Accredited
- Find out the course fee
- Optional placement year
- Study abroad
Course description
This course is the same as our aerospace engineering degree, with added initial flight training. Individual arrangements can be made with a local flying school to continue to a UK or European Private Pilot's Licence. Your acceptance for pilot instruction is subject to medical and security checks.
Modules cover aero propulsion, aerodynamic design, aircraft dynamics and control, computational aerodynamics and project management. You'll also take ground training for flight and five hours of flight training. Your study includes some experience of flight instrumentation and an individual investigative project of your choice.
All our students also take the Global Engineering Challenge, where teams of students work to solve engineering problems in developing countries. This is designed to develop you as a professional engineer and enhance your career prospects.
This MEng provides all the academic requirements needed for Chartered Engineer (CEng) status.
Flying experience
You can gain flying experience either through our Private Pilot Instruction courses or through our links with the Yorkshire Universities Air Squadron, provided you fulfil the appropriate medical requirements.
This course is accredited by the Royal Aeronautical Society, the Institution of Mechanical Engineers, the Institution of Engineering and Technology and the Institute of Materials, Minerals and Mining.
Modules
A selection of modules are available each year - some examples are below. There may be changes before you start your course. From May of the year of entry, formal programme regulations will be available in our Programme Regulations Finder.
Choose a year to see modules for a level of study:
UCAS code: H490
Years: 2022, 2023
Core modules:
- Aerospace Engineering Design, Build and Test
-
This module will introduce students to the basic concepts of aircraft and spacecraft design with a focus on systems engineering, interdisciplinary design and performance. Students will learn about the basic principles of flight and how performance can be calculated during a typical flight/mission including take-off, landing, climb, cruise and turning and orbital mechanics.The basic principles of systems engineering as an approach to aircraft design will be taught and the importance of considering aircraft design as an interdisciplinary design problem are covered and illustrated through the design, build and test activity. Students will undertake an exercise to design, build and test an aircraft, covering choices of materials, structures, aerodynamics, propulsion, avionics and control. Predictions of the aircraft performance will be undertaken in order to model the flight time or a similar parameter, being tested against the actual performance of the aircraft. They will also undertake a range of workshop practice elements in order to learn to operate and utilise appropriate building techniques for the aircraft, satisfying the requirements of “Workshop Practice” as required for accreditation. Students will be introduced to computer coding as an engineering tool, taught the basics of engineering drawing and computer aided design (CAD) and develop an appreciation of basic workshop tools (engineering applications).
20 credits - Introduction to Aerospace Materials
-
This module examines how the macroscopic properties of materials are determined by the arrangement of, and bonding between atoms. How processing can affect these atomic arrangements and thus the microstructure and properties of a material is considered. Finally materials selection for aerospace applications taking into account multiple criteria is introduced.
20 credits - Mathematics (Electrical and Aerospace)
-
This module aims to reinforce students' previous knowledge and to develop new basic mathematical techniques needed to support the engineering subjects taken at Levels 1 and 2. It also provides a foundation for the Level 2 mathematics courses in the appropriate engineering department. The module is delivered via online lectures, reinforced with weekly interactive problem classes..
20 credits - Aerospace Aerodynamics and Thermodynamics
-
This course provides an overview of the fundamental principles of the behaviour of liquids and gases that are essential to an aerospace engineer. Students will encounter the physical basis of important properties, their evaluation and application to practical examples. The course then teaches the interrelationship between pressure, flow and temperature and how this affects the design, performance and energy terms of aerospace engineering components and systems. Irreversibility, both from the point of friction and entropy change will be examined both qualitatively and quantitatively.
15 credits - Aerospace Electrics and Drives
-
This module introduces the concepts and analytical tools for predicting the behaviour of electric components and combinations of electric components. Electromechanical energy conversion such as drives, servo systems and actuator technologies are also introduced.
15 credits
This module will equip students with the ability to create models that describe the circuit components or groups of components to allow predictions of performance to be made for Aerospace Engineering applications.
- Engineering Statics and Dynamics
-
The course provides the fundamental concepts and techniques used in Engineering Statics and Dynamics. Two-dimensional statics are covered including force and moment systems, free body diagrams, equilibrium, friction, and the application to typical structures encountered in aerospace engineering applications (such as beams, frames and trusses). Two-dimensional kinematics and kinetics of particles and rigid bodies are covered. An introduction to the use of the Work-Energy methods in dynamics is given. No prior knowledge of statics or dynamics is assumed; the treatment concentrates on physical understanding and applications in aerospace engineering, rather than using advanced mathematical treatments
15 credits - Introduction to Systems Analysis and Control
-
This module will introduce principles of modelling of simple continuous dynamical systems. This module also introduces analysis of linear models. It includes a detailed analysis of the dynamical behaviour of 1st and 2nd order systems linking behaviour to physical parameters, e.g. Rise time, settling time, overshoot, steady-state. Damping and damping ratio and resonance. Frequency response is also discussed. We will introduce control and feedback as a topic by providing examples of open-loop and closedloop control, and undertake detailed analysis of linear models with a focus on 1st and 2nd order systems. Students are introduced to simple practical feedback mechanisms, including PID controllers and performance criteria such as offset, stability, poles and zeros. You will learn about the principles of how to use Laplace Transforms to solve linear differential equations, and for system representation, using transfer functions and block diagram algebra. You will also develop an appreciation of frequency-domain implications of system analysis through the use of Fourier series. MATLAB is used to reinforce the simulation and analysis of all module contents and coursework assignments.
15 credits
Core modules:
- Control Systems Design and Analysis
-
This module gives a solid theoretical foundation for understanding feedback control system analysis, design and application and is suitable for general engineering students. This is supported by hardware laboratories, PC laboratory activities and coursework. Content covers standard analysis tools such as root-loci, Bode diagrams, Nyquist diagrams and z-transforms. The latter part of the course focuses on the design of common feedback strategies using these analysis tools and students will undertake indicative designs and reinforce learning through application to laboratory and hardware systems.
20 credits - Aerospace Fluids Engineering
-
The module is designed to consolidate and extend the students' understanding of basic fluid flow properties, fluid flows, and applying analysis techniques to solve engineering fluids problems. The module will cover the use of both integral control volume and differential analysis techniques. These will be applied to a range of simple engineering fluid systems, Newtonian laminar analysis will be applied to internal flows. The boundary layer will be introduced and related to the concepts of drag and heat transfer. The concepts of compressible nozzle flow, choking and shock waves will be covered. Sub-sonic and sonic compressible flow will be introduced. The students will also be introduced to computational fluid dynamics using FLUENT and given hands-on experience.
10 credits - Aerostructures
-
The overall aim of the course is to explain clearly some fundamental theories of solid mechanics for the modelling of basic aircraft structure problems. In specific terms this means truss system analysis, bending of statically determinate and indeterminate beams, analysis of cross-sections, axes of symmetry, section properties for structural beams, beams loaded by moments and by UDLs, Macaulay's method for beams under point loads and moments, general stress, strain, and displacements in open and closed section thin-walled beams, shear flow and shear centre, torsion of closed and open section beams, torsion of beams, aircraft structural materials, and aircraft structural components.
10 credits - Mathematics for Aerospace Engineers
-
This module consolidates previous mathematical knowledge and develops new mathematical techniques relevant to the Aerospace Engineering discipline.
10 credits - Engineering - You're Hired
-
The Faculty-wide Engineering - You're Hired Week is a compulsory part of the second year programme, and the week has been designed to develop student academic, transferable and employability skills. Working in multi-disciplinary groups of about six, students will work in interdisciplinary teams on a real world problem over an intensive week-long project. The projects are based on problems provided by industrial partners, and students will come up with ideas to solve them and proposals for a project to develop these ideas further.
Optional modules:
- Electrical Energy Management and Conversion
-
An outline of the electrical supply infrastructure, including the plurality of electrical energy generation modalities currently in use, is followed by elementary ideas behind protection, safety and tariff structures. The characteristics of electrical machines are discussed together with the circuit strategies that can be used to control of machine performance. Circuits for more general high efficiency power management are also described. Circuits dealing with power will dissipate energy and that energy must be removed if overheating is to be avoided - elements of thermal management are discussed in the context of audio power amplifiers.
20 credits - Introduction to Systems Engineering & Software
-
Engineering applications are typically complex, so students also need to acquire proficiency in analytical problem solving and the ability to apply a systems engineering approach, as a systematic methodology to design and implementation. A group project will develop an understanding of the type of problem solving and systems engineering needed for the design and build of a computer-controlled system. Students will improve skills in communication, team working and reflective practices as a result of the group project. Engineering applications in manufacturing, aerospace, robotics, energy, finance, healthcare and a host of other areas are predominately computer based or computer controlled. In order to be able to create computer based and computer controlled applications, students need to acquire proficiency in relevant software and programming languages. In this module, labs and several individual assignments will build proficiency in creating C programs as solutions to engineering problems.
20 credits - Signals, Systems, and Communications
-
Modern communication systems provide the backbone of the technological development that is driving the information age. The increase of data analytics, machine learning, and networked solutions pushes the trend towards an increasing use of digital communication systems as means of enabling reliable and efficient information exchange. The aim of the unit is to provide the fundamentals of signals, systems and communication systems. The mathematical principles of signal theory and systems theory will be applied within a communication theory context. The unit will provide the students with the tools to analyse and solve complex open-ended communication problems and to evaluate the technological constraints of the proposed solutions.
20 credits - Applied Aerospace Heat Transfer
-
The objective of this module is to teach the student the fundamentals and basic applications of heat transfer. The module is divided into three parts, each focusing on a different heat transfer process, namely conduction, convection and radiation. The three processes are often combined in the problems studied in order to explain heat transfer in a real-life engineering system works. The conduction part of the module focuses on steady heat conduction in one dimensional systems, conduction through fins to increase efficiency and transient heat conduction. Numerical methods applied to conduction problems will also be briefly introduced. Forced convection will be studied in internal flows and in external flows, and natural convection will also be introduced. Heat exchangers will be studied and knowledge of conduction and forced convection will both be used. Thermal radiation will focus on the physics and on network analysis to solve engineering problems. Group work will be very important in the laboratory experiments and for oral presentations on applications of heat exchangers.
10 credits - Dynamics of Aerospace Structures and Machines
-
The aim of this module is to develop understanding of the fundamental concepts governing the dynamics of structures and machines for aerospace engineering. It covers two principal areas: structural vibration and rigid body mechanics. In structural vibration, the single degree of freedom model is used to study the free response and forced vibration of systems subjected to steady state, impulse and arbitrary loading. Aspects of rigid body mechanics include the analysis of common two-dimensional mechanisms and the dynamics of rigid rotors, including gyroscopic motion.
10 credits - Introduction to Electronic Circuits
-
This module introduces the concepts and analytical tools for predicting the behaviour of combinations of passive circuit elements in conjunction with active electronic components; diodes, transistors and operational amplifiers and the circuits in which these devices are used.
10 credits - Introduction to Programming and Problem Solving
-
This module introduces basic concepts of computer programming, through an introduction to problem solving and the development of simple algorithms using the programming language Python. The module will stress the importance of good programming style and good code design and will introduce how an object-oriented approach can help to achieve these aims.
10 credits - Materials Selection and Fracture Mechanics
-
The first half of the course aims to build a comprehensive understanding of the interrelationship between materials selection, materials processing, product design and product performance in order to develop a holistic approach to optimum selection of materials for engineering and industrial applications. Topics examined include methods of materials and process selection through an applied open-ended project.This module also introduces students to fracture mechanics. In the fracture mechanics topics covered in some detail include linear elastic fracture mechanics, cyclic fatigue, stress corrosion and failure prediction. A brief introduction to elastic-plastic fracture mechanics is also included.
10 credits - Selection and Processing of Aerospace Materials
-
This module will consist of two distinct parts. The first part will examine the use of polymers and composite materials within an aerospace context and will focus on structure, property and processing relationships for polymers, reinforcing fibres and both polymer, carbon-carbon, and ceramic matrix composite materials. The second part of the module will provide a broad introduction to the main processing routes for metallic components used in aerospace applications, and will look in detail at techniques such as casting, rolling, forging, as well as the processing routes for metal matrix composites and advanced high strength steels.
10 credits
Core modules:
- Aero Propulsion
-
The aim of this module is to provide the students with an understanding of principles of operation of gas turbines, as applied to aero propulsion and power generation.The module introduces the theory of gas turbines and how they should function. The study is based on fundamental thermodynamic and fluid mechanic analyses and introduces methods for improving efficiencies and increasing specific work output. The effect of simple thermodynamics of combustion, jet engine losses and efficiences are considered, together with an analysis of turbojet and turbofan designs.Website Version:This module provides students with an understanding of principles of operation of gas turbines, pulse-jets, RAM-jets and solid and liquid fuelled rocket engines as applied to aero propulsion. The understanding is built upon fundamental thermodynamic and fluid mechanic analyses of components and systems for each propulsion method. Methods for improving efficiencies and increasing specific work output of components are also introduced as well as an introduction to combustion, losses and efficiencies.
10 credits - Aerodynamic Design
-
This module aims to provide the students with a good understanding of basic theories in aerodynamics and its integration in the design process. It emphasises on the role that aerodynamics plays in engineering product design, where the forces exerted by the air flow around the geometries are crucial, e.g. for an aircraft or a racing car. The aerodynamic principles will be demonstrated through their roles in aeronautical and automotive vehicle designs. The students should be able to apply these basic principles to other areas of applications in broader engineering areas, such as the design of wind turbines, engine fans, buildings, sailing boats, etc.
10 credits - Aerospace Group Design Project: Build and Test
-
The aim of this module is for students realise the designs that they have previously developed to produce an unmanned air vehicle to meet the requirements of a client. The module will consist of the continued evaluation of the design, the realisation of the air vehicle and its subsequent testing, followed by a review and proposals for design improvements. The module will be largely self-directed by the students - students will be expected to work outside of their current knowledge and understanding in solving this challenging engineering problem and so considerable independence, initiative and creative and critical thinking will be required.
10 credits - Group Design, Build and Test: Air Systems Development
-
This module is an L3 group design project where the students design, analyse and iterate prototype elements of an air system to meet a specific customer need which has been defined within a customer Statement of Requirement (SOR). The module is scenario based and provides a sense of realism drawing on real-life project processes and methodologies. Module AER301 is the first of a 2-part module where students will complete the Concept, Assessment and Demonstration phases of the CADMID air system lifecycle prior to manufacturing, testing and flying their final UAS design in module AER302. The module brings together aspects of teamwork, project and risk management, project progress tracking and reporting, materials, structures, aircraft design lifecycles, computer simulation, analysis, prototyping, airworthiness and system safety cases, certification and sustainability.Students will be given a specific project role which will be defined in a Terms of Reference. Students will use CAD, simulation and modelling software to produce a digital twin of their air system to confirm its suitability to meet the specified requirements. Prototyping of the wing, structure, propulsion, flight avionics and mission systems will be conducted to inform decision-making and to aid down selection of the most appropriate technical solution. A pre-production air system safety case (ASSC) will be generated during the project to capture all of the relevant information accumulated during the design and development of the UAS to prove that it is safe to operate and to confirm that it is airworthy and in compliance with codes of practice, industry regulations, standards and certification. Students will produce a range of project documentation, status updates, and a project slide pack and will present their final design to a panel of experts and non-experts who will assess whether the students have met the design requirements.
10 credits - Aircraft Design
-
This module provides a comprehensive knowledge about all elements of conceptual aircraft design and promotes the learning and application of the industrial procedure for designing an aircraft based on given requirements. Topics include: conceptual design and sizing, preliminary design, matching plot, wing design, propulsion system selection, fuselage design, etc. The teaching will be based on constructive alignment by making use of specific active learning techniques during teaching sessions.
10 credits - Aircraft Dynamics and Control
-
Aerospace engineering is a fascinating area where knowledge from different disciplines is needed. The aim of this module is to provide the student with such a fundamental knowledge and understanding of the principles of aircraft performance, flight dynamics and the problems of controlling an aircraft¿s motion. Various aspects of aircraft performance including straight, level flight and manoeuvres are covered. The module introduces the equations of motion for a rigid body aircraft and the aerodynamic forces and moments are then determined. Static and dynamic stability and response characteristics are defined. Flying and handling qualities of an aircraft, and disturbances affecting its motion, are analysed.
10 credits - Finance and Law for Engineers
-
The module is designed to introduce engineering students to key areas of financial and legal risk that engineers should be aware of in their working environment. The module will draw directly on practical issues of budgeting, raising finance, assessing financial risks and making financial decisions in the context of engineering projects and/or product development. At the same time the module will develop students' understanding of the legal aspects of entering into contracts for the development and delivery of engineering projects and products and an awareness of environmental regulation, liability for negligence, intellectual property rights and the importance of data protection. Through a series of parallel running lectures in the two disciplines, the module will provide a working knowledge of the two areas and how they impinge on engineering practice. There will be a heavy emphasis on group working, report writing and presentation as part of the assessment supplemented by online exercises and an individual portfolio.
10 credits - Managing Engineering Projects and Teams
-
This module provides you with an understanding of the significance of projects as an instrument of business success in engineering organisations. You will learn a range of project management tools, techniques and methodologies throughout the project life cycle. You will develop skills in defining, planning, delivering, and controlling engineering projects. You will also learn the roles and responsibilities of people within engineering projects and understand how to manage teams in engineering projects.
10 credits - Ground and Flight Training
-
The aim of this module is to provide students with a sound working knowledge of all issues related to the piloting of aircraft and to prepare them for five hours of flight training in light aircraft. The module includes the theories behind principles of flight and aircraft general knowledge, aviation law, meteorology, flight planning and performance, human factors in relation to flying aircraft, radiotelephony and navigation. The students will undertake five hours of flying training during the year which will help them to put their ground training into context.
10 credits
Optional modules:
- Communication Electronics
-
This module introduces the basic structure of a communication system and examines the various circuits and signal engineering strategies that are necessary to make a system work. The fundamental building blocks of a communications system are introduced and analysed in terms of the critical design metrics. Following on from the system approach, a range of circuit components are introduced and analysed such as filters and oscillators. This approach will provide you with a range of levels of system and component understanding such that you can apply these to designs.
20 credits - Advanced Engineering Thermodynamic Cycles
-
The course will consolidate and expand upon the fundamental and general background to Thermofluids engineering developed during first and second year courses. This will be achieved through the study of more realistic systems, machines, devices as well as their application.
10 credits
To introduce students to more realistic energy conversion and power production processes. Use of irreversibility to analyse plant. Introduction of reheat and heat recovery as methods of achieving improved efficiency. To look at total energy use by means of combined gas and steam and combined heat and power cycles and understand some of the environmental issues. A variety of refrigeration cycles will also be illustrated as well as the Otto and Diesel cycles. - Aerospace Metals
-
This unit covers engineering alloys ranging from light alloys (i.e. aluminium alloys and titanium alloys) and high temperature metallic systems (intermetallics and nickel superalloys). The course centres on the physical metallurgy of such engineering alloys to demonstrate the effect of alloying and its implications for the processing, microstructure and performance of structural aerospace components in both airframe and aero-engine applications. Some parallels will also be drawn with the automotive industry, when discussing light alloys.
10 credits - Antennas, Radar and Navigation
-
This module is about understanding the fundamentals and common applications of antennas and radar systems. The basic characteristics of some of the commonly used antennas, and antenna systems, will be examined in the context of practical design and application. The radar part of the module will introduce the basic concepts of radar and examine various types of commercial and military radar system in common use. The application of radar and other methods in airborne navigation and landing systems will be discussed. Throughout the module emphasis will be placed on 'first-order' analysis techniques in order to reduce the use of advanced mathematics.
10 credits - Composite Materials and Micromechanics
-
This module starts with an introduction to the different types of composite that either exist in nature (e.g., bone, wood and shells) or are man-made (e.g., fibre or particle reinforced composites; metal-matrix, ceramic-matrix or polymer-matrix composites). Reinforcing theories are discussed as are the strengths and weaknesses of composite materials. The aim is to acquaint students with the constituents of composite materials, fibres and matrices and how they are manufactured. Running parallel to this is an examination of composite materials from a micromechanics point of view. Fibre statistics, classical laminate theory and shear lag theory (and more) are used to predict and understand the properties of composites. A series of problem classes are used to help students practise using the equations and interpreting the output.
10 credits - Computational Fluid Dynamics
-
The module introduces fundamental concepts of Computational Fluid Dynamics from the governing physical principles to their mathematical definition, approximation and numerical solution, with an emphasis on the importance of experimental and theoretical validation. The course explains the typical steps for a robust use of CFD analysis to predict the behaviour of complex fluid flows encountered in typical engineering applications, including turbulent flows. Students will consolidate their understanding by performing and critically assessing the results of a CFD analysis of a typical and industrially relevant fluid problem.
10 credits - Digital Signal Processing
-
The aim is to introduce students to digital processing techniques, including sampling and analysis of digital signals, design of digital filers, and the introduction of digital image processing. Discrete signals and systems are studied, with an emphasis on the frequency-domain theory necessary for the analysis of discrete signals and design of digital filters. The concepts associated with digital images and some basic digital image processing operations are also covered.
10 credits - Finite Element Techniques
-
The module aims to give students a thorough knowledge and understanding of the principles of the Finite Element Method. The approach will be based on energy methods (Principle of Minimum Total Potential Energy). Formulation of statics problems using 1D elements (bar elements, shaft elements, beam elements and beam-column elements), and truss elements will be taken up. Finally, a simple 2D element for plane stress/plane strain case will be formulated. Throughout the module, assembly, application of boundary conditions, and solution procedures will be discussed with examples. The students will be expected to apply this knowledge given a problem. The use of a commercial finite element code will be provided via laboratory sessions, where various modelling strategies, appreciation of the scope of application, check validity, and the ability to interpret results will be covered.
10 credits
The fundamentals of the method and the ability to apply it to various situations will be tested via a written exam. The practical use of the commercial finite element software will be assessed via a mini-report. Feedback during the term will be provided via an online quiz. - Hardware-in-the-Loop & Rapid Control Prototyping
-
This course represents an opportunity for students to gain hands-on experience of designing and implementing advanced controllers upon a challenging, real-world control problem. Uniquely, each student will be issued with their own, portable control hardware for the duration of the course. Students will learn how to interface such a system to industry standard software using a data acquisition device, before developing their own simulation models of the hardware. These models will be used to synthesise a feedback controller, and verified in simulation before being implemented upon the hardware. The resultant controller will then be refined in a cycle of rapid control prototyping.
10 credits - Space Systems Engineering
-
The module aims to introduce different mission types including communications, earth observation, weather, navigation, astronomy, scientific, interplanetary missions and space stations. Concepts of orbital motion such as Kepler Laws, Elliptic, Parabolic and Hyperbolic orbits are introduced. Atmospheric drag, luni-solar perturbations are explained. Hohmann orbit transfer, ground station visibility, launch windows are explained. The module provides an understanding of spacecraft sub-systems and control including attitude control and thermal control, as well as providing knowledge of propulsion systems for example chemical rockets, electric propulsion, nuclear rockets, and solar sails.
10 credits
Various concepts related to space environment are explored including, sun, solar wind, solar cycles, heliosphere, ionosphere, magnetosphere, magnetic storms, substorms and geomagnetic indices. The module explains space weather phenomena and concepts including the effects of ionising radiation, cosmic rays, and solar energetic particle events on spacecraft systems and astronauts. Geomagnetic storms and sub-storms are also discussed. The module considers ground induced current and its effect on the pipelines, power grid and transformers. The effects of space weather on communications and forecasting of space weather are discussed. - State-Space Control Design
-
The aims of this modules are: to introduce state-space methods for the analysis and design of controllers for multivariable systems; to teach the use of analytical tools and methods for state-space control design; to demonstrate similarities between continuous and sampled data systems; and to extend the analysis to non-linear systems.
10 credits
Material to be covered includes: Structural properties (modal decomposition, controllability, observability, stability); design (pole assignment, observer design, separation principle, internal model principle, optimal control, LQG, reference tracking, integral control) of continuous systems and equivalents for sampled-data systems. - Structural Vibration
-
In this module we will explore how structures vibrate and how we can model them in order to understand and optimise their behaviour. We will look at how to model systems/structures mathematically as multi-degree of freedom systems and as continuous systems. The module will link theoretical models with experimental modal analysis, where knowledge of the system is derived from measurements (such as accelerations). You will explore the world of dynamics through lectures and dedicated reading. The theoretical learning will be supported by two laboratory experiments to be carried out in groups. Your understanding of experimental modal analysis will be cemented by coding your own analysis tool and applying it to data gathered in the lab.
10 credits
Core modules:
- Aerospace Individual Investigative Project
-
The project is designed to develop students' technical knowledge and understanding, technical and personal skills and an appreciation of the wider context of their studies. It gives students the opportunity to apply and develop further their knowledge and skills by applying them to a specific problem area. It is also intended to develop a greater level of student independence. The specific aims of the project are to:
45 credits
- provide students with the freedom to explore possible solutions to real engineering problems, allowing them to demonstrate their understanding of practical aerospace engineering.
- enable students to exercise independent thought and judgement in conducting a technical investigation.
Optional modules:
- Advanced Aerospace Propulsion Technology
-
This module enhances students' foundational knowledge by introducing a more specialist Level 7 understanding of major aero propulsion devices. For example, the rocket design will be mastered from the design lessons and innovations of the rockets of historical importance. The more in depth analysis of the alternative air breathing engines such as ramjet, scramjet, and synergistic air-breathing rocket engine will be investigated. Then the advanced gas turbine off-design performance will be analysed. The advanced gas turbine combustion will also be investigated. Finally, the recent explosive development of electric/hybrid propulsion and aircraft will be examined.
15 credits - Advanced Control
-
The aim of this module is to provide you with an introduction to some of the advanced control techniques used in modern control engineering research and industrial applications. The module will cover both theory and practice, involving analysis and design.
15 credits
Different control techniques and applications may be covered in different years. In all cases, the basic principles and concepts of a particular control technique will be introduced, and comparisons and contrasts will be made with other techniques. Subsequently, the design, analysis and implementation of advanced controllers or control laws will be covered, starting from the requirements of the basic control problem for the application at hand (i.e. stability in the presence of constraints; disturbance and noise rejection). Controller design will be illustrated by industrially-relevant case studies. - Advanced Dynamics
-
In this module we will explore how linear/nonlinear structures vibrate and how we can model them in order to understand and optimise their complex behaviour both analytically and numerically. We will uncover the behaviour of theoretical nonlinear models and we will explore and evaluate the fascinating world of advanced dynamics, random vibration, nonlinear systems and chaos through lectures and dedicated reading. We link advanced engineering with concepts from physics and maths that are of core importance in the new era of engineering, considering structures from light aerospace structures to offshore wind turbines and space shuttles. Furthermore, we will discover the world of Hamiltonian mechanics by capturing its fundamental physics. The learning will be supported by dedicated tutorial sessions.
15 credits - Advanced Engineering Fluid Dynamics
-
The module introduces advanced subjects in fluid mechanics and focuses on the theory and applications of the fundamental physical laws governing fluid flows. The Navier-Stokes and the continuity equations are revisited and the energy and the general Scalar Transport Equations for fluid flows will be derived. Creeping flows, laminar/turbulent boundary layer flows, shock and expansion waves, drag rise and supersonic aerofoils, etc. will be discussed. A key skill developed is problem solving in the area of advanced fluid mechanics through how equations, models and boundary conditions may be adapted and simplified to describe a wide variety of engineering fluid flows.
15 credits - Advanced Materials Manufacturing
-
This unit introduces key concepts with regards to Materials 4.0, the fourth industrial revolution. Modelling and simulation is a key enabling technology within Aerospace Technology Institute's strategy to reach zero carbon emissions by 2050. Modelling allows for the rapid insertion of new materials and manufacturing processes, in addition to the improved understanding and optimisation of current methods. The course includes key drivers in reaching zero carbon emissions, covering lithium battery manufacturing and coating technologies.
15 credits
This unit aims to provide knowledge and experience of advanced manufacturing techniques that will underpin the UK's future advanced materials manufacturing base and obtain knowledge and experience of advanced manufacturing process and material modelling to solve industrial problems.
- Advanced Space Systems and Space Weather
-
The module provides you with an understanding of the concept advanced space systems, within the context of space weather and processes in the geo-space that can have hazardous effects on modern ground based and space based technological systems. It covers knowledge about susceptibility of services such as power supply, communications, transportation and navigation to space weather events, and introduces methodologies for space weather forecast based on systems engineering approaches from first principles. The module also provides knowledge of the requirements for transferring forecasting models into operational tools for space weather forecasting, before covering how space weather forecasting can assist in mitigating adverse effects of space weather.
15 credits - Aviation Safety and Aeroelasticity
-
This module covers the area of engineering related to aeroelasticity and safety by means of analytical techniques and study cases. The students will develop a fundamental knowledge of aeroelasticity and its implications for aircraft design and operation and evaluate aircraft loading; be able to analyse different manoeuvres using heave/pitch aircraft models; and be able to calculate internal loads in different manoeuvres. The course will provide students with an understanding of aeroelastic phenomena including flutter and divergence. This course provides the methodology and techniques for prediction/detection of a number of aeroelastic effects.
15 credits - Design and Manufacture of Composites
-
This module is designed to provide you with an understanding of both the design and manufacture of polymer composites and is presented in two sections. First, design of composites is taught via tutorials and practicals on classical laminate theory and ESAComp software. An extended series of worked examples provides you with the basic tools you need to design effective composite parts. Second, manufacture of composites is taught via lectures. You will learn multiple routes for making composite parts alongside practical issues such as defects, machining/joints, failure, testing and non destructive testing, repair and SMART composites.
15 credits - Electronic Communication Technologies
-
This module aims to provide you with a range of skills that are required when designing circuits and systems at high frequencies. Topics covered will include: electromagnetic interference mechanisms, circuit design techniques, filtering, screening, transmission lines, S-parameters, Smith charts, equivalent circuits for passive and active devices, radio frequency (RF) amplifier design, noise performance and nonlinearities of RF circuits and systems.
15 credits - Industrial Applications of Finite Element Analysis
-
The module aims to provide students with a thorough understanding of the principles of finite element modelling and its application to solve industrial engineering problems. A set of industry-relevant problems will be provided to students along with experimental results for model validation. Students will be allocated one of their preferred projects and will have to devise a modelling strategy to solve their particular problem. Knowledge will be drawn from lectures introducing the theory behind finite element modelling of dynamic problems for modal and transient analyses, non-linear problems including contact, material behaviour and large deformation as well as fracture.
15 credits - Industrial training programme (ITP) in Avionics
-
This unit will provide an insight into the avionics, data processing and autonomous systems. This will be collaboration with GE Aviation Systems (Cheltenham). GE Aviation Systems will set a real technical challenge and small group sizes will undertake experimental work and present a report that will require an in-depth literature review. To supplement the main technical challenge there will be focussed technical seminars on relevant topics. These topics will be provided by both academics and industry engineers. In addition, GE Aviation will provide seminars on employability skills, data handling, quality and safety in the aerospace materials sector.
15 credits - Mobile Robotics and Autonomous Systems
-
Robotics and autonomous systems are having an increasing impact on society and the way we live. From advanced manufacturing and surgical robots to unmanned aerial systems and driverless cars, this exciting area is presenting increasing technological challenges. This module provides you with the advanced knowledge and understanding to apply control and systems engineering concepts to the closely related disciplines of robotics and autonomous systems. The module covers theoretical and technical analysis, and design aspects of mobile and manipulator robots with reference to their applications. The module further covers advanced techniques in autonomous decision making for robots and autonomous vehicles.
15 credits - Motion Control and Servo Drives
-
This module investigates, in detail, the performance and operational characteristic of both modern a.c. and d.c. variable speed drives and actuation systems, as well as their applications in electric/hybrid vehicle traction.
15 credits - Multisensor and Decision Systems
-
The ability to use data and information from multiple sources and make informed decisions based on that data is key to many applications, e.g. manufacturing, aerospace, robotics, finance and healthcare. Through effective use of multisensory data and decision making we can reduce uncertainty, improve robustness and reliability, enhance efficiency and ultimately improve the performance of systems. In this module you will develop an in depth knowledge and understanding of multisensor and decision systems and the underlying mathematics and algorithms. You will develop your confidence in solving complex problems requiring the application of multisensory and decision techniques to a wide variety of applications.
15 credits - Real-Time Embedded Systems
-
Many systems, for example; a control system, fault detection system or health monitoring system are required to work in real-time. Such systems can be developed and implemented using a CPU and external devices in an embedded system application/device to perform the desired tasks in the "real" world. This module covers the hardware associated with building an embedded system and how the desired functionality and thus real-time operation of an embedded system can be realised through software/hardware.
15 credits - Testing and verification in safety-critical systems
-
This module provides an introduction to the processes and problems of building complex software such as for use in aerospace applications. Topics covered can be split into four major groups: safety, specification languages, concepts of software engineering, different methods of software testing. A substantial amount of time will be spent on the ideas of software testing and specific testing techniques.
15 credits
1. Safety includes software and systems safety, methods of performing hazard analysis, human factors and the IEC 61508 standard.
2. Specification languages such as Statecharts.
3. Software engineering concepts focus on the software lifecycle, safe language subsets, software testing and maintenance.
4. The software testing part is concerned with advanced approaches to generating software tests.Students should be aware that there are limited places available on this course.
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption. We are no longer offering unrestricted module choice. If your course included unrestricted modules, your department will provide a list of modules from their own and other subject areas that you can choose from.
Learning and assessment
Learning
The following are the main learning and teaching methods implemented within the programme:
- lectures
- tutorials
- practical activities
- coursework assignments (including oral, video and poster presentations)
- individual investigative project (final year)
- design projects
- online resources
Assessment
Students are assessed via a mix of the following:
- examinations
- coursework assignments
- lab work
- online tests
- reports
- group projects
- presentations
- design projects
- dissertations
Programme specification
This tells you the aims and learning outcomes of this course and how these will be achieved and assessed.
Entry requirements
With Access Sheffield, you could qualify for additional consideration or an alternative offer - find out if you're eligible.
The A Level entry requirements for this course are:
AAA
including Maths and a science
A Levels + additional qualifications AAB, including Maths and a science + A in a relevant EPQ; AAB, including Maths and a science + A in AS or B in A Level Further Maths
International Baccalaureate 36, with 6 in Higher Level Maths and a science
BTEC Extended Diploma DDD in Engineering or Applied Science + A in A Level Maths
BTEC Diploma DD in Engineering or Applied Science + A in A Level Maths
Scottish Highers + 2 Advanced Highers AAAAB + AA in Maths and a science
Welsh Baccalaureate + 2 A Levels A + AA in Maths and a science
Access to HE Diploma Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 39 at Distinction (to include 15 Maths and 15 science units), and 6 at Merit + A in A Level Maths
Other requirements-
Science subjects include Biology/Human Biology, Chemistry, Further Maths, Physics, or Statistics
The A Level entry requirements for this course are:
AAB
including Maths and a science
A Levels + additional qualifications AAB, including Maths and a science + A in a relevant EPQ; AAB, including Maths and a science + A in AS or B in A Level Further Maths
International Baccalaureate 34, with 6,5 (in any order) in Higher Level Maths and a science
BTEC Extended Diploma DDD in Engineering or Applied Science + B in A Level Maths
BTEC Diploma DD in Engineering or Applied Science + B in A Level Maths
Scottish Highers + 2 Advanced Highers AAABB + AB in Maths and a science
Welsh Baccalaureate + 2 A Levels B + AA in Maths and a science
Access to HE Diploma Award of Access to HE Diploma in a relevant subject, with 45 credits at Level 3, including 39 at Distinction (to include 15 Maths and 15 science units), and 6 at Merit + A in A Level Maths
Other requirements-
Science subjects include Biology/Human Biology, Chemistry, Further Maths, Physics, or Statistics
You must demonstrate that your English is good enough for you to successfully complete your course. For this course we require: GCSE English Language at grade 4/C; IELTS grade of 6.5 with a minimum of 6.0 in each component; or an alternative acceptable English language qualification
Equivalent English language qualifications
Visa and immigration requirements
Other qualifications | UK and EU/international
If you have any questions about entry requirements, please contact the department.
Aerospace Engineering
We work with the biggest names in industry to shape the future of aerospace engineering. We have strong partnerships with the likes of Airbus UK, BAE Systems, Boeing, EADS, Qinetiq and Rolls-Royce. Our work with them will introduce you to developments and techniques that are still new to industry. You'll gain both breadth and depth of engineering knowledge, as well as the transferable skills employers demand.
Like the industry, Aerospace Engineering at Sheffield is interdisciplinary. You'll be taught by experts in aerospace materials, aerodynamics, flight control systems, avionics, aircraft design, aero propulsion, management and applied mathematics. Our unique approach will give you the competitive advantage when you graduate.
Our courses will give you both academic knowledge and practical experience. Analyse flight performance and stability on our unique flying day, solve real-world engineering problems on the Global Engineering Challenge, or design, build and fly your own unmanned air vehicle as part of the MEng group design project.
The Diamond features some of the best engineering teaching spaces in the UK. You'll be taught in state-of-the art teaching and lab facilities, using cutting edge, industry standard equipment.
Facilities
The Diamond features some of the best engineering teaching spaces in the UK. You’ll be taught in state-of-the-art teaching and lab facilities, using industry standard equipment. We have four Merlin static flight simulators for aircraft design and six X-Plane based flight simulators for flight control and navigation purposes. There are seven commercial drones with a netted area for flight testing and to learn basic flying skills. We also have a Turbine Solutions jet engine test bench, along with 20 associated jet engines to take apart and analyse. You’ll get to use these facilities throughout your course.
Why choose Sheffield?
The University of Sheffield
A top 100 university
QS World University Rankings 2023
92 per cent of our research is rated as world-leading or internationally excellent
Research Excellence Framework 2021
Top 50 in the most international universities rankings
Times Higher Education World University Rankings 2022
No 1 Students' Union in the UK
Whatuni Student Choice Awards 2022, 2020, 2019, 2018, 2017
A top 10 university targeted by employers
The Graduate Market in 2022, High Fliers report
Aerospace Engineering
National Student Survey 2022
National Student Survey 2022
Graduate careers
Aerospace Engineering
Our graduates are in demand internationally and go onto success in some of the world's leading engineering companies. They work in aerospace design, aviation, transport, manufacturing, finance, energy and power, and the armed forces. Employers include Airbus, BAE Systems, BP, Ernst & Young, Jaguar Land Rover, Ministry of Defence, Nissan, Rolls-Royce, PwC, Royal Air Force and Shell. Some students continue onto further study or research.
There's a focus on employability throughout your studies and you'll get all the support you need to help you achieve your career aspirations.
Placements and study abroad
Placement
Study abroad
Fees and funding
Fees
Additional costs
The annual fee for your course includes a number of items in addition to your tuition. If an item or activity is classed as a compulsory element for your course, it will normally be included in your tuition fee. There are also other costs which you may need to consider.
Funding your study
Depending on your circumstances, you may qualify for a bursary, scholarship or loan to help fund your study and enhance your learning experience.
Use our Student Funding Calculator to work out what you’re eligible for.
Visit us
University open days
We host five open days each year, usually in June, July, September, October and November. You can talk to staff and students, tour the campus and see inside the accommodation.
Subject tasters
If you’re considering your post-16 options, our interactive subject tasters are for you. There are a wide range of subjects to choose from and you can attend sessions online or on campus.
Offer holder days
If you've received an offer to study with us, we'll invite you to one of our offer holder days, which take place between February and April. These open days have a strong department focus and give you the chance to really explore student life here, even if you've visited us before.
Campus tours
Our weekly guided tours show you what Sheffield has to offer - both on campus and beyond. You can extend your visit with tours of our city, accommodation or sport facilities.
Apply
Contact us
Telephone: +44 114 222 7837
Email: aerospace-admissions@sheffield.ac.uk
The awarding body for this course is the University of Sheffield.
Recognition of professional qualifications: from 1 January 2021, in order to have any UK professional qualifications recognised for work in an EU country across a number of regulated and other professions you need to apply to the host country for recognition. Read information from the UK government and the EU Regulated Professions Database.
Any supervisors and research areas listed are indicative and may change before the start of the course.